Search results for: cyber space
116 From Indigeneity to Urbanity: A Performative Study of Indian Saang (Folk Play) Tradition
Authors: Shiv Kumar
Abstract:
In the shifting scenario of postmodern age that foregrounds the multiplicity of meanings and discourses, the present research article seeks to investigate various paradigm shift of contemporary performances concerning Haryanvi Saangs, so-called folk plays, which are being performed widely in the regional territory of Haryana, a northern state of India. Folk arts cannot be studied efficiently by using the tools of literary criticism because it differs from the literature in many aspects. One of the most essential differences is that literary works invariably have an author. Folk works, on the contrary, never have an author. The situation is quite clear: either we acknowledge the presence of folk art as a phenomenon in the social and cultural history of people, or we do not acknowledge it and argue it is a poetical or art of fiction. This paper is an effort to understand the performative tradition of Saang which is traditionally known as Saang, Swang or Svang became a popular source for instruction and entertainment in the region and neighbouring states. Scholars and critics have long been debating about the origin of the word swang/svang/saang and their relationship to the Sanskrit word –Sangit, which means singing and music. But in the cultural context of Haryana, the word Saang means ‘to impersonate’ or ‘to imitate’ or ‘to copy someone or something’. The stories they portray are derived for the most part from the same myths, tales, epics and from the lives of Indian religious and folk heroes. Literally, the use of poetic sense, the implication of prose style and elaborate figurative technique are worthwhile to compile the productivity of a performance. All use music and song as an integral part of the performance so that it is also appropriate to call them folk opera. These folk plays are performed strictly by aboriginal people in the state. These people, sometimes denominated as Saangi, possess a culture distinct from the rest of Indian folk performances. The concerned form is also known with various other names like Manch, Khayal, Opera, Nautanki. The group of such folk plays can be seen as a dynamic activity and performed in the open space of the theatre. Nowadays, producers contributed greatly in order to create a rapidly growing musical outlet for budding new style of folk presentation and give rise to the electronic focus genre utilizing many musicians and performers who had to become precursors of the folk tradition in the region. Moreover, the paper proposes to examine available sources relative to this article, and it is believed to draw some different conclusions. For instance, to be a spectator of ongoing performances will contribute to providing enough guidance to move forward on this root. In this connection, the paper focuses critically upon the major performative aspects of Haryanvi Saang in relation to several inquiries such as the study of these plays in the context of Indian literary scenario, gender visualization and their dramatic representation, a song-music tradition in folk creativity and development of Haryanvi dramatic art in the contemporary socio-political background.Keywords: folk play, indigenous, performance, Saang, tradition
Procedia PDF Downloads 155115 Evaluation of Wheat Varieties for Water Use Efficiency under Staggering Sowing Times and Variable Irrigation Regimes under Timely and Late Sown Conditions
Authors: Vaibhav Baliyan, S. S. Parihar
Abstract:
With the rise in temperature during reproductive phase and moisture stress, winter wheat yields are likely to decrease because of limited plant growth, higher rate of night respiration, higher spikelet sterility or number of grains per spike and restricted embryo development thereby reducing grain number. Crop management practices play a pivotal role in minimizing adverse effects of terminal heat stress on wheat production. Amongst various agronomic management practices, adjusting sowing date, crop cultivars and irrigation scheduling have been realized to be simple yet powerful, implementable and eco-friendly mitigation strategies to sustain yields under elevated temperature conditions. Taking into account, large variability in wheat production in space and time, a study was conducted to identify the suitable wheat varieties under both early and late planting with suitable irrigation schedule for minimizing terminal heat stress effect and thereby improving wheat production. Experiments were conducted at research farms of Indian Agricultural Research Institute, New Delhi, India, separately for timely and late sown conditions with suitable varieties with staggering dates of sowing from 1st November to 30th November in case of timely sown and from 1st December to 31st December for late sown condition. The irrigation schedule followed for both the experiments were 100% of ETc (evapotranspiration of crop), 80% of ETc and 60% of ETc. Results of the timely sown experiment indicated that 1st November sowing resulted in higher grain yield followed by 10th November. However, delay in sowing thereafter resulted in gradual decrease in yield and the maximum reduction was noticed under 30th November sowing. Amongst the varieties, HD3086 produced higher grain yield compared to other varieties. Irrigation applied based on 100% of ETc gave higher yield comparable to 80% of ETc but both were significantly higher than 60% of ETc. It was further observed that even liberal irrigation under 100% of ETc could not compensate the yield under delayed sowing suggesting that rise in temperature beyond January adversely affected the growth and development of crop as well as forced maturity resulting in significant reduction of yield attributing characters due to terminal heat stress. Similar observations were recorded under late sown experiment too. Planting on 1st December along with 100% ETc of irrigation schedule resulted in significantly higher grain yield as compared to other dates and irrigation regimes. Further, it was observed that reduction in yield under late sown conditions was significantly large than the timely sown conditions irrespective of the variety grown and irrigation schedule followed. Delayed sowing resulted in reducing crop growth period and forced maturity in turn led to significant deterioration in all the yield attributing characters and there by reduction in yield suggesting that terminal heat stress had greater impact on yield under late sown crop than timely sown due to temperature rise coinciding with reproductive phase of the crop.Keywords: climate, irrigation, mitigation, wheat
Procedia PDF Downloads 119114 Comparing Radiographic Detection of Simulated Syndesmosis Instability Using Standard 2D Fluoroscopy Versus 3D Cone-Beam Computed Tomography
Authors: Diane Ghanem, Arjun Gupta, Rohan Vijayan, Ali Uneri, Babar Shafiq
Abstract:
Introduction: Ankle sprains and fractures often result in syndesmosis injuries. Unstable syndesmotic injuries result from relative motion between the distal ends of the tibia and fibula, anatomic juncture which should otherwise be rigid, and warrant operative management. Clinical and radiological evaluations of intraoperative syndesmosis stability remain a challenging task as traditional 2D fluoroscopy is limited to a uniplanar translational displacement. The purpose of this pilot cadaveric study is to compare the 2D fluoroscopy and 3D cone beam computed tomography (CBCT) stress-induced syndesmosis displacements. Methods: Three fresh-frozen lower legs underwent 2D fluoroscopy and 3D CIOS CBCT to measure syndesmosis position before dissection. Syndesmotic injury was simulated by resecting the (1) anterior inferior tibiofibular ligament (AITFL), the (2) posterior inferior tibiofibular ligament (PITFL) and the inferior transverse ligament (ITL) simultaneously, followed by the (3) interosseous membrane (IOM). Manual external rotation and Cotton stress test were performed after each of the three resections and 2D and 3D images were acquired. Relevant 2D and 3D parameters included the tibiofibular overlap (TFO), tibiofibular clear space (TCS), relative rotation of the fibula, and anterior-posterior (AP) and medial-lateral (ML) translations of the fibula relative to the tibia. Parameters were measured by two independent observers. Inter-rater reliability was assessed by intraclass correlation coefficient (ICC) to determine measurement precision. Results: Significant mismatches were found in the trends between the 2D and 3D measurements when assessing for TFO, TCS and AP translation across the different resection states. Using 3D CBCT, TFO was inversely proportional to the number of resected ligaments while TCS was directly proportional to the latter across all cadavers and ‘resection + stress’ states. Using 2D fluoroscopy, this trend was not respected under the Cotton stress test. 3D AP translation did not show a reliable trend whereas 2D AP translation of the fibula was positive under the Cotton stress test and negative under the external rotation. 3D relative rotation of the fibula, assessed using the Tang et al. ratio method and Beisemann et al. angular method, suggested slight overall internal rotation with complete resection of the ligaments, with a change < 2mm - threshold which corresponds to the commonly used buffer to account for physiologic laxity as per clinical judgment of the surgeon. Excellent agreement (>0.90) was found between the two independent observers for each of the parameters in both 2D and 3D (overall ICC 0.9968, 95% CI 0.995 - 0.999). Conclusions: The 3D CIOS CBCT appears to reliably depict the trend in TFO and TCS. This might be due to the additional detection of relevant rotational malpositions of the fibula in comparison to the standard 2D fluoroscopy which is limited to a single plane translation. A better understanding of 3D imaging may help surgeons identify the precise measurements planes needed to achieve better syndesmosis repair.Keywords: 2D fluoroscopy, 3D computed tomography, image processing, syndesmosis injury
Procedia PDF Downloads 70113 Saline Aspiration Negative Intravascular Test: Mitigating Risk with Injectable Fillers
Authors: Marcelo Lopes Dias Kolling, Felipe Ferreira Laranjeira, Guilherme Augusto Hettwer, Pedro Salomão Piccinini, Marwan Masri, Carlos Oscar Uebel
Abstract:
Introduction: Injectable fillers are among the most common nonsurgical cosmetic procedures, with significant growth yearly. Knowledge of rheological and mechanical characteristics of fillers, facial anatomy, and injection technique is essential for safety. Concepts such as the use of cannula versus needle, aspiration before injection, and facial danger zones have been well discussed. In case of an accidental intravascular puncture, the pressure inside the vessel may not be sufficient to push blood into the syringe due to the characteristics of the filler product; this is especially true for calcium hydroxyapatite (CaHA) or hyaluronic acid (HA) fillers with high G’. Since viscoelastic properties of normal saline are much lower than those of fillers, aspiration with saline prior to filler injection may decrease the risk of a false negative aspiration and subsequent catastrophic effects. We discuss a technique to add an additional safety step to the procedure with saline aspiration prior to injection, a ‘’reverse Seldinger’’ technique for intravascular access, which we term SANIT: Saline Aspiration Negative Intravascular Test. Objectives: To demonstrate the author’s (PSP) technique which adds an additional safety step to the process of filler injection, with both CaHA and HA, in order to decrease the risk of intravascular injection. Materials and Methods: Normal skin cleansing and topical anesthesia with prilocaine/lidocaine cream are performed; the facial subunits to be treated are marked. A 3mL Luer lock syringe is filled with 2mL of 0.9% normal saline and a 27G needle, which is turned one half rotation. When a cannula is to be used, the Luer lock syringe is attached to a 27G 4cm single hole disposable cannula. After skin puncture, the 3mL syringe is advanced with the plunger pulled back (negative pressure). Progress is made to the desired depth, all the while aspirating. Once the desired location of filler injection is reached, the syringe is exchanged for the syringe containing a filler, securely grabbing the hub of the needle and taking care to not dislodge the needle tip. Prior to this, we remove 0.1mL of filler to allow for space inside the syringe for aspiration. We again aspirate and inject retrograde. SANIT is especially useful for CaHA, since the G’ is much higher than HA, and thus reflux of blood into the syringe is less likely to occur. Results: The technique has been used safely for the past two years with no adverse events; the increase in cost is negligible (only the cost of 2mL of normal saline). Over 100 patients (over 300 syringes) have been treated with this technique. The risk of accidental intravascular puncture has been calculated to be between 1:6410 to 1:40882 syringes among expert injectors; however, the consequences of intravascular injection can be catastrophic even with board-certified physicians. Conclusions: While the risk of intravascular filler injection is low, the consequences can be disastrous. We believe that adding the SANIT technique can help further mitigate risk with no significant untoward effects and could be considered by all performing injectable fillers. Further follow-up is ongoing.Keywords: injectable fillers, safety, saline aspiration, injectable filler complications, hyaluronic acid, calcium hydroxyapatite
