Search results for: mathematical algorithms of targeting and persecution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4228

Search results for: mathematical algorithms of targeting and persecution

358 Invistigation of Surface Properties of Nanostructured Carbon Films

Authors: Narek Margaryan, Zhozef Panosyan

Abstract:

Due to their unique properties, carbon nanofilms have become the object of general attention and intensive research. In this case it plays a very important role to study surface properties of these films. It is also important to study processes of forming of this films, which is accompanied by a process of self-organization at the nano and micro levels. For more detailed investigation, we examined diamond-like carbon (DLC) layers deposited by chemical vapor deposition (CVD) method on Ge substrate and hydro-generated grapheme layers obtained on surface of colloidal solution using grouping method. In this report surface transformation of these CVD nanolayers is studied by atomic force microscopy (AFM) upon deposition time. Also, it can be successfully used to study surface properties of self-assembled grapheme layers. In turn, it is possible to sketch out their boundary line, which enables one to draw an idea of peculiarities of formation of these layers. Images obtained by AFM are investigated as a mathematical set of numbers and fractal and roughness analysis were done. Fractal dimension, Regne’s fractal coefficient, histogram, Fast Fourier transformation, etc. were obtained. The dependence of fractal parameters on the deposition duration for CVD films and on temperature of solution tribolayers was revealed. As an important surface parameter for our carbon films, surface energy was calculated as function of Regne’s fractal coefficient. Surface potential was also measured with Kelvin probe method using semi-contacting AFM. The dependence of surface potential on the deposition duration for CVD films and on temperature of solution for hydro-generated graphene was found as well. Results obtained by fractal analysis method was related with purly esperimental results for number of samples.

Keywords: nanostructured films, self-assembled grapheme, diamond-like carbon, surface potential, Kelvin probe method, fractal analysis

Procedia PDF Downloads 247
357 Surface Thermodynamics Approach to Mycobacterium tuberculosis (M-TB) – Human Sputum Interactions

Authors: J. L. Chukwuneke, C. H. Achebe, S. N. Omenyi

Abstract:

This research work presents the surface thermodynamics approach to M-TB/HIV-Human sputum interactions. This involved the use of the Hamaker coefficient concept as a surface energetics tool in determining the interaction processes, with the surface interfacial energies explained using van der Waals concept of particle interactions. The Lifshitz derivation for van der Waals forces was applied as an alternative to the contact angle approach which has been widely used in other biological systems. The methodology involved taking sputum samples from twenty infected persons and from twenty uninfected persons for absorbance measurement using a digital Ultraviolet visible Spectrophotometer. The variables required for the computations with the Lifshitz formula were derived from the absorbance data. The Matlab software tools were used in the mathematical analysis of the data produced from the experiments (absorbance values). The Hamaker constants and the combined Hamaker coefficients were obtained using the values of the dielectric constant together with the Lifshitz equation. The absolute combined Hamaker coefficients A132abs and A131abs on both infected and uninfected sputum samples gave the values of A132abs = 0.21631x10-21Joule for M-TB infected sputum and Ã132abs = 0.18825x10-21Joule for M-TB/HIV infected sputum. The significance of this result is the positive value of the absolute combined Hamaker coefficient which suggests the existence of net positive van der waals forces demonstrating an attraction between the bacteria and the macrophage. This however, implies that infection can occur. It was also shown that in the presence of HIV, the interaction energy is reduced by 13% conforming adverse effects observed in HIV patients suffering from tuberculosis.

Keywords: absorbance, dielectric constant, hamaker coefficient, lifshitz formula, macrophage, mycobacterium tuberculosis, van der waals forces

Procedia PDF Downloads 251
356 Belief-Based Games: An Appropriate Tool for Uncertain Strategic Situation

Authors: Saied Farham-Nia, Alireza Ghaffari-Hadigheh

Abstract:

Game theory is a mathematical tool to study the behaviors of a rational and strategic decision-makers, that analyze existing equilibrium in interest conflict situation and provides an appropriate mechanisms for cooperation between two or more player. Game theory is applicable for any strategic and interest conflict situation in politics, management and economics, sociology and etc. Real worlds’ decisions are usually made in the state of indeterminacy and the players often are lack of the information about the other players’ payoffs or even his own, which leads to the games in uncertain environments. When historical data for decision parameters distribution estimation is unavailable, we may have no choice but to use expertise belief degree, which represents the strength with that we believe the event will happen. To deal with belief degrees, we have use uncertainty theory which is introduced and developed by Liu based on normality, duality, subadditivity and product axioms to modeling personal belief degree. As we know, the personal belief degree heavily depends on the personal knowledge concerning the event and when personal knowledge changes, cause changes in the belief degree too. Uncertainty theory not only theoretically is self-consistent but also is the best among other theories for modeling belief degree on practical problem. In this attempt, we primarily reintroduced Expected Utility Function in uncertainty environment according to uncertainty theory axioms to extract payoffs. Then, we employed Nash Equilibrium to investigate the solutions. For more practical issues, Stackelberg leader-follower Game and Bertrand Game, as a benchmark models are discussed. Compared to existing articles in the similar topics, the game models and solution concepts introduced in this article can be a framework for problems in an uncertain competitive situation based on experienced expert’s belief degree.

Keywords: game theory, uncertainty theory, belief degree, uncertain expected value, Nash equilibrium

Procedia PDF Downloads 393
355 Event Data Representation Based on Time Stamp for Pedestrian Detection

Authors: Yuta Nakano, Kozo Kajiwara, Atsushi Hori, Takeshi Fujita

Abstract:

In association with the wave of electric vehicles (EV), low energy consumption systems have become more and more important. One of the key technologies to realize low energy consumption is a dynamic vision sensor (DVS), or we can call it an event sensor, neuromorphic vision sensor and so on. This sensor has several features, such as high temporal resolution, which can achieve 1 Mframe/s, and a high dynamic range (120 DB). However, the point that can contribute to low energy consumption the most is its sparsity; to be more specific, this sensor only captures the pixels that have intensity change. In other words, there is no signal in the area that does not have any intensity change. That is to say, this sensor is more energy efficient than conventional sensors such as RGB cameras because we can remove redundant data. On the other side of the advantages, it is difficult to handle the data because the data format is completely different from RGB image; for example, acquired signals are asynchronous and sparse, and each signal is composed of x-y coordinate, polarity (two values: +1 or -1) and time stamp, it does not include intensity such as RGB values. Therefore, as we cannot use existing algorithms straightforwardly, we have to design a new processing algorithm to cope with DVS data. In order to solve difficulties caused by data format differences, most of the prior arts make a frame data and feed it to deep learning such as Convolutional Neural Networks (CNN) for object detection and recognition purposes. However, even though we can feed the data, it is still difficult to achieve good performance due to a lack of intensity information. Although polarity is often used as intensity instead of RGB pixel value, it is apparent that polarity information is not rich enough. Considering this context, we proposed to use the timestamp information as a data representation that is fed to deep learning. Concretely, at first, we also make frame data divided by a certain time period, then give intensity value in response to the timestamp in each frame; for example, a high value is given on a recent signal. We expected that this data representation could capture the features, especially of moving objects, because timestamp represents the movement direction and speed. By using this proposal method, we made our own dataset by DVS fixed on a parked car to develop an application for a surveillance system that can detect persons around the car. We think DVS is one of the ideal sensors for surveillance purposes because this sensor can run for a long time with low energy consumption in a NOT dynamic situation. For comparison purposes, we reproduced state of the art method as a benchmark, which makes frames the same as us and feeds polarity information to CNN. Then, we measured the object detection performances of the benchmark and ours on the same dataset. As a result, our method achieved a maximum of 7 points greater than the benchmark in the F1 score.

