Search results for: battery energy storage efficiency
10798 Emptiness Downlink and Uplink Proposal Using Space-Time Equation Interpretation
Authors: Preecha Yupapin And Somnath
Abstract:
From the emptiness, the vibration induces the fractal, and the strings are formed. From which the first elementary particle groups, known as quarks, were established. The neutrino and electron are created by them. More elementary particles and life are formed by organic and inorganic substances. The universe is constructed, from which the multi-universe has formed in the same way. universe assumes that the intense energy has escaped from the singularity cone from the multi-universes. Initially, the single mass energy is confined, from which it is disturbed by the space-time distortion. It splits into the entangled pair, where the circular motion is established. It will consider one side of the entangled pair, where the fusion energy of the strong coupling force has formed. The growth of the fusion energy has the quantum physic phenomena, where the moving of the particle along the circumference with a speed faster than light. It introduces the wave-particle duality aspect, which will be saturated at the stopping point. It will be re-run again and again without limitation, which can say that the universe has been created and expanded. The Bose-Einstein condensate (BEC) is released through the singularity by the wormhole, which will be condensed to become a mass associated with the Sun's size. It will circulate(orbit) along the Sun. the consideration of the uncertainty principle is applied, from which the breath control is followed by the uncertainty condition ∆p∆x=∆E∆t~ℏ. The flowing in-out air into a body via a nose has applied momentum and energy control respecting the movement and time, in which the target is that the distortion of space-time will have vanished. Finally, the body is clean which can go to the next procedure, where the mind can escape from the body by the speed of light. However, the borderline between contemplation to being an Arahant is a vacuum, which will be explained.Keywords: space-time, relativity, enlightenment, emptiness
Procedia PDF Downloads 6710797 Understanding Retail Benefits Trade-offs of Dynamic Expiration Dates (DED) Associated with Food Waste
Authors: Junzhang Wu, Yifeng Zou, Alessandro Manzardo, Antonio Scipioni
Abstract:
Dynamic expiration dates (DEDs) play an essential role in reducing food waste in the context of the sustainable cold chain and food system. However, it is unknown for the trades-off in retail benefits when setting an expiration date on fresh food products. This study aims to develop a multi-dimensional decision-making model that integrates DEDs with food waste based on wireless sensor network technology. The model considers the initial quality of fresh food and the change rate of food quality with the storage temperature as cross-independent variables to identify the potential impacts of food waste in retail by applying s DEDs system. The results show that retail benefits from the DEDs system depend on each scenario despite its advanced technology. In the DEDs, the storage temperature of the retail shelf leads to the food waste rate, followed by the change rate of food quality and the initial quality of food products. We found that the DEDs system could reduce food waste when food products are stored at lower temperature areas. Besides, the potential of food savings in an extended replenishment cycle is significantly more advantageous than the fixed expiration dates (FEDs). On the other hand, the information-sharing approach of the DEDs system is relatively limited in improving sustainable assessment performance of food waste in retail and even misleads consumers’ choices. The research provides a comprehensive understanding to support the techno-economic choice of the DEDs associated with food waste in retail.Keywords: dynamic expiry dates (DEDs), food waste, retail benefits, fixed expiration dates (FEDs)
Procedia PDF Downloads 11410796 Microgravity, Hydrological and Metrological Monitoring of Shallow Ground Water Aquifer in Al-Ain, UAE
Authors: Serin Darwish, Hakim Saibi, Amir Gabr
Abstract:
The United Arab Emirates (UAE) is situated within an arid zone where the climate is arid and the recharge of the groundwater is very low. Groundwater is the primary source of water in the United Arab Emirates. However, rapid expansion, population growth, agriculture, and industrial activities have negatively affected these limited water resources. The shortage of water resources has become a serious concern due to the over-pumping of groundwater to meet demand. In addition to the deficit of groundwater, the UAE has one of the highest per capita water consumption rates in the world. In this study, a combination of time-lapse measurements of microgravity and depth to groundwater level in selected wells in Al Ain city was used to estimate the variations in groundwater storage. Al-Ain is the second largest city in Abu Dhabi Emirates and the third largest city in the UAE. The groundwater in this region has been overexploited. Relative gravity measurements were acquired using the Scintrex