Procedia PDF Downloads 149112 Generative Design of Acoustical Diffuser and Absorber Elements Using Large-Scale Additive Manufacturing
Authors: Saqib Aziz, Brad Alexander, Christoph Gengnagel, Stefan Weinzierl
Abstract:
This paper explores a generative design, simulation, and optimization workflow for the integration of acoustical diffuser and/or absorber geometry with embedded coupled Helmholtz-resonators for full-scale 3D printed building components. Large-scale additive manufacturing in conjunction with algorithmic CAD design tools enables a vast amount of control when creating geometry. This is advantageous regarding the increasing demands of comfort standards for indoor spaces and the use of more resourceful and sustainable construction methods and materials. The presented methodology highlights these new technological advancements and offers a multimodal and integrative design solution with the potential for an immediate application in the AEC-Industry. In principle, the methodology can be applied to a wide range of structural elements that can be manufactured by additive manufacturing processes. The current paper focuses on a case study of an application for a biaxial load-bearing beam grillage made of reinforced concrete, which allows for a variety of applications through the combination of additive prefabricated semi-finished parts and in-situ concrete supplementation. The semi-prefabricated parts or formwork bodies form the basic framework of the supporting structure and at the same time have acoustic absorption and diffusion properties that are precisely acoustically programmed for the space underneath the structure. To this end, a hybrid validation strategy is being explored using a digital and cross-platform simulation environment, verified with physical prototyping. The iterative workflow starts with the generation of a parametric design model for the acoustical geometry using the algorithmic visual scripting editor Grasshopper3D inside the building information modeling (BIM) software Revit. Various geometric attributes (i.e., bottleneck and cavity dimensions) of the resonator are parameterized and fed to a numerical optimization algorithm which can modify the geometry with the goal of increasing absorption at resonance and increasing the bandwidth of the effective absorption range. Using Rhino.Inside and LiveLink for Revit, the generative model was imported directly into the Multiphysics simulation environment COMSOL. The geometry was further modified and prepared for simulation in a semi-automated process. The incident and scattered pressure fields were simulated from which the surface normal absorption coefficients were calculated. This reciprocal process was repeated to further optimize the geometric parameters. Subsequently the numerical models were compared to a set of 3D concrete printed physical twin models, which were tested in a .25 m x .25 m impedance tube. The empirical results served to improve the starting parameter settings of the initial numerical model. The geometry resulting from the numerical optimization was finally returned to grasshopper for further implementation in an interdisciplinary study.Keywords: acoustical design, additive manufacturing, computational design, multimodal optimization
Procedia PDF Downloads 156111 A Semi-supervised Classification Approach for Trend Following Investment Strategy
Authors: Rodrigo Arnaldo Scarpel
Abstract:
Trend following is a widely accepted investment strategy that adopts a rule-based trading mechanism that rather than striving to predict market direction or on information gathering to decide when to buy and when to sell a stock. Thus, in trend following one must respond to market’s movements that has recently happen and what is currently happening, rather than on what will happen. Optimally, in trend following strategy, is to catch a bull market at its early stage, ride the trend, and liquidate the position at the first evidence of the subsequent bear market. For applying the trend following strategy one needs to find the trend and identify trade signals. In order to avoid false signals, i.e., identify fluctuations of short, mid and long terms and to separate noise from real changes in the trend, most academic works rely on moving averages and other technical analysis indicators, such as the moving average convergence divergence (MACD) and the relative strength index (RSI) to uncover intelligible stock trading rules following trend following strategy philosophy. Recently, some works has applied machine learning techniques for trade rules discovery. In those works, the process of rule construction is based on evolutionary learning which aims to adapt the rules to the current environment and searches for the global optimum rules in the search space. In this work, instead of focusing on the usage of machine learning techniques for creating trading rules, a time series trend classification employing a semi-supervised approach was used to early identify both the beginning and the end of upward and downward trends. Such classification model can be employed to identify trade signals and the decision-making procedure is that if an up-trend (down-trend) is identified, a buy (sell) signal is generated. Semi-supervised learning is used for model training when only part of the data is labeled and Semi-supervised classification aims to train a classifier from both the labeled and unlabeled data, such that it is better than the supervised classifier trained only on the labeled data. For illustrating the proposed approach, it was employed daily trade information, including the open, high, low and closing values and volume from January 1, 2000 to December 31, 2022, of the São Paulo Exchange Composite index (IBOVESPA). Through this time period it was visually identified consistent changes in price, upwards or downwards, for assigning labels and leaving the rest of the days (when there is not a consistent change in price) unlabeled. For training the classification model, a pseudo-label semi-supervised learning strategy was used employing different technical analysis indicators. In this learning strategy, the core is to use unlabeled data to generate a pseudo-label for supervised training. For evaluating the achieved results, it was considered the annualized return and excess return, the Sortino and the Sharpe indicators. Through the evaluated time period, the obtained results were very consistent and can be considered promising for generating the intended trading signals.Keywords: evolutionary learning, semi-supervised classification, time series data, trading signals generation
Procedia PDF Downloads 88110 Sustainable Strategies for Managing Rural Tourism in Abyaneh Village, Isfahan
Authors: Hoda Manafian, Stephen Holland
Abstract:
Problem statement: Rural areas in Iran are one of the most popular tourism destinations. Abyaneh Village is one of them with a long history behind it (more than 1500 years) which is a national heritage site and also is nominated as a world heritage site in UNESCO tentative list from 2007. There is a considerable foundation of religious-cultural heritage and also agricultural history and activities. However, this heritage site suffers from mass tourism which is beyond its social and physical carrying capacity, since the annual number of tourists exceed 500,000. While there are four adjacent villages around Abyaneh which can benefit from advantages of tourism. Local managers also can at the same time prorate the tourists’ flux of Abyaneh on those other villages especially in high-season. The other villages have some cultural and natural tourism attractions as well. Goal: The main goal of this study is to identify a feasible development strategy according to the current strengths, weaknesses, opportunities and threats of rural tourism in this area (Abyaneh Village and four adjacent villages). This development strategy can lead to sustainable management of these destinations. Method: To this end, we used SWOT analysis as a well-established tool for conducting a situational analysis to define a sustainable development strategy. The procedures included following steps: 1) Extracting variables of SWOT chart based on interviewing tourism experts (n=13), local elites (n=17) and personal observations of researcher. 2) Ranking the extracted variables from 1-5 by 13 tourism experts in Isfahan Cultural Heritage, Handcrafts and Tourism Organization (ICHTO). 3) Assigning weights to the ranked variables using Expert Choice Software and the method of Analytical Hierarchical Process (AHP). 4) Defining the Total Weighted Score (TWS) for each part of SWOT chart. 5) Identifying the strategic position according to the TWS 6) Selecting the best development strategy based on the defined position using the Strategic Position and Action Evaluation (SPACE) matrix. 7) Assessing the Probability of Strategic Success (PSS) for the preferred strategy using relevant formulas. 8) Defining two feasible alternatives for sustainable development. Results and recommendations: Cultural heritage attractions were first-ranked variable in strength chart and also lack of sufficient amenities for one-day tourists (catering, restrooms, parking, and accommodation) was firs-ranked weakness. The strategic position was in ST (Strength-Threat) quadrant which is a maxi-mini position. According this position we would suggest ‘Competitive Strategy’ as a development strategy which means relying on strengths in order to neutralization threats. The result of Probability of Strategic Success assessment which was 0.6 shows that this strategy could be successful. The preferred approach for competitive strategy could be rebranding the market of tourism in this area. Rebranding the market can be achieved by two main alternatives which are based on the current strengths and threats: 1) Defining a ‘Heritage Corridor’ from first adjacent village to Abyaneh as a final destination. 2) Focus on ‘educational tourism’ versus mass tourism and also green tourism by developing agritourism in that corridor.Keywords: Abyaneh village, rural tourism, SWOT analysis, sustainable strategies
Procedia PDF Downloads 378109 Single Pass Design of Genetic Circuits Using Absolute Binding Free Energy Measurements and Dimensionless Analysis
Authors: Iman Farasat, Howard M. Salis
Abstract:
Engineered genetic circuits reprogram cellular behavior to act as living computers with applications in detecting cancer, creating self-controlling artificial tissues, and dynamically regulating metabolic pathways. Phenemenological models are often used to simulate and design genetic circuit behavior towards a desired behavior. While such models assume that each circuit component’s function is modular and independent, even small changes in a circuit (e.g. a new promoter, a change in transcription factor expression level, or even a new media) can have significant effects on the circuit’s function. Here, we use statistical thermodynamics to account for the several factors that control transcriptional regulation in bacteria, and experimentally demonstrate the model’s accuracy across 825 measurements in several genetic contexts and hosts. We then employ our first principles model to design, experimentally construct, and characterize a family of signal amplifying genetic circuits (genetic OpAmps) that expand the dynamic range of cell sensors. To develop these models, we needed a new approach to measuring the in vivo binding free energies of transcription factors (TFs), a key ingredient of statistical thermodynamic models of gene regulation. We developed a new high-throughput assay to measure RNA polymerase and TF binding free energies, requiring the construction and characterization of only a few constructs and data analysis (Figure 1A). We experimentally verified the assay on 6 TetR-homolog repressors and a CRISPR/dCas9 guide RNA. We found that our binding free energy measurements quantitatively explains why changing TF expression levels alters circuit function. Altogether, by combining these measurements with our biophysical model of translation (the RBS Calculator) as well as other measurements (Figure 1B), our model can account for changes in TF binding sites, TF expression levels, circuit copy number, host genome size, and host growth rate (Figure 1C). Model predictions correctly accounted for how these 8 factors control a promoter’s transcription rate (Figure 1D). Using the model, we developed a design framework for engineering multi-promoter genetic circuits that greatly reduces the number of degrees of freedom (8 factors per promoter) to a single dimensionless unit. We propose the Ptashne (Pt) number to encapsulate the 8 co-dependent factors that control transcriptional regulation into a single number. Therefore, a single number controls a promoter’s output rather than these 8 co-dependent factors, and designing a genetic circuit with N promoters requires specification of only N Pt numbers. We demonstrate how to design genetic circuits in Pt number space by constructing and characterizing 15 2-repressor OpAmp circuits that act as signal amplifiers when within an optimal Pt region. We experimentally show that OpAmp circuits using different TFs and TF expression levels will only amplify the dynamic range of input signals when their corresponding Pt numbers are within the optimal region. Thus, the use of the Pt number greatly simplifies the genetic circuit design, particularly important as circuits employ more TFs to perform increasingly complex functions.Keywords: transcription factor, synthetic biology, genetic circuit, biophysical model, binding energy measurement
Procedia PDF Downloads 472108 Imaging Spectrum of Central Nervous System Tuberculosis on Magnetic Resonance Imaging: Correlation with Clinical and Microbiological Results
Authors: Vasundhara Arora, Anupam Jhobta, Suresh Thakur, Sanjiv Sharma
Abstract:
Aims and Objectives: Intracranial tuberculosis (TB) is one of the most devastating manifestations of TB and a challenging public health issue of considerable importance and magnitude world over. This study elaborates on the imaging spectrum of neurotuberculosis on magnetic resonance imaging (MRI) in 29 clinically suspected cases from a tertiary care hospital. Materials and Methods: The prospective hospital based evaluation of MR imaging features of neuro-tuberculosis in 29 clinically suspected cases was carried out in Department of Radio-diagnosis, Indira Gandhi Medical Hospital from July 2017 to August 2018. MR Images were obtained on a 1.5 T Magnetom Avanto machine and were analyzed to identify any abnormal meningeal enhancement or parenchymal lesions. Microbiological and Biochemical CSF analysis was performed in radio-logically suspected cases and the results were compared with the imaging data. Clinical follow up of the patients started on anti-tuberculous treatment was done to evaluate the response to treatment and clinical outcome. Results: Age range of patients in the study was between 1 year to 73 years. The mean age of presentation was 11.5 years. No significant difference in the distribution of cerebral tuberculosis was noted among the two genders. Imaging findings of neuro-tuberculosis obtained were varied and non specific ranging from lepto-meningeal enhancement, cerebritis to space occupying lesions such as tuberculomas and tubercular abscesses. Complications presenting as hydrocephalus (n= 7) and infarcts (n=9) was noted in few of these patients. 29 patients showed radiological suspicion of CNS tuberculosis with meningitis alone observed in 11 cases, tuberculomas alone were observed in 4 cases, meningitis with parenchymal tuberculomas in 11 cases. Tubercular abscess and cerebritis were observed in one case each. Tuberculous arachnoiditis was noted in one patient. Gene expert positivity was obtained in 11 out of 29 radiologically suspected patients; none of the patients showed culture positivity. Meningeal form of the disease alone showed higher positivity rate of gene Xpert (n=5) followed by combination of meningeal and parenchymal forms of disease (n=4). The parenchymal manifestation of disease alone showed least positivity rates (n= 3) with gene xpert testing. All 29 patients were started on anti tubercular treatment based on radiological suspicion of the disease with clinical improvement observed in 27 treated patients. Conclusions: In our study, higher incidence of neuro- tuberculosis was noted in paediatric population with predominance of the meningeal form of the disease. Gene Xpert positivity obtained was low due to paucibacillary nature of cerebrospinal fluid (CSF) with even lower positivity of CSF samples in parenchymal form of the manifestation. MRI showed high accuracy in detecting CNS lesions in neuro-tuberculosis. Hence, it can be concluded that MRI plays a crucial role in the diagnosis because of its inherent sensitivity and specificity and is an indispensible imaging modality. It caters to the need of early diagnosis owing to poor sensitivity of microbiological tests more so in the parenchymal manifestation of the disease.Keywords: neurotuberculosis, tubercular abscess, tuberculoma, tuberculous meningitis
Procedia PDF Downloads 169107 Religious Government Interaction in Urban Settings
Authors: Rebecca Sager, Gary Adler, Damon Mayrl, Jonathan Cooley
Abstract:
The United States’ unique constitutional structure and religious roots have fostered the flourishing of local communities through the close interaction of church and state. Today, these local relationships play out in these circumstances, including increased religious diversity and changing jurisprudence to more accommodating church-state interaction. This project seeks to understand the meanings of church-state interaction among diverse religious leaders in a variety of local settings. Using data from interviews with over 200 religious leaders in six states in the US, we examine how religious groups interact with various non-elected and elected government officials. We have interviewed local religious actors in eight communities characterized by the difference in location and religious homogeneity. These include a small city within a major metropolitan area, several religiously diverse cities in various areas across the country, a small college town with religious diversity set in a religiously-homogenous rural area, and a small farming community with minimal religious diversity. We identified three types of religious actors in each of our geographic areas: congregations, religious non-profit organizations, and clergy coalitions. Given the well-known difficulties in identifying religious organizations, we used the following to construct a local population list from which to sample: the Association of Religion Data Archives ProPublica’s Nonprofit Explorer, Guidestar, and the Internal Revenue Service Exempt Business Master File. Our sample for selecting interviewees were stratified by three criteria: religious tradition (Christian v. non-Christian), sectarian orientation (Mainline/Catholic v. Evangelical Protestant), and organizational form (congregation vs. other). Each interview included the elicitation of local church-state interactions experienced by the organization and organizational members, the enumeration of information sources for navigating church-state interactions, and the personal and community background of interviewees. We coded interviews to identify the cognitive schema of “church” and “state,” the models of legitimate relations between the two, and discretion rules for managing interaction and avoiding conflict. We also enumerate arenas in which and issues for which local state officials are engaged. In this paper, we focus on Korean religious groups and examine how their interactions differ from other congregations, including other immigrant congregations. These churches were particularly common in one large metropolitan area. We find that Korean churches are much more likely to be concerned about any governmental interactions and have fewer connections than non-Korean churches leading to more disconnection from their communities. We argue that due to their status as new immigrant churches without a lot of community ties for many members and being in a large city, Korean churches were particularly concerned about too much interaction with any type of government officials, even ones that could be potentially helpful. While other immigrant churches were somewhat willing to work with government groups, such as Latino-based Catholic groups, Korean churches were the least likely to want to create these connections. Understanding these churches and how immigrant church identity varies and creates different types of interaction is crucial to understanding how church/state interaction can be more meaningful over space and place.Keywords: religion, congregations, government, politics
Procedia PDF Downloads 87106 Characterization of Agroforestry Systems in Burkina Faso Using an Earth Observation Data Cube
Authors: Dan Kanmegne
Abstract:
Africa will become the most populated continent by the end of the century, with around 4 billion inhabitants. Food security and climate changes will become continental issues since agricultural practices depend on climate but also contribute to global emissions and land degradation. Agroforestry has been identified as a cost-efficient and reliable strategy to address these two issues. It is defined as the integrated management of trees and crops/animals in the same land unit. Agroforestry provides benefits in terms of goods (fruits, medicine, wood, etc.) and services (windbreaks, fertility, etc.), and is acknowledged to have a great potential for carbon sequestration; therefore it can be integrated into reduction mechanisms of carbon emissions. Particularly in sub-Saharan Africa, the constraint stands in the lack of information about both areas under agroforestry and the characterization (composition, structure, and management) of each agroforestry system at the country level. This study describes and quantifies “what is where?”, earliest to the quantification of carbon stock in different systems. Remote sensing (RS) is the most efficient approach to map such a dynamic technology as agroforestry since it gives relatively adequate and consistent information over a large area at nearly no cost. RS data fulfill the good practice guidelines of the Intergovernmental Panel On Climate Change (IPCC) that is to be used in carbon estimation. Satellite data are getting more and more accessible, and the archives are growing exponentially. To retrieve useful information to support decision-making out of this large amount of data, satellite data needs to be organized so to ensure fast processing, quick accessibility, and ease of use. A new solution is a data cube, which can be understood as a multi-dimensional stack (space, time, data type) of spatially aligned pixels and used for efficient access and analysis. A data cube for Burkina Faso has been set up from the cooperation project between the international service provider WASCAL and Germany, which provides an accessible exploitation architecture of multi-temporal satellite data. The aim of this study is to map and characterize agroforestry systems using the Burkina Faso earth observation data cube. The approach in its initial stage is based on an unsupervised image classification of a normalized difference vegetation index (NDVI) time series from 2010 to 2018, to stratify the country based on the vegetation. Fifteen strata were identified, and four samples per location were randomly assigned to define the sampling units. For safety reasons, the northern part will not be part of the fieldwork. A total of 52 locations will be visited by the end of the dry season in February-March 2020. The field campaigns will consist of identifying and describing different agroforestry systems and qualitative interviews. A multi-temporal supervised image classification will be done with a random forest algorithm, and the field data will be used for both training the algorithm and accuracy assessment. The expected outputs are (i) map(s) of agroforestry dynamics, (ii) characteristics of different systems (main species, management, area, etc.); (iii) assessment report of Burkina Faso data cube.Keywords: agroforestry systems, Burkina Faso, earth observation data cube, multi-temporal image classification
Procedia PDF Downloads 144105 Populism as a Society Dividing Discourse in Lithuania: The Case of the Elections of Parliament of the Republic of Lithuania of 2024
Authors: Vaicekauskiene, G., Nabazaite, E.