Keywords: event camera, dynamic vision sensor, deep learning, data representation, object recognition, low energy consumption

Procedia PDF Downloads 75
354 Customized Temperature Sensors for Sustainable Home Appliances

Authors: Merve Yünlü, Nihat Kandemir, Aylin Ersoy

Abstract:

Temperature sensors are used in home appliances not only to monitor the basic functions of the machine but also to minimize energy consumption and ensure safe operation. In parallel with the development of smart home applications and IoT algorithms, these sensors produce important data such as the frequency of use of the machine, user preferences, and the compilation of critical data in terms of diagnostic processes for fault detection throughout an appliance's operational lifespan. Commercially available thin-film resistive temperature sensors have a well-established manufacturing procedure that allows them to operate over a wide temperature range. However, these sensors are over-designed for white goods applications. The operating temperature range of these sensors is between -70°C and 850°C, while the temperature range requirement in home appliance applications is between 23°C and 500°C. To ensure the operation of commercial sensors in this wide temperature range, usually, a platinum coating of approximately 1-micron thickness is applied to the wafer. However, the use of platinum in coating and the high coating thickness extends the sensor production process time and therefore increases sensor costs. In this study, an attempt was made to develop a low-cost temperature sensor design and production method that meets the technical requirements of white goods applications. For this purpose, a custom design was made, and design parameters (length, width, trim points, and thin film deposition thickness) were optimized by using statistical methods to achieve the desired resistivity value. To develop thin film resistive temperature sensors, one side polished sapphire wafer was used. To enhance adhesion and insulation 100 nm silicon dioxide was coated by inductively coupled plasma chemical vapor deposition technique. The lithography process was performed by a direct laser writer. The lift-off process was performed after the e-beam evaporation of 10 nm titanium and 280 nm platinum layers. Standard four-point probe sheet resistance measurements were done at room temperature. The annealing process was performed. Resistivity measurements were done with a probe station before and after annealing at 600°C by using a rapid thermal processing machine. Temperature dependence between 25-300 °C was also tested. As a result of this study, a temperature sensor has been developed that has a lower coating thickness than commercial sensors but can produce reliable data in the white goods application temperature range. A relatively simplified but optimized production method has also been developed to produce this sensor.

Keywords: thin film resistive sensor, temperature sensor, household appliance, sustainability, energy efficiency

Procedia PDF Downloads 52
353 Enhance Concurrent Design Approach through a Design Methodology Based on an Artificial Intelligence Framework: Guiding Group Decision Making to Balanced Preliminary Design Solution

Authors: Loris Franchi, Daniele Calvi, Sabrina Corpino

Abstract:

This paper presents a design methodology in which stakeholders are assisted with the exploration of a so-called negotiation space, aiming to the maximization of both group social welfare and single stakeholder’s perceived utility. The outcome results in less design iterations needed for design convergence while obtaining a higher solution effectiveness. During the early stage of a space project, not only the knowledge about the system but also the decision outcomes often are unknown. The scenario is exacerbated by the fact that decisions taken in this stage imply delayed costs associated with them. Hence, it is necessary to have a clear definition of the problem under analysis, especially in the initial definition. This can be obtained thanks to a robust generation and exploration of design alternatives. This process must consider that design usually involves various individuals, who take decisions affecting one another. An effective coordination among these decision-makers is critical. Finding mutual agreement solution will reduce the iterations involved in the design process. To handle this scenario, the paper proposes a design methodology which, aims to speed-up the process of pushing the mission’s concept maturity level. This push up is obtained thanks to a guided negotiation space exploration, which involves autonomously exploration and optimization of trade opportunities among stakeholders via Artificial Intelligence algorithms. The negotiation space is generated via a multidisciplinary collaborative optimization method, infused by game theory and multi-attribute utility theory. In particular, game theory is able to model the negotiation process to reach the equilibria among stakeholder needs. Because of the huge dimension of the negotiation space, a collaborative optimization framework with evolutionary algorithm has been integrated in order to guide the game process to efficiently and rapidly searching for the Pareto equilibria among stakeholders. At last, the concept of utility constituted the mechanism to bridge the language barrier between experts of different backgrounds and differing needs, using the elicited and modeled needs to evaluate a multitude of alternatives. To highlight the benefits of the proposed methodology, the paper presents the design of a CubeSat mission for the observation of lunar radiation environment. The derived solution results able to balance all stakeholders needs and guaranteeing the effectiveness of the selection mission concept thanks to its robustness in valuable changeability. The benefits provided by the proposed design methodology are highlighted, and further development proposed.

Keywords: concurrent engineering, artificial intelligence, negotiation in engineering design, multidisciplinary optimization

Procedia PDF Downloads 111
352 Beyond Geometry: The Importance of Surface Properties in Space Syntax Research

Authors: Christoph Opperer

Abstract:

Space syntax is a theory and method for analyzing the spatial layout of buildings and urban environments to understand how they can influence patterns of human movement, social interaction, and behavior. While direct visibility is a key factor in space syntax research, important visual information such as light, color, texture, etc., are typically not considered, even though psychological studies have shown a strong correlation to the human perceptual experience within physical space – with light and color, for example, playing a crucial role in shaping the perception of spaciousness. Furthermore, these surface properties are often the visual features that are most salient and responsible for drawing attention to certain elements within the environment. This paper explores the potential of integrating these factors into general space syntax methods and visibility-based analysis of space, particularly for architectural spatial layouts. To this end, we use a combination of geometric (isovist) and topological (visibility graph) approaches together with image-based methods, allowing a comprehensive exploration of the relationship between spatial geometry, visual aesthetics, and human experience. Custom-coded ray-tracing techniques are employed to generate spherical panorama images, encoding three-dimensional spatial data in the form of two-dimensional images. These images are then processed through computer vision algorithms to generate saliency-maps, which serve as a visual representation of areas most likely to attract human attention based on their visual properties. The maps are subsequently used to weight the vertices of isovists and the visibility graph, placing greater emphasis on areas with high saliency. Compared to traditional methods, our weighted visibility analysis introduces an additional layer of information density by assigning different weights or importance levels to various aspects within the field of view. This extends general space syntax measures to provide a more nuanced understanding of visibility patterns that better reflect the dynamics of human attention and perception. Furthermore, by drawing parallels to traditional isovist and VGA analysis, our weighted approach emphasizes a crucial distinction, which has been pointed out by Ervin and Steinitz: the difference between what is possible to see and what is likely to be seen. Therefore, this paper emphasizes the importance of including surface properties in visibility-based analysis to gain deeper insights into how people interact with their surroundings and to establish a stronger connection with human attention and perception.