CG-6 Autograv. This latest generation gravimeter from Scintrex Ltd provides fast, precise gravity measurements and automated corrections for temperature, tide, instrument tilt and rejection of data noise. The CG-6 gravimeter has a resolution of 0.1μGal. The purpose of this study is to measure the groundwater storage changes in the shallow aquifers based on the application of microgravity method. The gravity method is a nondestructive technique that allows collection of data at almost any location over the aquifer. Preliminary results indicate a possible relationship between microgravity and water levels, but more work needs to be done to confirm this. The results will help to develop the relationship between monthly microgravity changes with hydrological and hydrogeological changes of shallow phreatic. The study will be useful in water management considerations and additional future investigations.Keywords: Al-Ain, arid region, groundwater, microgravity
Procedia PDF Downloads 15310795 Kinetic Study on Extracting Lignin from Black Liquor Using Deep Eutectic Solvents
Authors: Fatemeh Saadat Ghareh Bagh, Srimanta Ray, Jerald Lalman
Abstract:
Lignin, the largest inventory of organic carbon with a high caloric energy value is a major component in woody and non-woody biomass. In pulping mills, a large amount of the lignin is burned for energy. At the same time, the phenolic structure of lignin enables it to be converted to value-added compounds.This study has focused on extracting lignin from black liquor using deep eutectic solvents (DESs). Therefore, three choline chloride (ChCl)-DESs paired with lactic acid (LA) (1:11), oxalic acid.2H₂O (OX) (1:4), and malic acid (MA) (1:3) were synthesized at 90oC and atmospheric pressure. The kinetics of lignin recovery from black liquor using DES was investigated at three moderate temperatures (338, 353, and 368 K) at time intervals from 30 to 210 min. The extracted lignin (acid soluble lignin plus Klason lignin) was characterized by Fourier transform infrared spectroscopy (FTIR). The FTIR studies included comparing the extracted lignin with a model Kraft lignin. The extracted lignin was characterized spectrophotometrically to determine the acid soluble lignin (ASL) [TAPPI UM 250] fraction and Klason lignin was determined gravimetrically using TAPPI T 222 om02. The lignin extraction reaction using DESs was modeled by first-order reaction kinetics and the activation energy of the process was determined. The ChCl:LA-DES recovered lignin was 79.7±2.1% at 368K and a DES:BL ratio of 4:1 (v/v). The quantity of lignin extracted for the control solvent, [emim][OAc], was 77.5+2.2%. The activation energy measured for the LA-DES system was 22.7 KJ mol⁻¹, while the activation energy for the OX-DES and MA-DES systems were 7.16 KJ·mol⁻¹ and 8.66 KJ·mol⁻¹ when the total lignin recovery was 75.4 ±0.9% and 62.4 ±1.4, % respectively.Keywords: black liquor, deep eutectic solvents, kinetics, lignin
Procedia PDF Downloads 14810794 AI-Enabled Smart Contracts for Reliable Traceability in the Industry 4.0
Authors: Harris Niavis, Dimitra Politaki
Abstract:
The manufacturing industry was collecting vast amounts of data for monitoring product quality thanks to the advances in the ICT sector and dedicated IoT infrastructure is deployed to track and trace the production line. However, industries have not yet managed to unleash the full potential of these data due to defective data collection methods and untrusted data storage and sharing. Blockchain is gaining increasing ground as a key technology enabler for Industry 4.0 and the smart manufacturing domain, as it enables the secure storage and exchange of data between stakeholders. On the other hand, AI techniques are more and more used to detect anomalies in batch and time-series data that enable the identification of unusual behaviors. The proposed scheme is based on smart contracts to enable automation and transparency in the data exchange, coupled with anomaly detection algorithms to enable reliable data ingestion in the system. Before sensor measurements are fed to the blockchain component and the smart contracts, the anomaly detection mechanism uniquely combines artificial intelligence models to effectively detect unusual values such as outliers and extreme deviations in data coming from them. Specifically, Autoregressive integrated moving average, Long short-term memory (LSTM) and Dense-based autoencoders, as well as Generative adversarial networks (GAN) models, are used to detect both point and collective anomalies. Towards the goal of preserving the privacy of industries' information, the smart contracts employ techniques to ensure that only anonymized pointers to the actual data are stored on the ledger while sensitive information remains off-chain. In the same spirit, blockchain technology guarantees the security of the data storage through strong cryptography as well as the integrity of the data through the decentralization of the network and the execution of the smart contracts by the majority of the blockchain network actors. The blockchain component of the Data Traceability Software is based on the Hyperledger Fabric framework, which lays the ground for the deployment of smart contracts and APIs to expose the functionality to the end-users. The results of this work demonstrate that such a system can increase the quality of the end-products and the trustworthiness of the monitoring process in the smart manufacturing domain. The proposed AI-enabled data traceability software can be employed by industries to accurately trace and verify records about quality through the entire production chain and take advantage of the multitude of monitoring records in their databases.Keywords: blockchain, data quality, industry4.0, product quality