Abstract:
This study analyses the rise of global populism in Western democracies, focusing primarily on the populist rhetoric. Populist rhetoric is based on anti-pluralist ideas, opposing a “homogeneous nation” against “dangerous others” who are pushed out of the nation by populists, and can be citizens from both in-groups and out-groups. This study will examine the case of the elections of Parliament of the Republic of Lithuania of 2024. Fifteen candidate lists of parties and coalitions participated in the elections to the Lithuanian Parliament in 2024. Focus group methodology will be used to analyse the narratives of party supporters actively engaged in politics, trying to identify public support/opposition to populism. Liberal democracy is experiencing a crisis in both the US and Western democracies in Europe. The election results of recent years are increasingly announcing populist victories or the creation of new populist parties. Far-right parties lead the governments in three countries – Hungary, Slovakia, and Italy, and they are part of the ruling coalition in Sweden, Finland, and the Netherlands. It will become clear in the USA whether Donald Trump will be re-elected as president in November of this year. Trump’s victory in 2016 was named by political scientists as the apotheosis of populism. Influential politicians consolidate all bad manners and social categorization in the digital era of demagoguery. The research shows that a significant proportion of democratic societies also support this divisive discourse. Citizens, as consumers of information, often approve of populist communication themselves. New parliament elections were held in Lithuania in October 2024. Ideas that polarize society were amplified in the public space, negativism increased, and with it distrust towards the state, its institutions, and democratically elected politicians, “enemies” were sought and conspiracy theories were created. Problem of the Study. This study analyses the global rise of populism from the perspective of Lithuania with various groups of society, trying to understand the relationship of citizens with democracy through believing in populists, approval/disapproval of the expression of populism. Opinions are an important challenge when trying to find the truth in the age of populism, because democratic societies are based on the culture of discussion and the idea of consensus. Methodology. This study will deconstruct the narratives of Lithuanian citizens from the point of view of populism. Fifteen focus group discussions will be held with supporters of the party lists that participated in the Parliament elections of the Republic of Lithuania during November-December 2024. The main unifying criterion for focus group participants is their political activity, while the distinguishing criteria are age, gender and place of residence. Fifteen focus groups were chosen due to the fact that fifteen candidate lists of parties and coalitions participated in the elections and seeking to ensure the variety of participants. This study aims to emphasize populism as a communication phenomenon in Lithuania. Public testimonies and experiences will reveal new meanings about the understanding of populism and support/opposition towards it.Keywords: democracy, narratives in populist rhetoric, populist rhetoric, populism
Procedia PDF Downloads 14104 Isolation and Identification of Low-Temperature Tolerant-Yeast Strains from Apple with Biocontrol Activity
Authors: Lachin Mikjtarnejad, Mohsen Farzaneh
Abstract:
Various microbes, such as fungi and bacteria species, are naturally found in the fruit microbiota, and some of them act as a pathogen and result in fruit rot. Among non-pathogenic microbes, yeasts (single-celled microorganisms belonging to the fungi kingdom) can colonize fruit tissues and interact with them without causing any damage to them. Although yeasts are part of the plant microbiota, there is little information about their interactions with plants in comparison with bacteria and filamentous fungi. According to several existing studies, some yeasts can colonize different plant species and have the biological control ability to suppress some of the plant pathogens. It means those specific yeast-colonized plants are more resistant to some plant pathogens. The major objective of the present investigation is to isolate yeast strains from apple fruit and screen their ability to control Penicillium expansum, the causal agent of blue mold of fruits. In the present study, psychrotrophic and epiphytic yeasts were isolated from apple fruits that were stored at low temperatures (0–1°C). Totally, 42 yeast isolates were obtained and identified by molecular analysis based on genomic sequences of the D1/D2 and ITS1/ITS4 regions of their rDNA. All isolated yeasts were primarily screened by' in vitro dual culture assay against P. expansum by measuring the fungus' relative growth inhibition after 10 days of incubation. The results showed that the mycelial growth of P. expansum was reduced between 41–53% when challenged by promising yeast strains. The isolates with the strongest antagonistic activity belonged to Metschnikowia pulcherrima A13, Rhodotorula mucilaginosa A41, Leucosporidium Scottii A26, Aureobasidium pullulans A19, Pichia guilliermondii A32, Cryptococcus flavescents A25, and Pichia kluyveri A40. The results of seven superior isolates to inhibit blue mold decay on fruit showed that isolates A. pullulans A19, L. scottii A26, and Pi. guilliermondii A32 could significantly reduce the fruit rot and decay with 26 mm, 22 mm and 20 mm zone diameter, respectively, compared to the control sample with 43 mm. Our results show Pi. guilliermondii strain A13 was the most effective yeast isolates in inhibiting P. expansum on apple fruits. In addition, various biological control mechanisms of promising biological isolates against blue mold have been evaluated to date, including competition for nutrients and space, production of volatile metabolites, reduction of spore germination, production of siderophores and production of extracellular lytic enzymes such as chitinase and β-1,3-glucanase. However, the competition for nutrients and the ability to inhibit P. expansum spore growth have been introduced as the prevailing mechanisms among them. Accordingly, in our study, isolates A13, A41, A40, A25, A32, A19 and A26 inhibited the germination of P. expansum, whereas isolates A13 and A19 were the strongest inhibitors of P. expansum mycelia growth, causing 89.13% and 81.75 % reduction in the mycelial surface, respectively. All the promising isolates produced chitinase and β-1,3-glucanase after 3, 5 and 7 days of cultivation. Finally, based on our findings, we are proposing that, Pi. guilliermondiias as an effective biocontrol agent and alternative to chemical fungicides to control the blue mold of apple fruit.Keywords: yeast, yeast enzymes, biocontrol, post harvest diseases
Procedia PDF Downloads 124103 National Digital Soil Mapping Initiatives in Europe: A Review and Some Examples
Authors: Dominique Arrouays, Songchao Chen, Anne C. Richer-De-Forges
Abstract:
Soils are at the crossing of many issues such as food and water security, sustainable energy, climate change mitigation and adaptation, biodiversity protection, human health and well-being. They deliver many ecosystem services that are essential to life on Earth. Therefore, there is a growing demand for soil information on a national and global scale. Unfortunately, many countries do not have detailed soil maps, and, when existing, these maps are generally based on more or less complex and often non-harmonized soil classifications. An estimate of their uncertainty is also often missing. Thus, there are not easy to understand and often not properly used by end-users. Therefore, there is an urgent need to provide end-users with spatially exhaustive grids of essential soil properties, together with an estimate of their uncertainty. One way to achieve this is digital soil mapping (DSM). The concept of DSM relies on the hypothesis that soils and their properties are not randomly distributed, but that they depend on the main soil-forming factors that are climate, organisms, relief, parent material, time (age), and position in space. All these forming factors can be approximated using several exhaustive spatial products such as climatic grids, remote sensing products or vegetation maps, digital elevation models, geological or lithological maps, spatial coordinates of soil information, etc. Thus, DSM generally relies on models calibrated with existing observed soil data (point observations or maps) and so-called “ancillary co-variates” that come from other available spatial products. Then the model is generalized on grids where soil parameters are unknown in order to predict them, and the prediction performances are validated using various methods. With the growing demand for soil information at a national and global scale and the increase of available spatial co-variates national and continental DSM initiatives are continuously increasing. This short review illustrates the main national and continental advances in Europe, the diversity of the approaches and the databases that are used, the validation techniques and the main scientific and other issues. Examples from several countries illustrate the variety of products that were delivered during the last ten years. The scientific production on this topic is continuously increasing and new models and approaches are developed at an incredible speed. Most of the digital soil mapping (DSM) products rely mainly on machine learning (ML) prediction models and/or the use or pedotransfer functions (PTF) in which calibration data come from soil analyses performed in labs or for existing conventional maps. However, some scientific issues remain to be solved and also political and legal ones related, for instance, to data sharing and to different laws in different countries. Other issues related to communication to end-users and education, especially on the use of uncertainty. Overall, the progress is very important and the willingness of institutes and countries to join their efforts is increasing. Harmonization issues are still remaining, mainly due to differences in classifications or in laboratory standards between countries. However numerous initiatives are ongoing at the EU level and also at the global level. All these progress are scientifically stimulating and also promissing to provide tools to improve and monitor soil quality in countries, EU and at the global level.Keywords: digital soil mapping, global soil mapping, national and European initiatives, global soil mapping products, mini-review
Procedia PDF Downloads 183102 Stuck Spaces as Moments of Learning: Uncovering Threshold Concepts in Teacher Candidate Experiences of Teaching in Inclusive Classrooms
Authors: Joy Chadwick
Abstract:
There is no doubt that classrooms of today are more complex and diverse than ever before. Preparing teacher candidates to meet these challenges is essential to ensure the retention of teachers within the profession and to ensure that graduates begin their teaching careers with the knowledge and understanding of how to effectively meet the diversity of students they will encounter. Creating inclusive classrooms requires teachers to have a repertoire of effective instructional skills and strategies. Teachers must also have the mindset to embrace diversity and value the uniqueness of individual students in their care. This qualitative study analyzed teacher candidates' experiences as they completed a fourteen-week teaching practicum while simultaneously completing a university course focused on inclusive pedagogy. The research investigated the challenges and successes teacher candidates had in navigating the translation of theory related to inclusive pedagogy into their teaching practice. Applying threshold concept theory as a framework, the research explored the troublesome concepts, liminal spaces, and transformative experiences as connected to inclusive practices. Threshold concept theory suggests that within all disciplinary fields, there exists particular threshold concepts that serve as gateways or portals into previously inaccessible ways of thinking and practicing. It is in these liminal spaces that conceptual shifts in thinking and understanding and deep learning can occur. The threshold concept framework provided a lens to examine teacher candidate struggles and successes with the inclusive education course content and the application of this content to their practicum experiences. A qualitative research approach was used, which included analyzing twenty-nine course reflective journals and six follow up one-to-one semi structured interviews. The journals and interview transcripts were coded and themed using NVivo software. Threshold concept theory was then applied to the data to uncover the liminal or stuck spaces of learning and the ways in which the teacher candidates navigated those challenging places of teaching. The research also sought to uncover potential transformative shifts in teacher candidate understanding as connected to teaching in an inclusive classroom. The findings suggested that teacher candidates experienced difficulties when they did not feel they had the knowledge, skill, or time to meet the needs of the students in the way they envisioned they should. To navigate the frustration of this thwarted vision, they relied on present and previous course content and experiences, collaborative work with other teacher candidates and their mentor teachers, and a proactive approach to planning for students. Transformational shifts were most evident in their ability to reframe their perceptions of children from a deficit or disability lens to a strength-based belief in the potential of students. It was evident that through their course work and practicum experiences, their beliefs regarding struggling students shifted as they saw the value of embracing neurodiversity, the importance of relationships, and planning for and teaching through a strength-based approach. Research findings have implications for teacher education programs and for understanding threshold concepts theory as connected to practice-based learning experiences.Keywords: inclusion, inclusive education, liminal space, teacher education, threshold concepts, troublesome knowledge