Keywords: space syntax, visibility analysis, isovist, visibility graph, visual features, human perception, saliency detection, raytracing, spherical images

Procedia PDF Downloads 50
351 Power Quality Modeling Using Recognition Learning Methods for Waveform Disturbances

Authors: Sang-Keun Moon, Hong-Rok Lim, Jin-O Kim

Abstract:

This paper presents a Power Quality (PQ) modeling and filtering processes for the distribution system disturbances using recognition learning methods. Typical PQ waveforms with mathematical applications and gathered field data are applied to the proposed models. The objective of this paper is analyzing PQ data with respect to monitoring, discriminating, and evaluating the waveform of power disturbances to ensure the system preventative system failure protections and complex system problem estimations. Examined signal filtering techniques are used for the field waveform noises and feature extractions. Using extraction and learning classification techniques, the efficiency was verified for the recognition of the PQ disturbances with focusing on interactive modeling methods in this paper. The waveform of selected 8 disturbances is modeled with randomized parameters of IEEE 1159 PQ ranges. The range, parameters, and weights are updated regarding field waveform obtained. Along with voltages, currents have same process to obtain the waveform features as the voltage apart from some of ratings and filters. Changing loads are causing the distortion in the voltage waveform due to the drawing of the different patterns of current variation. In the conclusion, PQ disturbances in the voltage and current waveforms indicate different types of patterns of variations and disturbance, and a modified technique based on the symmetrical components in time domain was proposed in this paper for the PQ disturbances detection and then classification. Our method is based on the fact that obtained waveforms from suggested trigger conditions contain potential information for abnormality detections. The extracted features are sequentially applied to estimation and recognition learning modules for further studies.

Keywords: power quality recognition, PQ modeling, waveform feature extraction, disturbance trigger condition, PQ signal filtering

Procedia PDF Downloads 167
350 Implementation of Fuzzy Version of Block Backward Differentiation Formulas for Solving Fuzzy Differential Equations

Authors: Z. B. Ibrahim, N. Ismail, K. I. Othman

Abstract:

Fuzzy Differential Equations (FDEs) play an important role in modelling many real life phenomena. The FDEs are used to model the behaviour of the problems that are subjected to uncertainty, vague or imprecise information that constantly arise in mathematical models in various branches of science and engineering. These uncertainties have to be taken into account in order to obtain a more realistic model and many of these models are often difficult and sometimes impossible to obtain the analytic solutions. Thus, many authors have attempted to extend or modified the existing numerical methods developed for solving Ordinary Differential Equations (ODEs) into fuzzy version in order to suit for solving the FDEs. Therefore, in this paper, we proposed the development of a fuzzy version of three-point block method based on Block Backward Differentiation Formulas (FBBDF) for the numerical solution of first order FDEs. The three-point block FBBDF method are implemented in uniform step size produces three new approximations simultaneously at each integration step using the same back values. Newton iteration of the FBBDF is formulated and the implementation is based on the predictor and corrector formulas in the PECE mode. For greater efficiency of the block method, the coefficients of the FBBDF are stored at the start of the program. The proposed FBBDF is validated through numerical results on some standard problems found in the literature and comparisons are made with the existing fuzzy version of the Modified Simpson and Euler methods in terms of the accuracy of the approximated solutions. The numerical results show that the FBBDF method performs better in terms of accuracy when compared to the Euler method when solving the FDEs.

Keywords: block, backward differentiation formulas, first order, fuzzy differential equations

Procedia PDF Downloads 299
349 Feasibility of Solar Distillation as Household Water Supply in Saline Zones of Bangladesh

Authors: Md. Rezaul Karim, Md. Ashikur Rahman, Dewan Mahmud Mim

Abstract:

Scarcity of potable water as the result of rapid climate change and saltwater intrusion in groundwater has been a major problem in the coastal regions over the world. In equinoctial countries like Bangladesh, where sunlight is available for more than 10 hours a day, Solar Distillation provides a promising sustainable way for safe drinking water supply in coastal poor households with negligible major cost and difficulty of construction and maintenance. In this paper, two passive type solar stills- a Conventional Single Slope Solar still (CSS) and a Pyramid Solar Sill (PSS) is used and relationship is established between distill water output corresponding to four different factors- temperature, solar intensity, relative humidity and wind speed for Gazipur, Bangladesh. Comparison is analyzed between the two different still outputs for nine months period (January- September) and efficiency is calculated. Later a thermal mathematical model is developed and the distilled water output for Khulna, Bangladesh is computed. Again, difference between the output of the two cities- Gazipur and Khulna is demonstrated and finally an economic analysis is prepared. The distillation output has a positive correlation with temperature and solar intensity, inverse relation with relative humidity and wind speed has nugatory consequence. The maximum output of Conventional Solar Still is obtained 3.8 L/m2/day and Pyramid still is 4.3 L/m2/day for Gazipur and almost 15% more efficiency is found for Pyramid still. Productivity in Khulna is found almost 20% more than Gazipur. Based on economic analysis, taking 10 BDT, per liter, the net profit, benefit cost ratio, payback period all indicates that both stills are feasible but pyramid still is more feasible than Conventional Still. Finally, for a 3-4 member family, area of 4 m2 is suggested for Conventional Still and 3m2 for Pyramid Solar Still.

Keywords: solar distillation, household water supply, saline zones, Bangladesh

Procedia PDF Downloads 254
348 Manodharmam: A Scientific Methodology for Improvisation and Cognition in Carnatic Music

Authors: Raghavi Janaswamy, Saraswathi K. Vasudev

Abstract:

Music is ubiquitous in human lives. Ever since the fetus hears the sound inside the mother’s womb and later upon birth, the baby experiences alluring sounds, the curiosity of learning emanates and evokes exploration. Music is an education than mere entertainment. The intricate balance between music, education, and entertainment has well been recognized by the scientific community and is being explored as a viable tool to understand and improve human cognition. There are seven basic swaras (notes) Sa, Ri, Ga, Ma, Pa, Da, and Ni in the Carnatic music system that are analogous to C, D, E, F, G, A, and B of the western system. The Carnatic music builds on the conscious use of microtones, gamakams (oscillation), and rendering styles that evolved over centuries and established its stance. The complex but erudite raga system has been designed with elaborate experiments on srutis (musical sounds) and human perception abilities. In parallel, ‘rasa’- the emotions evoked by certain srutis and hence the ragas been solidified along with the power of language in combination with the musical sounds. The Carnatic music branches out as Kalpita sangeetam (pre-composed music) and Manodharma sangeetam (improvised music). This article explores the Manodharma sangeetam and its subdivisions such as raga alapana, swara kalpana, neraval, and ragam-tanam-pallavi (RTP). The intrinsic mathematical strategies in it’s practice methods toward improvising the music have been explored in detail with concert examples. The techniques on swara weaving for swara kalpana rendering and methods on the alapana development are also discussed at length with an emphasis on the impact on the human cognitive abilities. The articulation of the outlined conscious practice methods not only helps to leave a long-lasting melodic impression on the listeners but also onsets cognitive developments.