Procedia PDF Downloads 18910793 Analysis of Bio-Oil Produced from Sugar Cane Bagasse Pyrolysis
Authors: D. S. Fardhyanti, M. Megawati, H. Prasetiawan, U. Mediaty
Abstract:
Currently, fossil fuel is supplying most of world’s energy resources. However, fossil fuel resources are depleted rapidly and require an alternative energy to overcome the increasing of energy demands. Bio-oil is one of a promising alternative renewable energy resources which is converted from biomass through pyrolysis or fast pyrolysis process. Bio-oil is a dark liquid fuel, has a smelling smoke and usually obtained from sugar cane, wood, coconut shell and any other biomass. Sugar cane content analysis showed that the content of oligosaccharide, hemicellulose, cellulose and lignin was 16.69%, 25.66%, 51.27% and 6.38% respectively. Sugar cane is a potential sources for bio-oil production shown by its high content of cellulose. In this study, production of bio-oil from sugar cane bagasse was investigated via fast pyrolysis reactor. Fast pyrolysis was carried out at 500 °C with a heating rate of 10 °C and 1 hour holding time at pyrolysis temperature. Physical properties and chemical composition of bio-oil were analyzed. The viscosity, density, calorific value and molecular weight of produced bio-oil was 3.12 cp, 2.78 g/cm3, 11,048.44 cals/g, and 222.67 respectively. The Bio-oil chemical composition was investigated using GC-MS. Percentage value of furfural, phenol, 3-methyl 1,2-cyclopentanedione, 5-methyl-3-methylene 5-hexen-2-one, 4-methyl phenol, 4-ethyl phenol, 1,2-benzenediol, and 2,6-dimethoxy phenol was 20.76%, 16.42%, 10.86%, 7.54%, 7.05%, 7.72%, 5.27% and 6.79% respectively.Keywords: bio-oil, pyrolysis, bagasse, sugar cane, gas chromatography-mass spectroscopy
Procedia PDF Downloads 14310792 Modeling Flow and Deposition Characteristics of Solid CO2 during Choked Flow of CO2 Pipeline in CCS
Authors: Teng lin, Li Yuxing, Han Hui, Zhao Pengfei, Zhang Datong
Abstract:
With the development of carbon capture and storage (CCS), the flow assurance of CO2 transportation becomes more important, particularly for supercritical CO2 pipelines. The relieving system using the choke valve is applied to control the pressure in CO2 pipeline. However, the temperature of fluid would drop rapidly because of Joule-Thomson cooling (JTC), which may cause solid CO2 form and block the pipe. In this paper, a Computational Fluid Dynamic (CFD) model, using the modified Lagrangian method, Reynold's Stress Transport model (RSM) for turbulence and stochastic tracking model (STM) for particle trajectory, was developed to predict the deposition characteristic of solid carbon dioxide. The model predictions were in good agreement with the experiment data published in the literature. It can be observed that the particle distribution affected the deposition behavior. In the region of the sudden expansion, the smaller particles accumulated tightly on the wall were dominant for pipe blockage. On the contrary, the size of solid CO2 particles deposited near the outlet usually was bigger and the stacked structure was looser. According to the calculation results, the movement of the particles can be regarded as the main four types: turbulent motion close to the sudden expansion structure, balanced motion at sudden expansion-middle region, inertial motion near the outlet and the escape. Furthermore the particle deposits accumulated primarily in the sudden expansion region, reattachment region and outlet region because of the four type of motion. Also the Stokes number had an effect on the deposition ratio and it is recommended for Stokes number to avoid 3-8St.Keywords: carbon capture and storage, carbon dioxide pipeline, gas-particle flow, deposition
Procedia PDF Downloads 37010791 Simulation Tools for Training in the Case of Energy Sector Crisis
Authors: H. Malachova, A. Oulehlova, D. Rezac
Abstract:
Crisis preparedness training is the best possible strategy for identifying weak points, understanding vulnerability, and finding possible strategies for mitigation of blackout consequences. Training represents an effective tool for developing abilities and skills to cope with crisis situations. This article builds on the results of the research carried out in the field of preparation, realization, process, and impacts of training on subjects of energy sector critical infrastructure as a part of crisis preparedness. The research has revealed that the subjects of energy sector critical infrastructure have not realized training and therefore are not prepared for the restoration of the energy supply and black start after blackout regardless of the fact that most subjects state blackout and subsequent black start as key dangers. Training, together with mutual communication and processed crisis documentation, represent a basis for successful solutions for dealing with emergency situations. This text presents the suggested model of SIMEX simulator as a tool which supports managing crisis situations, containing training environment. Training models, possibilities of constructive simulation making use of non-aggregated as well as aggregated entities and tools of communication channels of individual simulator nodes have been introduced by the article.Keywords: communication, energetic critical infrastructure, training, simulation
Procedia PDF Downloads 38310790 Analysis of the Annual Proficiency Testing Procedure for Intermediate Reference Laboratories Conducted by the National Reference Laboratory from 2013 to 2017
Authors: Reena K., Mamatha H. G., Somshekarayya, P. Kumar
Abstract:
Objectives: The annual proficiency testing of intermediate reference laboratories is conducted by the National Reference Laboratory (NRL) to assess the efficiency of the laboratories to correctly identify Mycobacterium tuberculosis and to determine its drug susceptibility pattern. The proficiency testing results from 2013 to 2017 were analyzed to determine laboratories that were consistent in reporting quality results and those that had difficulty in doing so. Methods: A panel of twenty cultures were sent out to each of these laboratories. The laboratories were expected to grow the cultures in their own laboratories, set up drug susceptibly testing by all the methods they were certified for and report the results within the stipulated time period. The turnaround time for reporting results, specificity, sensitivity positive and negative predictive values and efficiency of the laboratory in identifying the cultures were analyzed. Results: Most of the laboratories had reported their results within the stipulated time period. However, there was enormous delay in reporting results from few of the laboratories. This was mainly due to improper functioning of the biosafety level III laboratory. Only 40% of the laboratories had 100% efficiency in solid culture using Lowenstein Jensen medium. This was expected as a solid culture, and drug susceptibility testing is not used for diagnosing drug resistance. Rapid molecular methods such as Line probe assay and Genexpert are used to determine drug resistance. Automated liquid culture system such as the Mycobacterial growth indicator tube is used to determine prognosis of the patient while on treatment. It was observed that 90% of the laboratories had achieved 100% in the liquid culture method. Almost all laboratories had achieved 100% efficiency in the line probe assay method which is the method of choice for determining drug-resistant tuberculosis. Conclusion: Since the liquid culture and line probe assay technologies are routinely used for the detection of drug-resistant tuberculosis the laboratories exhibited higher level of efficiency as compared to solid culture and drug susceptibility testing which are rarely used. The infrastructure of the laboratory should be maintained properly so that samples can be processed safely and results could be declared on time.Keywords: annual proficiency testing, drug susceptibility testing, intermediate reference laboratory, national reference laboratory
Procedia PDF Downloads 18210789 Intelligent Diagnostic System of the Onboard Measuring Devices
Authors: Kyaw Zin Htut
Abstract:
In this article, the synthesis of the efficiency of intelligent diagnostic system in the aircraft measuring devices is described. The technology developments of the diagnostic system are considered based on the model errors of the gyro instruments, which are used to measure the parameters of the aircraft. The synthesis of the diagnostic intelligent system is considered on the example of the problem of assessment and forecasting errors of the gyroscope devices on the onboard aircraft. The result of the system is to detect of faults of the aircraft measuring devices as well as the analysis of the measuring equipment to improve the efficiency of its work.Keywords: diagnostic, dynamic system, errors of gyro instruments, model errors, assessment, prognosis
Procedia PDF Downloads 40010788 The Effect of Chelate to RE Ratio on Upconversion Emissions Property of NaYF4: Yb3+ and Tm3+ Nanocrystals
Authors: M. Kaviani Darani, S. Bastani, M. Ghahari, P. Kardar
Abstract:
In this paper the NaYF4: Yb3+, Tm3+ nanocrystals were synthesized by hydrothermal method. Different chelating ligand type (citric acid, butanoic acid, and AOT) was selected to investigate the effect of their concentration on upconversion efficiency. Crystal structure and morphology have been well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Photo luminescence were recorded on a spectrophotometer equipped with 980 nm laser diode az excitation source and an integerating sphere. The products with various morphologies range from sphere to cubic, hexagonal,prism and nanorods were prepared at different ratios. The particle size was found to be dependent on the nucleation rate, which, in turn, was affected by type and concentration of ligands. The optimum amount of chelate to RE ratio was obtained 0.75, 1.5, and 1 for Citric Acid, Butanoic Acid and AOT, respectively. Emissions in the UV (1D2-3H6), blue-violet(1D2-3F4), blue (1G4-3H6), red (1G4-3F4), and NIR (1G4-3H5) were observed and were the direct result of subsequent transfers of energy from the Yb3+ ion to the Tm3+ ion.Keywords: upconversion nanoparticles, NaYF4, lanthanide, hydrothermal