Procedia PDF Downloads 78101 Rigorous Photogrammetric Push-Broom Sensor Modeling for Lunar and Planetary Image Processing
Authors: Ahmed Elaksher, Islam Omar
Abstract:
Accurate geometric relation algorithms are imperative in Earth and planetary satellite and aerial image processing, particularly for high-resolution images that are used for topographic mapping. Most of these satellites carry push-broom sensors. These sensors are optical scanners equipped with linear arrays of CCDs. These sensors have been deployed on most EOSs. In addition, the LROC is equipped with two push NACs that provide 0.5 meter-scale panchromatic images over a 5 km swath of the Moon. The HiRISE carried by the MRO and the HRSC carried by MEX are examples of push-broom sensor that produces images of the surface of Mars. Sensor models developed in photogrammetry relate image space coordinates in two or more images with the 3D coordinates of ground features. Rigorous sensor models use the actual interior orientation parameters and exterior orientation parameters of the camera, unlike approximate models. In this research, we generate a generic push-broom sensor model to process imageries acquired through linear array cameras and investigate its performance, advantages, and disadvantages in generating topographic models for the Earth, Mars, and the Moon. We also compare and contrast the utilization, effectiveness, and applicability of available photogrammetric techniques and softcopies with the developed model. We start by defining an image reference coordinate system to unify image coordinates from all three arrays. The transformation from an image coordinate system to a reference coordinate system involves a translation and three rotations. For any image point within the linear array, its image reference coordinates, the coordinates of the exposure center of the array in the ground coordinate system at the imaging epoch (t), and the corresponding ground point coordinates are related through the collinearity condition that states that all these three points must be on the same line. The rotation angles for each CCD array at the epoch t are defined and included in the transformation model. The exterior orientation parameters of an image line, i.e., coordinates of exposure station and rotation angles, are computed by a polynomial interpolation function in time (t). The parameter (t) is the time at a certain epoch from a certain orbit position. Depending on the types of observations, coordinates, and parameters may be treated as knowns or unknowns differently in various situations. The unknown coefficients are determined in a bundle adjustment. The orientation process starts by extracting the sensor position and, orientation and raw images from the PDS. The parameters of each image line are then estimated and imported into the push-broom sensor model. We also define tie points between image pairs to aid the bundle adjustment model, determine the refined camera parameters, and generate highly accurate topographic maps. The model was tested on different satellite images such as IKONOS, QuickBird, and WorldView-2, HiRISE. It was found that the accuracy of our model is comparable to those of commercial and open-source software, the computational efficiency of the developed model is high, the model could be used in different environments with various sensors, and the implementation process is much more cost-and effort-consuming.Keywords: photogrammetry, push-broom sensors, IKONOS, HiRISE, collinearity condition
Procedia PDF Downloads 63100 Exploring 3-D Virtual Art Spaces: Engaging Student Communities Through Feedback and Exhibitions
Authors: Zena Tredinnick-Kirby, Anna Divinsky, Brendan Berthold, Nicole Cingolani
Abstract:
Faculty members from The Pennsylvania State University, Zena Tredinnick-Kirby, Ph.D., and Anna Divinsky are at the forefront of an innovative educational approach to improve access in asynchronous online art courses. Their pioneering work weaves virtual reality (VR) technologies to construct a more equitable educational experience for students by transforming their learning and engagement. The significance of their study lies in the need to bridge the digital divide in online art courses, making them more inclusive and interactive for all distance learners. In an era where conventional classroom settings are no longer the sole means of instruction, Tredinnick-Kirby and Divinsky harness the power of instructional technologies to break down geographical barriers by incorporating an interactive VR experience that facilitates community building within an online environment transcending physical constraints. The methodology adopted by Tredinnick-Kirby, and Divinsky is centered around integrating 3D virtual spaces into their art courses. Spatial.io, a virtual world platform, enables students to develop digital avatars and engage in virtual art museums through a free browser-based program or an Oculus headset, where they can interact with other visitors and critique each other’s artwork. The goal is not only to provide students with an engaging and immersive learning experience but also to nourish them with a more profound understanding of the language of art criticism and technology. Furthermore, the study aims to cultivate critical thinking skills among students and foster a collaborative spirit. By leveraging cutting-edge VR technology, students are encouraged to explore the possibilities of their field, experimenting with innovative tools and techniques. This approach not only enriches their learning experience but also prepares them for a dynamic and ever-evolving art landscape in technology and education. One of the fundamental objectives of Tredinnick-Kirby and Divinsky is to remodel how feedback is derived through peer-to-peer art critique. Through the inclusion of 3D virtual spaces into the curriculum, students now have the opportunity to install their final artwork in a virtual gallery space and incorporate peer feedback, enabling students to exhibit their work opening the doors to a collaborative and interactive process. Students can provide constructive suggestions, engage in discussions, and integrate peer commentary into developing their ideas and praxis. This approach not only accelerates the learning process but also promotes a sense of community and growth. In summary, the study conducted by the Penn State faculty members Zena Tredinnick-Kirby, and Anna Divinsky represents innovative use of technology in their courses. By incorporating 3D virtual spaces, they are enriching the learners' experience. Through this inventive pedagogical technique, they nurture critical thinking, collaboration, and the practical application of cutting-edge technology in art. This research holds great promise for the future of online art education, transforming it into a dynamic, inclusive, and interactive experience that transcends the confines of distance learning.Keywords: Art, community building, distance learning, virtual reality
Procedia PDF Downloads 6999 An Alternative to Problem-Based Learning in a Post-Graduate Healthcare Professional Programme
Authors: Brogan Guest, Amy Donaldson-Perrott
Abstract:
The Master’s of Physician Associate Studies (MPAS) programme at St George’s, University of London (SGUL), is an intensive two-year course that trains students to become physician associates (PAs). PAs are generalized healthcare providers who work in primary and secondary care across the UK. PA programmes face the difficult task of preparing students to become safe medical providers in two short years. Our goal is to teach students to develop clinical reasoning early on in their studies and historically, this has been done predominantly though problem-based learning (PBL). We have had an increase concern about student engagement in PBL and difficulty recruiting facilitators to maintain the low student to facilitator ratio required in PBL. To address this issue, we created ‘Clinical Application of Anatomy and Physiology (CAAP)’. These peer-led, interactive, problem-based, small group sessions were designed to facilitate students’ clinical reasoning skills. The sessions were designed using the concept of Team-Based Learning (TBL). Students were divided into small groups and each completed a pre-session quiz consisting of difficult questions devised to assess students’ application of medical knowledge. The quiz was completed in small groups and they were not permitted access of external resources. After the quiz, students worked through a series of openended, clinical tasks using all available resources. They worked at their own pace and the session was peer-led, rather than facilitator-driven. For a group of 35 students, there were two facilitators who observed the sessions. The sessions utilised an infinite space whiteboard software. Each group member was encouraged to actively participate and work together to complete the 15-20 tasks. The session ran for 2 hours and concluded with a post-session quiz, identical to the pre-session quiz. We obtained subjective feedback from students on their experience with CAAP and evaluated the objective benefit of the sessions through the quiz results. Qualitative feedback from students was generally positive with students feeling the sessions increased engagement, clinical understanding, and confidence. They found the small group aspect beneficial and the technology easy to use and intuitive. They also liked the benefit of building a resource for their future revision, something unique to CAAP compared to PBL, which out students participate in weekly. Preliminary quiz results showed improvement from pre- and post- session; however, further statistical analysis will occur once all sessions are complete (final session to run December 2022) to determine significance. As a post-graduate healthcare professional programme, we have a strong focus on self-directed learning. Whilst PBL has been a mainstay in our curriculum since its inception, there are limitations and concerns about its future in view of student engagement and facilitator availability. Whilst CAAP is not TBL, it draws on the benefits of peer-led, small group work with pre- and post- team-based quizzes. The pilot of these sessions has shown that students are engaged by CAAP, and they can make significant progress in clinical reasoning in a short amount of time. This can be achieved with a high student to facilitator ratio.Keywords: problem based learning, team based learning, active learning, peer-to-peer teaching, engagement
Procedia PDF Downloads 8098 Academia as Creator of Emerging, Innovative Communities of Practice and Learning
Authors: Francisco Julio Batle Lorente
Abstract:
The present paper aims at presenting a new category of role for academia: proactive creator/promoter of communities of practice in emerging areas of innovation. It is based in research among practitioners in three different areas: social entrepreneurship, alumni engaged in entrepreneurship and innovation, and digital nomads. The concept of CoP is related to an intentionally created space to share experiences and collectively reflect on the cases arising from practice. Such an endeavour is not contemplated in the literature on academic roles in an explicit way. The goal of the paper is providing a framework for this function and throw some light on the perception and priorities of members of emerging communities (78 alumni, 154 social entrepreneurs, and 231 digital nomads) regarding community, learning, engagement, and networking, areas in which the university can help and, by doing so, contributing to signal the emerging area and creating new opportunities for the academia. The research methodology was based in Survey research. It is a specific type of field study that involves the collection of data from a sample of elements drawn from a well-defined population through the use of a questionnaire. It was considered that survey research might be valuable to the present project and help outline the utility of various study designs and future projects with the emerging communities that are the object of the investigation. Open questions were used for different topics, as well as critical incident technique. It was used a standard technique for survey sampling and questionnaire design. Finally, it was defined a procedure for pretesting questionnaires and for data collection. The questionnaire was channelled by means of google forms. The results indicate that the members of emerging, innovative CoPs and learning such the ones that were selected for this investigation lack cohesion, inspiration, networking, opportunities for creation of social capital, opportunities for collaboration beyond their existing and close network. The opportunity that arises for the academia from proactively helping articulate CoP (and Communities of learning) are related to key elements of any CoP/ CoL: community construction approaches, technological infrastructure, benefits, participation issues and urgent challenges, trust, networking, technical ability/training/development and collaboration. Beyond training, other three areas (networking, collaboration and urgent challenges) were the ones in which the contribution of universities to the communities were considered more interesting and workable to practitioners. The analysis of the responses for the open questions related to perception of the universities offer options for terra incognita to be explored for universities (signalling new areas, establishing broader collaborations with research, government, media and corporations, attracting investment). Based on the findings from this research, there is some evidence that CoPs can offer a formal and informal method of professional and interprofessional development for member of any emerging and innovative community and can decrease social and professional isolation. The opportunity that it offers to academia can increase the entrepreneurial and engaged university identity. It also moves to academia into a realm of civic confrontation of present and future challenges in a more proactive way.Keywords: social innovation, new roles of academia, community of learning, community of practice