Keywords: Carnatic, Manodharmam, music cognition, Alapana

Procedia PDF Downloads 185
347 A Laboratory Study into the Effects of Surface Waves on Freestyle Swimming

Authors: Scott Draper, Nat Benjanuvatra, Grant Landers, Terry Griffiths, Justin Geldard

Abstract:

Open water swimming has been an Olympic sport since 2008 and is growing in popularity world-wide as a low impact form of exercise. Unlike pool swimming, open water swimmers experience a range of different environmental conditions, including surface waves, variable water temperature, aquatic life, and ocean currents. This presentation will describe experimental research to investigate how freestyle swimming behaviour and performance is influenced by surface waves. A group of 12 swimmers were instructed to swim freestyle in the 54 m long wave flume located at The University of Western Australia’s Coastal and Offshore Engineering Laboratory. A variety of different regular waves were simulated, varying in height (up to 0.3 m), period (1.25 – 4s), and direction (with or against the swimmer). Swimmer’s velocity and acceleration, respectively, were determined from video recording and inertial sensors attached to five different parts of the swimmer’s body. The results illustrate how the swimmers stroke rate and the wave encounter frequency influence their forward speed and how particular wave conditions can benefit or hinder performance. Comparisons to simplified mathematical models provide insight into several aspects of performance, including: (i) how much faster swimmers can travel when swimming with as opposed to against the waves, and (ii) why swimmers of lesser ability are expected to be affected proportionally more by waves than elite swimmers. These findings have implications across the spectrum from elite to ‘weekend’ swimmers, including how they are coached and their ability to win (or just successfully complete) iconic open water events such as the Rottnest Channel Swim held annually in Western Australia.

Keywords: open water, surface waves, wave height/length, wave flume, stroke rate

Procedia PDF Downloads 94
346 Water Management Scheme: Panacea to Development Using Nigeria’s University of Ibadan Water Supply Scheme as a Case Study

Authors: Sunday Olufemi Adesogan

Abstract:

The supply of potable water at least is a very important index in national development. Water tariffs depend on the treatment cost which carries the highest percentage of the total operation cost in any water supply scheme. In order to keep water tariffs as low as possible, treatment costs have to be minimized. The University of Ibadan, Nigeria, water supply scheme consists of a treatment plant with three distribution stations (Amina way, Kurumi and Lander) and two raw water supply sources (Awba dam and Eleyele dam). An operational study of the scheme was carried out to ascertain the efficiency of the supply of potable water on the campus to justify the need for water supply schemes in tertiary institutions. The study involved regular collection, processing and analysis of periodic operational data. Data collected include supply reading (water production on daily basis) and consumers metered reading for a period of 22 months (October 2013 - July 2015), and also collected, were the operating hours of both plants and human beings. Applying the required mathematical equations, total loss was determined for the distribution system, which was translated into monetary terms. Adequacies of the operational functions were also determined. The study revealed that water supply scheme is justified in tertiary institutions. It was also found that approximately 10.7 million Nigerian naira (N) is lost to leakages during the 22-month study period; the system’s storage capacity is no longer adequate, especially for peak water production. The capacity of the system as a whole is insufficient for the present university population and that the existing water supply system is not being operated in an optimal manner especially due to personnel, power and system ageing constraints.

Keywords: development, panacea, supply, water

Procedia PDF Downloads 189
345 Evaluating the Benefits of Intelligent Acoustic Technology in Classrooms: A Case Study

Authors: Megan Burfoot, Ali GhaffarianHoseini, Nicola Naismith, Amirhosein GhaffarianHoseini

Abstract:

Intelligent Acoustic Technology (IAT) is a novel architectural device used in buildings to automatically vary the acoustic conditions of space. IAT is realized by integrating two components: Variable Acoustic Technology (VAT) and an intelligent system. The VAT passively alters the RT by changing the total sound absorption in a room. In doing so, the Reverberation Time (RT) is changed and thus, the sound strength and clarity are altered. The intelligent system detects sound waves in real-time to identify the aural situation, and the RT is adjusted accordingly based on pre-programmed algorithms. IAT - the synthesis of these two components - can dramatically improve acoustic comfort, as the acoustic condition is automatically optimized for any detected aural situation. This paper presents an evaluation of the improvements of acoustic comfort in an existing tertiary classroom located at Auckland University of Technology in New Zealand. This is a pilot case study, the first of its’ kind attempting to quantify the benefits of IAT. Naturally, the potential acoustic improvements from IAT can be actualized by only installing the VAT component of IAT and by manually adjusting it rather than utilizing an intelligent system. Such a simplified methodology is adopted for this case study to understand the potential significance of IAT without adopting a time and cost-intensive strategy. For this study, the VAT is built by overlaying reflective, rotating louvers over sound absorption panels. RT's are measured according to international standards before and after installing VAT in the classroom. The louvers are manually rotated in increments by the experimenter and further RT measurements are recorded. The results are compared with recommended guidelines and reference values from national standards for spaces intended for speech and communication. The results obtained from the measurements are used to quantify the potential improvements in classroom acoustic comfort, where IAT to be used. This evaluation reveals the current existence of poor acoustic conditions in the classroom caused by high RT's. The poor acoustics are also largely attributed to the classrooms’ inability to vary acoustic parameters for changing aural situations. The classroom experiences one static acoustic state, neglecting to recognize the nature of classrooms as flexible, dynamic spaces. Evidently, when using VAT the classroom is prescribed with a wide range of RTs it can achieve. Namely, acoustic requirements for varying teaching approaches are satisfied, and acoustic comfort is improved. By quantifying the benefits of using VAT, it can confidently suggest these same benefits are achieved with IAT. Nevertheless, it is encouraged that future studies continue this line of research toward the eventual development of IAT and its’ acceptance into mainstream architecture.

Keywords: acoustic comfort, classroom acoustics, intelligent acoustics, variable acoustics

Procedia PDF Downloads 170
344 Risk Assessment of Flood Defences by Utilising Condition Grade Based Probabilistic Approach

Authors: M. Bahari Mehrabani, Hua-Peng Chen

Abstract:

Management and maintenance of coastal defence structures during the expected life cycle have become a real challenge for decision makers and engineers. Accurate evaluation of the current condition and future performance of flood defence structures is essential for effective practical maintenance strategies on the basis of available field inspection data. Moreover, as coastal defence structures age, it becomes more challenging to implement maintenance and management plans to avoid structural failure. Therefore, condition inspection data are essential for assessing damage and forecasting deterioration of ageing flood defence structures in order to keep the structures in an acceptable condition. The inspection data for flood defence structures are often collected using discrete visual condition rating schemes. In order to evaluate future condition of the structure, a probabilistic deterioration model needs to be utilised. However, existing deterioration models may not provide a reliable prediction of performance deterioration for a long period due to uncertainties. To tackle the limitation, a time-dependent condition-based model associated with a transition probability needs to be developed on the basis of condition grade scheme for flood defences. This paper presents a probabilistic method for predicting future performance deterioration of coastal flood defence structures based on condition grading inspection data and deterioration curves estimated by expert judgement. In condition-based deterioration modelling, the main task is to estimate transition probability matrices. The deterioration process of the structure related to the transition states is modelled according to Markov chain process, and a reliability-based approach is used to estimate the probability of structural failure. Visual inspection data according to the United Kingdom Condition Assessment Manual are used to obtain the initial condition grade curve of the coastal flood defences. The initial curves then modified in order to develop transition probabilities through non-linear regression based optimisation algorithms. The Monte Carlo simulations are then used to evaluate the future performance of the structure on the basis of the estimated transition probabilities. Finally, a case study is given to demonstrate the applicability of the proposed method under no-maintenance and medium-maintenance scenarios. Results show that the proposed method can provide an effective predictive model for various situations in terms of available condition grading data. The proposed model also provides useful information on time-dependent probability of failure in coastal flood defences.