Procedia PDF Downloads 8397 Spatio-Temporal Dynamic of Woody Vegetation Assessment Using Oblique Landscape Photographs
Authors: V. V. Fomin, A. P. Mikhailovich, E. M. Agapitov, V. E. Rogachev, E. A. Kostousova, E. S. Perekhodova
Abstract:
Ground-level landscape photos can be used as a source of objective data on woody vegetation and vegetation dynamics. We proposed a method for processing, analyzing, and presenting ground photographs, which has the following advantages: 1) researcher has to form holistic representation of the study area in form of a set of interlapping ground-level landscape photographs; 2) it is necessary to define or obtain characteristics of the landscape, objects, and phenomena present on the photographs; 3) it is necessary to create new or supplement existing textual descriptions and annotations for the ground-level landscape photographs; 4) single or multiple ground-level landscape photographs can be used to develop specialized geoinformation layers, schematic maps or thematic maps; 5) it is necessary to determine quantitative data that describes both images as a whole, and displayed objects and phenomena, using algorithms for automated image analysis. It is suggested to match each photo with a polygonal geoinformation layer, which is a sector consisting of areas corresponding with parts of the landscape visible in the photos. Calculation of visibility areas is performed in a geoinformation system within a sector using a digital model of a study area relief and visibility analysis functions. Superposition of the visibility sectors corresponding with various camera viewpoints allows matching landscape photos with each other to create a complete and wholesome representation of the space in question. It is suggested to user-defined data or phenomenons on the images with the following superposition over the visibility sector in the form of map symbols. The technology of geoinformation layers’ spatial superposition over the visibility sector creates opportunities for image geotagging using quantitative data obtained from raster or vector layers within the sector with the ability to generate annotations in natural language. The proposed method has proven itself well for relatively open and clearly visible areas with well-defined relief, for example, in mountainous areas in the treeline ecotone. When the polygonal layers of visibility sectors for a large number of different points of photography are topologically superimposed, a layer of visibility of sections of the entire study area is formed, which is displayed in the photographs. Also, as a result of this overlapping of sectors, areas that did not appear in the photo will be assessed as gaps. According to the results of this procedure, it becomes possible to obtain information about the photos that display a specific area and from which points of photography it is visible. This information may be obtained either as a query on the map or as a query for the attribute table of the layer. The method was tested using repeated photos taken from forty camera viewpoints located on Ray-Iz mountain massif (Polar Urals, Russia) from 1960 until 2023. It has been successfully used in combination with other ground-based and remote sensing methods of studying the climate-driven dynamics of woody vegetation in the Polar Urals. Acknowledgment: This research was collaboratively funded by the Russian Ministry for Science and Education project No. FEUG-2023-0002 (image representation) and Russian Science Foundation project No. 24-24-00235 (automated textual description).Keywords: woody, vegetation, repeated, photographs
Procedia PDF Downloads 8596 Technology of Electrokinetic Disintegration of Virginia Fanpetals (Sida hermaphrodita) Biomass in a Biogas Production System
Authors: Mirosław Krzemieniewski, Marcin Zieliński, Marcin Dębowski
Abstract:
Electrokinetic disintegration is one of the high-voltage electric methods. The design of systems is exceptionally simple. Biomass flows through a system of pipes with alongside mounted electrodes that generate an electric field. Discharges in the electric field deform cell walls and lead to their successive perforation, thereby making their contents easily available to bacteria. The spark-over occurs between electrode surface and pipe jacket which is the second pole and closes the circuit. The value of voltage ranges from 10 to 100kV. Electrodes are supplied by normal “power grid” monophase electric current (230V, 50Hz). Next, the electric current changes into direct current of 24V in modules serving for particular electrodes, and this current directly feeds the electrodes. The installation is completely safe because the value of generated current does not exceed 250mA and because conductors are grounded. Therefore, there is no risk of electric shock posed to the personnel, even in the case of failure or incorrect connection. Low values of the electric current mean small energy consumption by the electrode which is extremely low – only 35W per electrode – compared to other methods of disintegration. Pipes with electrodes with diameter of DN150 are made of acid-proof steel and connected from both sides with 90º elbows ended with flanges. The available S and U types of pipes enable very convenient fitting with system construction in the existing installations and rooms or facilitate space management in new applications. The system of pipes for electrokinetic disintegration may be installed horizontally, vertically, askew, on special stands or also directly on the wall of a room. The number of pipes and electrodes is determined by operating conditions as well as the quantity of substrate, type of biomass, content of dry matter, method of disintegration (single or circulatory), mounting site etc. The most effective method involves pre-treatment of substrate that may be pumped through the disintegration system on the way to the fermentation tank or recirculated in a buffered intermediate tank (substrate mixing tank). Biomass structure destruction in the process of electrokinetic disintegration causes shortening of substrate retention time in the tank and acceleration of biogas production. A significant intensification of the fermentation process was observed in the systems operating in the technical scale, with the greatest increase in biogas production reaching 18%. The secondary, but highly significant for the energetic balance, effect is a tangible decrease of energy input by agitators in tanks. It is due to reduced viscosity of the biomass after disintegration, and may result in energy savings reaching even 20-30% of the earlier noted consumption. Other observed phenomena include reduction in the layer of surface scum, reduced sewage capability for foaming and successive decrease in the quantity of bottom sludge banks. Considering the above, the system for electrokinetic disintegration seems a very interesting and valuable solutions meeting the offer of specialist equipment for the processing of plant biomass, including Virginia fanpetals, before the process of methane fermentation.Keywords: electrokinetic disintegration, biomass, biogas production, fermentation, Virginia fanpetals
Procedia PDF Downloads 37495 Propagation of Ultra-High Energy Cosmic Rays through Extragalactic Magnetic Fields: An Exploratory Study of the Distance Amplification from Rectilinear Propagation
Authors: Rubens P. Costa, Marcelo A. Leigui de Oliveira
Abstract:
The comprehension of features on the energy spectra, the chemical compositions, and the origins of Ultra-High Energy Cosmic Rays (UHECRs) - mainly atomic nuclei with energies above ~1.0 EeV (exa-electron volts) - are intrinsically linked to the problem of determining the magnitude of their deflections in cosmic magnetic fields on cosmological scales. In addition, as they propagate from the source to the observer, modifications are expected in their original energy spectra, anisotropy, and the chemical compositions due to interactions with low energy photons and matter. This means that any consistent interpretation of the nature and origin of UHECRs has to include the detailed knowledge of their propagation in a three-dimensional environment, taking into account the magnetic deflections and energy losses. The parameter space range for the magnetic fields in the universe is very large because the field strength and especially their orientation have big uncertainties. Particularly, the strength and morphology of the Extragalactic Magnetic Fields (EGMFs) remain largely unknown, because of the intrinsic difficulty of observing them. Monte Carlo simulations of charged particles traveling through a simulated magnetized universe is the straightforward way to study the influence of extragalactic magnetic fields on UHECRs propagation. However, this brings two major difficulties: an accurate numerical modeling of charged particles diffusion in magnetic fields, and an accurate numerical modeling of the magnetized Universe. Since magnetic fields do not cause energy losses, it is important to impose that the particle tracking method conserve the particle’s total energy and that the energy changes are results of the interactions with background photons only. Hence, special attention should be paid to computational effects. Additionally, because of the number of particles necessary to obtain a relevant statistical sample, the particle tracking method must be computationally efficient. In this work, we present an analysis of the propagation of ultra-high energy charged particles in the intergalactic medium. The EGMFs are considered to be coherent within cells of 1 Mpc (mega parsec) diameter, wherein they have uniform intensities of 1 nG (nano Gauss). Moreover, each cell has its field orientation randomly chosen, and a border region is defined such that at distances beyond 95% of the cell radius from the cell center smooth transitions have been applied in order to avoid discontinuities. The smooth transitions are simulated by weighting the magnetic field orientation by the particle's distance to the two nearby cells. The energy losses have been treated in the continuous approximation parameterizing the mean energy loss per unit path length by the energy loss length. We have shown, for a particle with the typical energy of interest the integration method performance in the relative error of Larmor radius, without energy losses and the relative error of energy. Additionally, we plotted the distance amplification from rectilinear propagation as a function of the traveled distance, particle's magnetic rigidity, without energy losses, and particle's energy, with energy losses, to study the influence of particle's species on these calculations. The results clearly show when it is necessary to use a full three-dimensional simulation.Keywords: cosmic rays propagation, extragalactic magnetic fields, magnetic deflections, ultra-high energy
Procedia PDF Downloads 12694 Analysis of the Interests, Conflicts and Power Resources in the Urban Development in the Megacity of Sao Paulo
Authors: A. G. Back
Abstract:
Urban planning is a relevant tool to address, in a systemic way, several sectoral policies capable of linking the urban agenda with the reduction of socio-environmental risks. The Sao Paulo’s master plan (2014) presents innovations capable of promoting the transition to sustainability in the urban space, with a view to its regulatory instruments related to i) promotion of density in the axes of mass transport involving the mixture of commercial, residential, services, and leisure uses (principles related to the compact city); ii) vulnerabilities reduction based on housing policies including regular sources of funds for social housing and land reservation in urbanized areas; iii) reserve of green areas in the city to create parks and environmental regulations for new buildings focused on reducing the effects of heat island and improving urban drainage. However, its long-term implementation involves distributive conflicts and can undergo changes in different political, economic, and social contexts over time. Thus, the main objective of this paper is to identify and analyze the dynamics of conflicts of interest between social groups in the implementation of Sao Paulo’s urban development policy, particularly in relation to recent attempts at a (re) interpretation of the Master Plan guidelines, in view of the proposals for revision of the urban zoning law. In this sense, we seek to identify the demands, narratives of urban actors, including the real estate market, middle-class neighborhood associations ('not in my backyard' movements), and social housing rights movements. And we seek to analyze the power resources that these actors mobilize to influence the decision-making process, involving five categories: social capital, political access; discursive resource; media, juridical resource. The major findings of this research suggest that the interests and demands of the real estate market do not always prevail in urban regulation. After all, other actors also press for the definition of urban law with interests opposite to those of the real estate market. This is the case of associations of middle-class neighborhoods, which work to protect the characteristics of the locality, acting, in general, to prevent constructive and population densification in neighborhoods well located near the center, in São Paulo. One of the main demands of these “not in my backyard” movements is the delimitation of exclusively residential areas in the central region of the city, which is not only contrary to the interests of the real state market but also contrary to the principles of the compact city. On the other hand, social housing rights movements have also made progress in delimiting special areas of social interest in well-located and valued areas in the city dedicated to building social housing, also contrary to the interests of the real estate market. An urban development that follows the principles of the compact city must take into account the insertion of low-income populations in well-located regions; otherwise, such a development model may continue to push the less favored to the peripheries towards the preservation areas and/or risk areas.Keywords: interest groups, Sao Paulo, sustainable urban development, urban policies implementation
Procedia PDF Downloads 10993 Investigation of Pu-238 Heat Source Modifications to Increase Power Output through (α,N) Reaction-Induced Fission
Authors: Alex B. Cusick
Abstract:
The objective of this study is to improve upon the current ²³⁸PuO₂ fuel technology for space and defense applications. Modern RTGs (radioisotope thermoelectric generators) utilize the heat generated from the radioactive decay of ²³⁸Pu to create heat and electricity for long term and remote missions. Application of RTG technology is limited by the scarcity and expense of producing the isotope, as well as the power output which is limited to only a few hundred watts. The scarcity and expense make the efficient use of ²³⁸Pu absolutely necessary. By utilizing the decay of ²³⁸Pu, not only to produce heat directly but to also indirectly induce fission in ²³⁹Pu (which is already present within currently used fuel), it is possible to see large increases in temperature which allows for a more efficient conversion to electricity and a higher power-to-weight ratio. This concept can reduce the quantity of ²³⁸Pu necessary for these missions, potentially saving millions on investment, while yielding higher power output. Current work investigating radioisotope power systems have focused on improving efficiency of the thermoelectric components and replacing systems which produce heat by virtue of natural decay with fission reactors. The technical feasibility of utilizing (α,n) reactions to induce fission within current radioisotopic fuels has not been investigated in any appreciable detail, and our study aims to thoroughly investigate the performance of many such designs, develop those with highest capabilities, and facilitate experimental testing of these designs. In order to determine the specific design parameters that maximize power output and the efficient use of ²³⁸Pu for future RTG units, MCNP6 simulations have been used to characterize the effects of modifying fuel composition, geometry, and porosity, as well as introducing neutron moderating, reflecting, and shielding materials to the system. Although this project is currently in the preliminary stages, the final deliverables will include sophisticated designs and simulation models that define all characteristics of multiple novel RTG fuels, detailed enough to allow immediate fabrication and testing. Preliminary work has consisted of developing a benchmark model to accurately represent the ²³⁸PuO₂ pellets currently in use by NASA; this model utilizes the alpha transport capabilities of MCNP6 and agrees well with experimental data. In addition, several models have been developed by varying specific parameters to investigate their effect on (α,n) and (n,fi ssion) reaction rates. Current practices in fuel processing are to exchange out the small portion of naturally occurring ¹⁸O and ¹⁷O to limit (α,n) reactions and avoid unnecessary neutron production. However, we have shown that enriching the oxide in ¹⁸O introduces a sufficient (α,n) reaction rate to support significant fission rates. For example, subcritical fission rates above 10⁸ f/cm³-s are easily achievable in cylindrical ²³⁸PuO₂ fuel pellets with a ¹⁸O enrichment of 100%, given an increase in size and a ⁹Be clad. Many viable designs exist and our intent is to discuss current results and future endeavors on this project.Keywords: radioisotope thermoelectric generators (RTG), Pu-238, subcritical reactors, (alpha, n) reactions
Procedia PDF Downloads 17092 Toward the Destigmatizing the Autism Label: Conceptualizing Celebratory Technologies
Authors: LouAnne Boyd
Abstract:
From the perspective of self-advocates, the biggest unaddressed problem is not the symptoms of an autism spectrum diagnosis but the social stigma that accompanies autism. This societal perspective is in contrast to the focus on the majority of interventions. Autism interventions, and consequently, most innovative technologies for autism, aim to improve deficits that occur within the person. For example, the most common Human-Computer Interaction research projects in assistive technology for autism target social skills from a normative perspective. The premise of the autism technologies is that difficulties occur inside the body, hence, the medical model focuses on ways to improve the ailment within the person. However, other technological approaches to support people with autism do exist. In the realm of Human Computer Interaction, there are other modes of research that provide critique of the medical model. For example, critical design, whose intended audience is industry or other HCI researchers, provides products that are the opposite of interventionist work to bring attention to the misalignment between the lived experience and the societal perception of autism. For example, parodies of interventionist work exist to provoke change, such as a recent project called Facesavr, a face covering that helps allistic adults be more independent in their emotional processing. Additionally, from a critical disability studies’ perspective, assistive technologies perpetuate harmful normalizing behaviors. However, these critical approaches can feel far from the frontline in terms of taking direct action to positively impact end users. From a critical yet more pragmatic perspective, projects such as Counterventions lists ways to reduce the likelihood of perpetuating ableism in interventionist’s work by reflectively analyzing a series of evolving assistive technology projects through a societal lens, thus leveraging the momentum of the evolving ecology of technologies for autism. Therefore, all current paradigms fall short of addressing the largest need—the negative impact of social stigma. The current work introduces a new paradigm for technologies for autism, borrowing from a paradigm introduced two decades ago around changing the narrative related to eating disorders. It is the shift from reprimanding poor habits to celebrating positive aspects of eating. This work repurposes Celebratory Technology for Neurodiversity and intended to reduce social stigma by targeting for the public at large. This presentation will review how requirements were derived from current research on autism social stigma as well as design sessions with autistic adults. Congruence between these two sources revealed three key design implications for technology: provide awareness of the autistic experience; generate acceptance of the neurodivergence; cultivate an appreciation for talents and accomplishments of neurodivergent people. The current pilot work in Celebratory Technology offers a new paradigm for supporting autism by shifting the burden of change from the person with autism to address changing society’s biases at large. Shifting the focus of research outside of the autistic body creates a new space for a design that extends beyond the bodies of a few and calls on all to embrace humanity as a whole.Keywords: neurodiversity, social stigma, accessibility, inclusion, celebratory technology
Procedia PDF Downloads 7291 Chemical and Electrochemical Syntheses of Two Organic Components of Ginger
Authors: Adrienn Kiss, Karoly Zauer, Gyorgy Keglevich, Rita Molnarne Bernath
Abstract:
Ginger (Zingiber officinale) is a perennial plant from Southeast Asia, widely used as a spice, herb, and medicine for many illnesses since its beneficial health effects were observed thousands of years ago. Among the compounds found in ginger, zingerone [4-hydroxy-3- methoxyphenyl-2-butanone] deserves special attention: it has an anti-inflammatory and antispasmodic effect, it can be used in case of diarrheal disease, helps to prevent the formation of blood clots, has antimicrobial properties, and can also play a role in preventing the Alzheimer's disease. Ferulic acid [(E)-3-(4-hydroxy-3-methoxyphenyl)-prop-2-enoic acid] is another cinnamic acid derivative in ginger, which has promising properties. Like many phenolic compounds, ferulic acid is also an antioxidant. Based on the results of animal experiments, it is assumed to have a direct antitumoral effect in lung and liver cancer. It also deactivates free radicals that can damage the cell membrane and the DNA and helps to protect the skin against UV radiation. The aim of this work was to synthesize these two compounds by new methods. A few of the reactions were based on the hydrogenation of dehydrozingerone [4-(4-Hydroxy-3-methoxyphenyl)-3-buten-2-one] to zingerone. Dehydrozingerone can be synthesized by a relatively simple method from acetone and vanillin with good yield (80%, melting point: 41 °C). Hydrogenation can be carried out chemically, for example by the reaction of zinc and acetic acid, or Grignard magnesium and ethyl alcohol. Another way to complete the reduction is the electrochemical pathway. The electrolysis of dehydrozingerone without diaphragm in aqueous media was attempted to produce ferulic acid in the presence of sodium carbonate and potassium iodide using platinum electrodes. The electrolysis of dehydrozingerone in the presence of potassium carbonate and acetic acid to prepare zingerone was carried out similarly. Ferulic acid was expected to be converted to dihydroferulic acid [3-(4-Hydroxy-3-methoxyphenyl)propanoic acid] in potassium hydroxide solution using iron electrodes, separating the anode and cathode space with a Soxhlet paper sheath impregnated with saturated magnesium chloride solution. For this reaction, ferulic acid was synthesized from vanillin and malonic acid in the presence of pyridine and piperidine (yield: 88.7%, melting point: 173°C). Unfortunately, in many cases, the expected transformations did not happen or took place in low conversions, although gas evolution occurred. Thus, a deeper understanding of these experiments and optimization are needed. Since both compounds are found in different plants, they can also be obtained by alkaline extraction or steam distillation from distinct plant parts (ferulic acid from ground bamboo shoots, zingerone from grated ginger root). The products of these reactions are rich in several other organic compounds as well; therefore, their separation must be solved to get the desired pure material. The products of the reactions described above were characterized by infrared spectral data and melting points. The use of these two simple methods may be informative for the formation of the products. In the future, we would like to study the ferulic acid and zingerone content of other plants and extract them efficiently. The optimization of electrochemical reactions and the use of other test methods are also among our plans.Keywords: ferulic acid, ginger, synthesis, zingerone
Procedia PDF Downloads 17490 Temporal and Spacial Adaptation Strategies in Aerodynamic Simulation of Bluff Bodies Using Vortex Particle Methods
Authors: Dario Milani, Guido Morgenthal
Abstract:
Fluid dynamic computation of wind caused forces on bluff bodies e.g light flexible civil structures or high incidence of ground approaching airplane wings, is one of the major criteria governing their design. For such structures a significant dynamic response may result, requiring the usage of small scale devices as guide-vanes in bridge design to control these effects. The focus of this paper is on the numerical simulation of the bluff body problem involving multiscale phenomena induced by small scale devices. One of the solution methods for the CFD simulation that is relatively successful in this class of applications is the Vortex Particle Method (VPM). The method is based on a grid free Lagrangian formulation of the Navier-Stokes equations, where the velocity field is modeled by particles representing local vorticity. These vortices are being convected due to the free stream velocity as well as diffused. This representation yields the main advantages of low numerical diffusion, compact discretization as the vorticity is strongly localized, implicitly accounting for the free-space boundary conditions typical for this class of FSI problems, and a natural representation of the vortex creation process inherent in bluff body flows. When the particle resolution reaches the Kolmogorov dissipation length, the method becomes a Direct Numerical Simulation (DNS). However, it is crucial to note that any solution method aims at balancing the computational cost against the accuracy achievable. In the classical VPM method, if the fluid domain is discretized by Np particles, the computational cost is O(Np2). For the coupled FSI problem of interest, for example large structures such as long-span bridges, the aerodynamic behavior may be influenced or even dominated by small structural details such as barriers, handrails or fairings. For such geometrically complex and dimensionally large structures, resolving the complete domain with the conventional VPM particle discretization might become prohibitively expensive to compute even for moderate numbers of particles. It is possible to reduce this cost either by reducing the number of particles or by controlling its local distribution. It is also possible to increase the accuracy of the solution without increasing substantially the global computational cost by computing a correction of the particle-particle interaction in some regions of interest. In this paper different strategies are presented in order to extend the conventional VPM method to reduce the computational cost whilst resolving the required details of the flow. The methods include temporal sub stepping to increase the accuracy of the particles convection in certain regions as well as dynamically re-discretizing the particle map to locally control the global and the local amount of particles. Finally, these methods will be applied on a test case and the improvements in the efficiency as well as the accuracy of the proposed extension to the method are presented. The important benefits in terms of accuracy and computational cost of the combination of these methods will be thus presented as long as their relevant applications.Keywords: adaptation, fluid dynamic, remeshing, substepping, vortex particle method
Procedia PDF Downloads 26189 Drones, Rebels and Bombs: Explaining the Role of Private Security and Expertise in a Post-piratical Indian Ocean
Authors: Jessica Kate Simonds
Abstract:
The last successful hijacking perpetrated by Somali pirates in 2012 represented a critical turning point for the identity and brand of Indian Ocean (IO) insecurity, coined in this paper as the era of the post-piratical. This paper explores the broadening of the PMSC business model to account and contribute to the design of a new IO security environment that prioritises foreign and insurgency drone activity and Houthi rebel operations as the main threat to merchant shipping in the post-2012 era. This study is situated within a longer history of analysing maritime insecurity and also contributes a bespoke conceptual framework that understands the sea as a space that is produced and reproduced relative to existing and emerging threats to merchant shipping based on bespoke models of information sharing and intelligence acquisition. This paper also makes a prominent empirical contribution by drawing on a post-positivist methodology, data drawn from original semi-structured interviews with senior maritime insurers and active merchant seafarers that is triangulated with industry-produced guidance such as the BMP series as primary data sources. Each set is analysed through qualitative discourse and content analysis and supported by the quantitative data sets provided by the IMB Piracy Reporting center and intelligence networks. This analysis reveals that mechanisms such as the IGP&I Maritime Security Committee and intelligence divisions of PMSC’s have driven the exchanges of knowledge between land and sea and thus the reproduction of the maritime security environment through new regulations and guidance to account dones, rebels and bombs as the key challenges in the IO, beyond piracy. A contribution of this paper is the argument that experts who may not be in the highest-profile jobs are the architects of maritime insecurity based on their detailed knowledge and connections to vessels in transit. This paper shares the original insights of those who have served in critical decision making spaces to demonstrate that the development and refinement of industry produced deterrence guidance that has been accredited to the mitigation of piracy, have shaped new editions such as BMP 5 that now serve to frame a new security environment that prioritises the mitigation of risks from drones and WBEID’s from both state and insurgency risk groups. By highlighting the experiences and perspectives of key players on both land and at sea, the key finding of this paper is outlining that as pirates experienced a financial boom by profiteering from their bespoke business model during the peak of successful hijackings, the private security market encountered a similar level of financial success and guaranteed risk environment in which to prospect business. Thus, the reproduction of the Indian Ocean as a maritime security environment reflects a new found purpose for PMSC’s as part of the broader conglomerate of maritime insurers, regulators, shipowners and managers who continue to redirect the security consciousness and IO brand of insecurity.Keywords: maritime security, private security, risk intelligence, political geography, international relations, political economy, maritime law, security studies
Procedia PDF Downloads 18388 Covid -19 Pandemic and Impact on Public Spaces of Tourism and Hospitality in Dubai- an Exploratory Study from a Design Perspective
Authors: Manju Bala Jassi
Abstract:
The Covid 19 pandemic has badly mauled Dubai’s GDP heavily dependent on hospitality, tourism, entertainment, logistics, property and the retail sectors. In the context of the World Health protocols on social distancing for better maintenance of health and hygiene, the revival of the battered tourism and hospitality sectors has serious lessons for designers- interiors and public places. The tangible and intangible aesthetic elements and design –ambiance, materials, furnishings, colors, lighting and interior with architectural design issues of tourism and hospitality need a rethink to ensure a memorable tourist experience. Designers ought to experiment with sustainable places of tourism and design, develop, build and projects are aesthetic and leave as little negative impacts on the environment and public as possible. In short, they ought to conceive public spaces that makes use of little untouched materials and energy, and creates pollution and waste that are minimal. The spaces can employ healthier and more resource-efficient prototypes of construction, renovation, operation, maintenance, and demolition and thereby mitigate the environment impacts of the construction activities and it is sustainable These measures encompass the hospitality sector that includes hotels and restaurants which has taken the hardest fall from the pandemic. The paper sought to examine building energy efficiency and materials and design employed in public places, green buildings to achieve constructive sustainability and to establish the benefits of utilizing energy efficiency, green materials and sustainable design; to document diverse policy interventions, design and Spatial dimensions of tourism and hospitality sectors; to examine changes in the hospitality, aviation sector especially from a design perspective regarding infrastructure or operational constraints and additional risk-mitigation measures; to dilate on the nature of implications for interior designers and architects to design public places to facilitate sustainable tourism and hospitality while balancing convenient space and their operations' natural surroundings. The qualitative research approach was adopted for the study. The researcher collected and analyzed data in continuous iteration. Secondary data was collected from articles in journals, trade publications, government reports, newspaper/ magazine articles, policy documents etc. In depth interviews were conducted with diverse stakeholders. Preliminary data indicates that designers have started imagining public places of tourism and hospitality against the backdrop of the government push and WHO guidelines. For instance, with regard to health, safety, hygiene and sanitation, Emirates, the Dubai-based airline has augmented health measures at the Dubai International Airport and on board its aircraft. It has leveraged high tech/ Nano-tech, social distancing to encourage least human contact, flexible design layouts to limit the occupancy. The researcher organized the data into thematic categories and found that the Government of Dubai has initiated comprehensive measures in the hospitality, tourism and aviation sectors in compliance with the WHO guidelines.Keywords: Covid 19, design, Dubai, hospitality, public spaces, tourism
Procedia PDF Downloads 16687 Ecological Planning Method of Reclamation Area Based on Ecological Management of Spartina Alterniflora: A Case Study of Xihu Harbor in Xiangshan County
Abstract:
The study region Xihu Harbor in Xiangshan County, Ningbo City is located in the central coast of Zhejiang Province. Concerning the wave dispating issue, Ningbo government firstly introduced Spartina alterniflora in 1980s. In the 1990s, S. alterniflora spread so rapidly thus a ‘grassland’ in the sea has been created nowadays. It has become the most important invasive plant of China’s coastal tidal flats. Although S. alterniflora had some ecological and economic functions, it has also brought series of hazards. It has ecological hazards on many aspects, including biomass and biodiversity, hydrodynamic force and sedimentation process, nutrient cycling of tidal flat, succession sequence of soil and plants and so on. On engineering, it courses problems of poor drainage and channel blocking. On economy, the hazard mainly reflected in the threat on aquaculture industry. The purpose of this study is to explore an ecological, feasible and economical way to manage Spartina alterniflora and use the land formed by it, taking Xihu Harbor in Xiangshan County as a case. Comparison method, mathematical modeling, qualitative and quantitative analysis are utilized to proceed the study. Main outcomes are as follows. By comparing a series of S. alterniflora managing methods which include the combination of mechanical cutting and hydraulic reclamation, waterlogging, herbicide and biological substitution from three standpoints – ecology, engineering and economy. It is inferred that the combination of mechanical cutting and hydraulic reclamation is among the top rank of S. alternifora managing methods. The combination of mechanical cutting and hydraulic reclamation means using large-scale mechanical equipment like large screw seagoing dredger to excavate the S. alterniflora with root and mud together. Then the mix of mud and grass was blown off nearby coastal tidal zone transported by pipelines, which can cushion the silt of tidal zone to form a land. However, as man-made land by coast, the reclamation area’s ecological sensitivity is quite high and will face high possibility of flood threat. Therefore, the reclamation area has many reasonability requirements, including ones on location, specific scope, water surface rate, direction of main watercourse, site of water-gate, the ratio of ecological land to urban construction land. These requirements all became important basis when the planning was being made. The water system planning, green space system planning, road structure and land use all need to accommodate the ecological requests. Besides, the profits from the formed land is the managing project’s source of funding, so how to utilize land efficiently is another considered point in the planning. It is concluded that by aiming at managing a large area of S. alterniflora, the combination of mechanical cutting and hydraulic reclamation is an ecological, feasible and economical method. The planning of reclamation area should fully respect the natural environment and possible disasters. Then the planning which makes land use efficient, reasonable, ecological will promote the development of the area’s city construction.Keywords: ecological management, ecological planning method, reclamation area, Spartina alternifora, Xihu harbor
Procedia PDF Downloads 308