Keywords: condition grading, flood defense, performance assessment, stochastic deterioration modelling

Procedia PDF Downloads 213
343 Integrative Biology Teaching and Learning Model Based on STEM Education

Authors: Narupot Putwattana

Abstract:

Changes in global situation such as environmental and economic crisis brought the new perspective for science education called integrative biology. STEM has been increasingly mentioned for several educational researches as the approach which combines the concept in Science (S), Technology (T), Engineering (E) and Mathematics (M) to apply in teaching and learning process so as to strengthen the 21st-century skills such as creativity and critical thinking. Recent studies demonstrated STEM as the pedagogy which described the engineering process along with the science classroom activities. So far, pedagogical contents for STEM explaining the content in biology have been scarce. A qualitative literature review was conducted so as to gather the articles based on electronic databases (google scholar). STEM education, engineering design, teaching and learning of biology were used as main keywords to find out researches involving with the application of STEM in biology teaching and learning process. All articles were analyzed to obtain appropriate teaching and learning model that unify the core concept of biology. The synthesized model comprised of engineering design, inquiry-based learning, biological prototype and biologically-inspired design (BID). STEM content and context integration were used as the theoretical framework to create the integrative biology instructional model for STEM education. Several disciplines contents such as biology, engineering, and technology were regarded for inquiry-based learning to build biological prototype. Direct and indirect integrations were used to provide the knowledge into the biology related STEM strategy. Meanwhile, engineering design and BID showed the occupational context for engineer and biologist. Technological and mathematical aspects were required to be inspected in terms of co-teaching method. Lastly, other variables such as critical thinking and problem-solving skills should be more considered in the further researches.

Keywords: biomimicry, engineering approach, STEM education, teaching and learning model

Procedia PDF Downloads 224
342 Multivariate Analysis on Water Quality Attributes Using Master-Slave Neural Network Model

Authors: A. Clementking, C. Jothi Venkateswaran

Abstract:

Mathematical and computational functionalities such as descriptive mining, optimization, and predictions are espoused to resolve natural resource planning. The water quality prediction and its attributes influence determinations are adopted optimization techniques. The water properties are tainted while merging water resource one with another. This work aimed to predict influencing water resource distribution connectivity in accordance to water quality and sediment using an innovative proposed master-slave neural network back-propagation model. The experiment results are arrived through collecting water quality attributes, computation of water quality index, design and development of neural network model to determine water quality and sediment, master–slave back propagation neural network back-propagation model to determine variations on water quality and sediment attributes between the water resources and the recommendation for connectivity. The homogeneous and parallel biochemical reactions are influences water quality and sediment while distributing water from one location to another. Therefore, an innovative master-slave neural network model [M (9:9:2)::S(9:9:2)] designed and developed to predict the attribute variations. The result of training dataset given as an input to master model and its maximum weights are assigned as an input to the slave model to predict the water quality. The developed master-slave model is predicted physicochemical attributes weight variations for 85 % to 90% of water quality as a target values.The sediment level variations also predicated from 0.01 to 0.05% of each water quality percentage. The model produced the significant variations on physiochemical attribute weights. According to the predicated experimental weight variation on training data set, effective recommendations are made to connect different resources.

Keywords: master-slave back propagation neural network model(MSBPNNM), water quality analysis, multivariate analysis, environmental mining

Procedia PDF Downloads 451
341 Learning to Translate by Learning to Communicate to an Entailment Classifier

Authors: Szymon Rutkowski, Tomasz Korbak

Abstract:

We present a reinforcement-learning-based method of training neural machine translation models without parallel corpora. The standard encoder-decoder approach to machine translation suffers from two problems we aim to address. First, it needs parallel corpora, which are scarce, especially for low-resource languages. Second, it lacks psychological plausibility of learning procedure: learning a foreign language is about learning to communicate useful information, not merely learning to transduce from one language’s 'encoding' to another. We instead pose the problem of learning to translate as learning a policy in a communication game between two agents: the translator and the classifier. The classifier is trained beforehand on a natural language inference task (determining the entailment relation between a premise and a hypothesis) in the target language. The translator produces a sequence of actions that correspond to generating translations of both the hypothesis and premise, which are then passed to the classifier. The translator is rewarded for classifier’s performance on determining entailment between sentences translated by the translator to disciple’s native language. Translator’s performance thus reflects its ability to communicate useful information to the classifier. In effect, we train a machine translation model without the need for parallel corpora altogether. While similar reinforcement learning formulations for zero-shot translation were proposed before, there is a number of improvements we introduce. While prior research aimed at grounding the translation task in the physical world by evaluating agents on an image captioning task, we found that using a linguistic task is more sample-efficient. Natural language inference (also known as recognizing textual entailment) captures semantic properties of sentence pairs that are poorly correlated with semantic similarity, thus enforcing basic understanding of the role played by compositionality. It has been shown that models trained recognizing textual entailment produce high-quality general-purpose sentence embeddings transferrable to other tasks. We use stanford natural language inference (SNLI) dataset as well as its analogous datasets for French (XNLI) and Polish (CDSCorpus). Textual entailment corpora can be obtained relatively easily for any language, which makes our approach more extensible to low-resource languages than traditional approaches based on parallel corpora. We evaluated a number of reinforcement learning algorithms (including policy gradients and actor-critic) to solve the problem of translator’s policy optimization and found that our attempts yield some promising improvements over previous approaches to reinforcement-learning based zero-shot machine translation.

Keywords: agent-based language learning, low-resource translation, natural language inference, neural machine translation, reinforcement learning

Procedia PDF Downloads 108
340 Modelling of Heat Generation in a 18650 Lithium-Ion Battery Cell under Varying Discharge Rates

Authors: Foo Shen Hwang, Thomas Confrey, Stephen Scully, Barry Flannery

Abstract:

Thermal characterization plays an important role in battery pack design. Lithium-ion batteries have to be maintained between 15-35 °C to operate optimally. Heat is generated (Q) internally within the batteries during both the charging and discharging phases. This can be quantified using several standard methods. The most common method of calculating the batteries heat generation is through the addition of both the joule heating effects and the entropic changes across the battery. In addition, such values can be derived by identifying the open-circuit voltage (OCV), nominal voltage (V), operating current (I), battery temperature (T) and the rate of change of the open-circuit voltage in relation to temperature (dOCV/dT). This paper focuses on experimental characterization and comparative modelling of the heat generation rate (Q) across several current discharge rates (0.5C, 1C, and 1.5C) of a 18650 cell. The analysis is conducted utilizing several non-linear mathematical functions methods, including polynomial, exponential, and power models. Parameter fitting is carried out over the respective function orders; polynomial (n = 3~7), exponential (n = 2) and power function. The generated parameter fitting functions are then used as heat source functions in a 3-D computational fluid dynamics (CFD) solver under natural convection conditions. Generated temperature profiles are analyzed for errors based on experimental discharge tests, conducted at standard room temperature (25°C). Initial experimental results display low deviation between both experimental and CFD temperature plots. As such, the heat generation function formulated could be easier utilized for larger battery applications than other methods available.

Keywords: computational fluid dynamics, curve fitting, lithium-ion battery, voltage drop

Procedia PDF Downloads 72
339 Mathematics Anxiety among Male and Female Students

Authors: Wern Lin Yeo, Choo Kim Tan, Sook Ling Lew

Abstract:

Mathematics anxiety refers to the feeling of anxious when one having difficulties in solving mathematical problem. Mathematics anxiety is the most common type of anxiety among other types of anxiety which occurs among the students. However, level of anxiety among males and females are different. There were few past study were conducted to determine the relationship of anxiety and gender but there were still did not have an exact results. Hence, the purpose of this study is to determine the relationship of anxiety level between male and female undergraduates at a private university in Malaysia. Convenient sampling method used in this study in which the students were selected based on the grouping assigned by the faculty. There were 214 undergraduates who registered the probability courses had participated in this study. Mathematics Anxiety Rating Scale (MARS) was the instrument used in study which used to determine students’ anxiety level towards probability. Reliability and validity of instrument was done before the major study was conducted. In the major study, students were given briefing about the study conducted. Participation of this study were voluntary. Students were given consent form to determine whether they agree to participate in the study. Duration of two weeks were given for students to complete the given online questionnaire. The data collected will be analyzed using Statistical Package for the Social Sciences (SPSS) to determine the level of anxiety. There were three anxiety level, i.e., low, average and high. Students’ anxiety level were determined based on their scores obtained compared with the mean and standard deviation. If the scores obtained were below mean and standard deviation, the anxiety level was low. If the scores were at below and above the mean and between one standard deviation, the anxiety level was average. If the scores were above the mean and greater than one standard deviation, the anxiety level was high. Results showed that both of the gender were having average anxiety level. Males having high frequency of three anxiety level which were low, average and high anxiety level as compared to females. Hence, the mean values obtained for males (M = 3.62) was higher than females (M = 3.42). In order to be significant of anxiety level among the gender, the p-value should be less than .05. The p-value obtained in this study was .117. However, this value was greater than .05. Thus, there was no significant difference of anxiety level among the gender. In other words, there was no relationship of anxiety level with the gender.

Keywords: anxiety level, gender, mathematics anxiety, probability and statistics

Procedia PDF Downloads 270
338 Performance Evaluation of Fingerprint, Auto-Pin and Password-Based Security Systems in Cloud Computing Environment

Authors: Emmanuel Ogala

Abstract:

Cloud computing has been envisioned as the next-generation architecture of Information Technology (IT) enterprise. In contrast to traditional solutions where IT services are under physical, logical and personnel controls, cloud computing moves the application software and databases to the large data centres, where the management of the data and services may not be fully trustworthy. This is due to the fact that the systems are opened to the whole world and as people tries to have access into the system, many people also are there trying day-in day-out on having unauthorized access into the system. This research contributes to the improvement of cloud computing security for better operation. The work is motivated by two problems: first, the observed easy access to cloud computing resources and complexity of attacks to vital cloud computing data system NIC requires that dynamic security mechanism evolves to stay capable of preventing illegitimate access. Second; lack of good methodology for performance test and evaluation of biometric security algorithms for securing records in cloud computing environment. The aim of this research was to evaluate the performance of an integrated security system (ISS) for securing exams records in cloud computing environment. In this research, we designed and implemented an ISS consisting of three security mechanisms of biometric (fingerprint), auto-PIN and password into one stream of access control and used for securing examination records in Kogi State University, Anyigba. Conclusively, the system we built has been able to overcome guessing abilities of hackers who guesses people password or pin. We are certain about this because the added security system (fingerprint) needs the presence of the user of the software before a login access can be granted. This is based on the placement of his finger on the fingerprint biometrics scanner for capturing and verification purpose for user’s authenticity confirmation. The study adopted the conceptual of quantitative design. Object oriented and design methodology was adopted. In the analysis and design, PHP, HTML5, CSS, Visual Studio Java Script, and web 2.0 technologies were used to implement the model of ISS for cloud computing environment. Note; PHP, HTML5, CSS were used in conjunction with visual Studio front end engine design tools and MySQL + Access 7.0 were used for the backend engine and Java Script was used for object arrangement and also validation of user input for security check. Finally, the performance of the developed framework was evaluated by comparing with two other existing security systems (Auto-PIN and password) within the school and the results showed that the developed approach (fingerprint) allows overcoming the two main weaknesses of the existing systems and will work perfectly well if fully implemented.

Keywords: performance evaluation, fingerprint, auto-pin, password-based, security systems, cloud computing environment

Procedia PDF Downloads 118
337 Video Analytics on Pedagogy Using Big Data

Authors: Jamuna Loganath

Abstract:

Education is the key to the development of any individual’s personality. Today’s students will be tomorrow’s citizens of the global society. The education of the student is the edifice on which his/her future will be built. Schools therefore should provide an all-round development of students so as to foster a healthy society. The behaviors and the attitude of the students in school play an essential role for the success of the education process. Frequent reports of misbehaviors such as clowning, harassing classmates, verbal insults are becoming common in schools today. If this issue is left unattended, it may develop a negative attitude and increase the delinquent behavior. So, the need of the hour is to find a solution to this problem. To solve this issue, it is important to monitor the students’ behaviors in school and give necessary feedback and mentor them to develop a positive attitude and help them to become a successful grownup. Nevertheless, measuring students’ behavior and attitude is extremely challenging. None of the present technology has proven to be effective in this measurement process because actions, reactions, interactions, response of the students are rarely used in the course of the data due to complexity. The purpose of this proposal is to recommend an effective supervising system after carrying out a feasibility study by measuring the behavior of the Students. This can be achieved by equipping schools with CCTV cameras. These CCTV cameras installed in various schools of the world capture the facial expressions and interactions of the students inside and outside their classroom. The real time raw videos captured from the CCTV can be uploaded to the cloud with the help of a network. The video feeds get scooped into various nodes in the same rack or on the different racks in the same cluster in Hadoop HDFS. The video feeds are converted into small frames and analyzed using various Pattern recognition algorithms and MapReduce algorithm. Then, the video frames are compared with the bench marking database (good behavior). When misbehavior is detected, an alert message can be sent to the counseling department which helps them in mentoring the students. This will help in improving the effectiveness of the education process. As Video feeds come from multiple geographical areas (schools from different parts of the world), BIG DATA helps in real time analysis as it analyzes computationally to reveal patterns, trends, and associations, especially relating to human behavior and interactions. It also analyzes data that can’t be analyzed by traditional software applications such as RDBMS, OODBMS. It has also proven successful in handling human reactions with ease. Therefore, BIG DATA could certainly play a vital role in handling this issue. Thus, effectiveness of the education process can be enhanced with the help of video analytics using the latest BIG DATA technology.

Keywords: big data, cloud, CCTV, education process

Procedia PDF Downloads 222
336 A Method for Multimedia User Interface Design for Mobile Learning

Authors: Shimaa Nagro, Russell Campion

Abstract:

Mobile devices are becoming ever more widely available, with growing functionality, and are increasingly used as an enabling technology to give students access to educational material anytime and anywhere. However, the design of educational material user interfaces for mobile devices is beset by many unresolved research issues such as those arising from emphasising the information concepts then mapping this information to appropriate media (modelling information then mapping media effectively). This report describes a multimedia user interface design method for mobile learning. The method covers specification of user requirements and information architecture, media selection to represent the information content, design for directing attention to important information, and interaction design to enhance user engagement based on Human-Computer Interaction design strategies (HCI). The method will be evaluated by three different case studies to prove the method is suitable for application to different areas / applications, these are; an application to teach about major computer networking concepts, an application to deliver a history-based topic; (after these case studies have been completed, the method will be revised to remove deficiencies and then used to develop a third case study), an application to teach mathematical principles. At this point, the method will again be revised into its final format. A usability evaluation will be carried out to measure the usefulness and effectiveness of the method. The investigation will combine qualitative and quantitative methods, including interviews and questionnaires for data collection and three case studies for validating the MDMLM method. The researcher has successfully produced the method at this point which is now under validation and testing procedures. From this point forward in the report, the researcher will refer to the method using the MDMLM abbreviation which means Multimedia Design Mobile Learning Method.

Keywords: human-computer interaction, interface design, mobile learning, education

Procedia PDF Downloads 224
335 Emotions Triggered by Children’s Literature Images

Authors: Ana Maria Reis d'Azevedo Breda, Catarina Maria Neto da Cruz

Abstract:

The role of images/illustrations in communicating meanings and triggering emotions assumes an increasingly relevant role in contemporary texts, regardless of the age group for which they are intended or the nature of the texts that host them. It is no coincidence that children's books are full of illustrations and that the image/text ratio decreases as the age group grows. The vast majority of children's books can be considered multimodal texts containing text and images/illustrations interacting with each other to provide the young reader with a broader and more creative understanding of the book's narrative. This interaction is very diverse, ranging from images/illustrations that are not essential for understanding the storytelling to those that contribute significantly to the meaning of the story. Usually, these books are also read by adults, namely by parents, educators, and teachers who act as mediators between the book and the children, explaining aspects that are or seem to be too complex for the child's context. It should be noted that there are books labeled as children's books that are clearly intended for both children and adults. In this work, following a qualitative and interpretative methodology based on written productions, participant observation, and field notes, we will describe the perceptions of future teachers of the 1st cycle of basic education, attending a master's degree at a Portuguese university, about the role of the image in literary and non-literary texts, namely in mathematical texts, and how these can constitute precious resources for emotional regulation and for the design of creative didactic situations. The analysis of the collected data allowed us to obtain evidence regarding the evolution of the participants' perception regarding the crucial role of images in children's literature, not only as an emotional regulator for young readers but also as a creative source for the design of meaningful didactical situations, crossing other scientific areas, other than the mother tongue, namely mathematics.

Keywords: children’s literature, emotions, multimodal texts, soft skills

Procedia PDF Downloads 78
334 Engineering Thermal-Hydraulic Simulator Based on Complex Simulation Suite “Virtual Unit of Nuclear Power Plant”

Authors: Evgeny Obraztsov, Ilya Kremnev, Vitaly Sokolov, Maksim Gavrilov, Evgeny Tretyakov, Vladimir Kukhtevich, Vladimir Bezlepkin

Abstract:

Over the last decade, a specific set of connected software tools and calculation codes has been gradually developed. It allows simulating I&C systems, thermal-hydraulic, neutron-physical and electrical processes in elements and systems at the Unit of NPP (initially with WWER (pressurized water reactor)). In 2012 it was called a complex simulation suite “Virtual Unit of NPP” (or CSS “VEB” for short). Proper application of this complex tool should result in a complex coupled mathematical computational model. And for a specific design of NPP, it is called the Virtual Power Unit (or VPU for short). VPU can be used for comprehensive modelling of a power unit operation, checking operator's functions on a virtual main control room, and modelling complicated scenarios for normal modes and accidents. In addition, CSS “VEB” contains a combination of thermal hydraulic codes: the best-estimate (two-liquid) calculation codes KORSAR and CORTES and a homogenous calculation code TPP. So to analyze a specific technological system one can build thermal-hydraulic simulation models with different detalization levels up to a nodalization scheme with real geometry. And the result at some points is similar to the notion “engineering/testing simulator” described by the European utility requirements (EUR) for LWR nuclear power plants. The paper is dedicated to description of the tools mentioned above and an example of the application of the engineering thermal-hydraulic simulator in analysis of the boron acid concentration in the primary coolant (changed by the make-up and boron control system).

Keywords: best-estimate code, complex simulation suite, engineering simulator, power plant, thermal hydraulic, VEB, virtual power unit

Procedia PDF Downloads 357
333 Breast Cancer Metastasis Detection and Localization through Transfer-Learning Convolutional Neural Network Classification Based on Convolutional Denoising Autoencoder Stack

Authors: Varun Agarwal

Abstract:

Introduction: With the advent of personalized medicine, histopathological review of whole slide images (WSIs) for cancer diagnosis presents an exceedingly time-consuming, complex task. Specifically, detecting metastatic regions in WSIs of sentinel lymph node biopsies necessitates a full-scanned, holistic evaluation of the image. Thus, digital pathology, low-level image manipulation algorithms, and machine learning provide significant advancements in improving the efficiency and accuracy of WSI analysis. Using Camelyon16 data, this paper proposes a deep learning pipeline to automate and ameliorate breast cancer metastasis localization and WSI classification. Methodology: The model broadly follows five stages -region of interest detection, WSI partitioning into image tiles, convolutional neural network (CNN) image-segment classifications, probabilistic mapping of tumor localizations, and further processing for whole WSI classification. Transfer learning is applied to the task, with the implementation of Inception-ResNetV2 - an effective CNN classifier that uses residual connections to enhance feature representation, adding convolved outputs in the inception unit to the proceeding input data. Moreover, in order to augment the performance of the transfer learning CNN, a stack of convolutional denoising autoencoders (CDAE) is applied to produce embeddings that enrich image representation. Through a saliency-detection algorithm, visual training segments are generated, which are then processed through a denoising autoencoder -primarily consisting of convolutional, leaky rectified linear unit, and batch normalization layers- and subsequently a contrast-normalization function. A spatial pyramid pooling algorithm extracts the key features from the processed image, creating a viable feature map for the CNN that minimizes spatial resolution and noise. Results and Conclusion: The simplified and effective architecture of the fine-tuned transfer learning Inception-ResNetV2 network enhanced with the CDAE stack yields state of the art performance in WSI classification and tumor localization, achieving AUC scores of 0.947 and 0.753, respectively. The convolutional feature retention and compilation with the residual connections to inception units synergized with the input denoising algorithm enable the pipeline to serve as an effective, efficient tool in the histopathological review of WSIs.

Keywords: breast cancer, convolutional neural networks, metastasis mapping, whole slide images

Procedia PDF Downloads 110
332 Theoretical Comparisons and Empirical Illustration of Malmquist, Hicks–Moorsteen, and Luenberger Productivity Indices

Authors: Fatemeh Abbasi, Sahand Daneshvar

Abstract:

Productivity is one of the essential goals of companies to improve performance, which as a strategy-oriented method, determines the basis of the company's economic growth. The history of productivity goes back centuries, but most researchers defined productivity as the relationship between a product and the factors used in production in the early twentieth century. Productivity as the optimal use of available resources means that "more output using less input" can increase companies' economic growth and prosperity capacity. Also, having a quality life based on economic progress depends on productivity growth in that society. Therefore, productivity is a national priority for any developed country. There are several methods for calculating productivity growth measurements that can be divided into parametric and non-parametric methods. Parametric methods rely on the existence of a function in their hypotheses, while non-parametric methods do not require a function based on empirical evidence. One of the most popular non-parametric methods is Data Envelopment Analysis (DEA), which measures changes in productivity over time. The DEA evaluates the productivity of decision-making units (DMUs) based on mathematical models. This method uses multiple inputs and outputs to compare the productivity of similar DMUs such as banks, government agencies, companies, airports, Etc. Non-parametric methods are themselves divided into the frontier and non frontier approaches. The Malmquist productivity index (MPI) proposed by Caves, Christensen, and Diewert (1982), the Hicks–Moorsteen productivity index (HMPI) proposed by Bjurek (1996), or the Luenberger productivity indicator (LPI) proposed by Chambers (2002) are powerful tools for measuring productivity changes over time. This study will compare the Malmquist, Hicks–Moorsteen, and Luenberger indices theoretically and empirically based on DEA models and review their strengths and weaknesses.

Keywords: data envelopment analysis, Hicks–Moorsteen productivity index, Leuenberger productivity indicator, malmquist productivity index

Procedia PDF Downloads 170
331 Radioactivity Assessment of Sediments in Negombo Lagoon Sri Lanka

Authors: H. M. N. L. Handagiripathira

Abstract:

The distributions of naturally occurring and anthropogenic radioactive materials were determined in surface sediments taken at 27 different locations along the bank of Negombo Lagoon in Sri Lanka. Hydrographic parameters of lagoon water and the grain size analyses of the sediment samples were also carried out for this study. The conductivity of the adjacent water was varied from 13.6 mS/cm to 55.4 mS/cm near to the southern end and the northern end of the lagoon, respectively, and equally salinity levels varied from 7.2 psu to 32.1 psu. The average pH in the water was 7.6 and average water temperature was 28.7 °C. The grain size analysis emphasized the mass fractions of the samples as sand (60.9%), fine sand (30.6%) and fine silt+clay (1.3%) in the sampling locations. The surface sediment samples of wet weight, 1 kg each from upper 5-10 cm layer, were oven dried at 105 °C for 24 hours to get a constant weight, homogenized and sieved through a 2 mm sieve (IAEA technical series no. 295). The radioactivity concentrations were determined using gamma spectrometry technique. Ultra Low Background Broad Energy High Purity Ge Detector, BEGe (Model BE5030, Canberra) was used for radioactivity measurement with Canberra Industries' Laboratory Source-less Calibration Software (LabSOCS) mathematical efficiency calibration approach and Geometry composer software. The mean activity concentration was found to be 24 ± 4, 67 ± 9, 181 ± 10, 59 ± 8, 3.5 ± 0.4 and 0.47 ± 0.08 Bq/kg for 238U, 232Th, 40K, 210Pb, 235U and 137Cs respectively. The mean absorbed dose rate in air, radium equivalent activity, external hazard index, annual gonadal dose equivalent and annual effective dose equivalent were 60.8 nGy/h, 137.3 Bq/kg, 0.4, 425.3 mSv/year and 74.6 mSv/year, respectively. The results of this study will provide baseline information on the natural and artificial radioactive isotopes and environmental pollution associated with information on radiological risk.

Keywords: gamma spectrometry, lagoon, radioactivity, sediments

Procedia PDF Downloads 120
330 Geoinformation Technology of Agricultural Monitoring Using Multi-Temporal Satellite Imagery

Authors: Olena Kavats, Dmitry Khramov, Kateryna Sergieieva, Vladimir Vasyliev, Iurii Kavats

Abstract:

Geoinformation technologies of space agromonitoring are a means of operative decision making support in the tasks of managing the agricultural sector of the economy. Existing technologies use satellite images in the optical range of electromagnetic spectrum. Time series of optical images often contain gaps due to the presence of clouds and haze. A geoinformation technology is created. It allows to fill gaps in time series of optical images (Sentinel-2, Landsat-8, PROBA-V, MODIS) with radar survey data (Sentinel-1) and use information about agrometeorological conditions of the growing season for individual monitoring years. The technology allows to perform crop classification and mapping for spring-summer (winter and spring crops) and autumn-winter (winter crops) periods of vegetation, monitoring the dynamics of crop state seasonal changes, crop yield forecasting. Crop classification is based on supervised classification algorithms, takes into account the peculiarities of crop growth at different vegetation stages (dates of sowing, emergence, active vegetation, and harvesting) and agriculture land state characteristics (row spacing, seedling density, etc.). A catalog of samples of the main agricultural crops (Ukraine) is created and crop spectral signatures are calculated with the preliminary removal of row spacing, cloud cover, and cloud shadows in order to construct time series of crop growth characteristics. The obtained data is used in grain crop growth tracking and in timely detection of growth trends deviations from reference samples of a given crop for a selected date. Statistical models of crop yield forecast are created in the forms of linear and nonlinear interconnections between crop yield indicators and crop state characteristics (temperature, precipitation, vegetation indices, etc.). Predicted values of grain crop yield are evaluated with an accuracy up to 95%. The developed technology was used for agricultural areas monitoring in a number of Great Britain and Ukraine regions using EOS Crop Monitoring Platform (https://crop-monitoring.eos.com). The obtained results allow to conclude that joint use of Sentinel-1 and Sentinel-2 images improve separation of winter crops (rapeseed, wheat, barley) in the early stages of vegetation (October-December). It allows to separate successfully the soybean, corn, and sunflower sowing areas that are quite similar in their spectral characteristics.

Keywords: geoinformation technology, crop classification, crop yield prediction, agricultural monitoring, EOS Crop Monitoring Platform

Procedia PDF Downloads 420
329 Design and Development of an Optimal Fault Tolerant 3 Degree of Freedom Robotic Manipulator

Authors: Ramish, Farhan Khalique Awan

Abstract:

Kinematic redundancy within the manipulators presents extended dexterity and manipulability to the manipulators. Redundant serial robotic manipulators are very popular in industries due to its competencies to keep away from singularities during normal operation and fault tolerance because of failure of one or more joints. Such fault tolerant manipulators are extraordinarily beneficial in applications where human interference for repair and overhaul is both impossible or tough; like in case of robotic arms for space programs, nuclear applications and so on. The design of this sort of fault tolerant serial 3 DoF manipulator is presented in this paper. This work was the extension of the author’s previous work of designing the simple 3R serial manipulator. This work is the realization of the previous design with optimizing the link lengths for incorporating the feature of fault tolerance. Various measures have been followed by the researchers to quantify the fault tolerance of such redundant manipulators. The fault tolerance in this work has been described in terms of the worst-case measure of relative manipulability that is, in fact, a local measure of optimization that works properly for certain configuration of the manipulators. An optimum fault tolerant Jacobian matrix has been determined first based on prescribed null space properties after which the link parameters have been described to meet the given Jacobian matrix. A solid model of the manipulator was then developed to realize the mathematically rigorous design. Further work was executed on determining the dynamic properties of the fault tolerant design and simulations of the movement for various trajectories have been carried out to evaluate the joint torques. The mathematical model of the system was derived via the Euler-Lagrange approach after which the same has been tested using the RoboAnalyzer© software. The results have been quite in agreement. From the CAD model and dynamic simulation data, the manipulator was fabricated in the workshop and Advanced Machining lab of NED University of Engineering and Technology.

Keywords: fault tolerant, Graham matrix, Jacobian, kinematics, Lagrange-Euler

Procedia PDF Downloads 201