Procedia PDF Downloads 26210787 Future trends of MED-TVC Desalination Technology
Authors: Irfan Wazeer
Abstract:
Desalination has become one of the major water treatment process in several countries around the world where shortage of water is a serious problem. Energy consumption is a vital economic factor in selecting the type of desalination processes because current desalination processes require large amount of energy which is costly. Multi-effect desalination system with thermal vapor compression (MED-TVC) is particularly more attractive than other thermal desalination systems due to its low energy consumption. MED-TVC is characterized by high performance ratio (PR), easier operation, low maintenance requirements and simple geometry. These attractive features make MED-TVC highly competitive to other well established desalination techniques that include the reverse osmosis (RO) and multi-stage flash desalination (MSF). The primary goal of this paper is to present a preview of some aspects related with the theory of the technology, parametric study of the MED-TVC systems and its development. It will analyzed the current and future aspects of the MED-TVC technology in view of latest installed plants.Keywords: MED-TVC, parallel feed, performance ratio, GOR
Procedia PDF Downloads 25710786 Reduce the Environmental Impacts of the Intensive Use of Glass in New Buildings in Khartoum, Sudan
Authors: Sawsan Domi
Abstract:
Khartoum is considering as one of the hottest cities all over the world, the mean monthly outdoor temperature remains above 30 ºC. Solar Radiation on Building Surfaces considered within the world highest values. Buildings in Khartoum is receiving huge amounts of watts/m2. Northern, eastern and western facades always receive a greater amount than the south ones. Therefore, these facades of the building must be better protected than the others. One of the most important design limits affecting indoor thermal comfort and energy conservation are building envelope design, self-efficiency in building materials and optical and thermo-physical properties of the building envelope. A small sun-facing glazing area is very important to provide thermal comfort in hot dry climates because of the intensive sunshine. This study aims to propose a work plan to help minimize the negative environmental effect of the climate on buildings taking the intensive use of glazing. In the last 15 years, there was a rapid growth in building sector in Khartoum followed by many of wrong strategies getting away of being environmental friendly. The intensive use of glazing on facades increased to commercial, industrial and design aspects, while the glass envelope led to quick increase in temperature by the reflection affects the sun on faces, cars and bodies. Logically, being transparent by using glass give a sense of open spaces, allowing natural lighting and sometimes natural ventilation keeping dust and insects away. In the other hand, it costs more and give more overheated. And this is unsuitable for a hot dry climate city like Khartoum. Many huge projects permitted every year from the Ministry of Planning in Khartoum state, with a design based on the intensive use of glazing on facades. There are no Laws or Regulations to control using materials in construction, the last building code -building code 2008- Khartoum state- only focused in using sustainable materials with no consider to any environmental aspects. Results of the study will help increase the awareness for architects, engineers and public about this environmentally problem. Objectives vary between Improve energy performance in buildings and Provide high levels of thermal comfort in the inner environment. As a future project, what are the changes that can happen in building permits codes and regulations. There could be recommendations for the governmental sector such as Obliging the responsible authorities to version environmental friendly laws in building construction fields and Support Renewable energy sector in buildings.Keywords: building envelope, building regulations, glazed facades, solar radiation
Procedia PDF Downloads 21910785 DSF Elements in High-Rise Timber Buildings
Authors: Miroslav Premrov, Andrej Štrukelj, Erika Kozem Šilih
Abstract:
The utilization of prefabricated timber-wall elements with double glazing, called as double-skin façade element (DSF), represents an innovative structural approach in the context of new high-rise timber construction, simultaneously combining sustainable solutions with improved energy efficiency and living quality. In addition to the minimum energy needs of buildings, the design of modern buildings is also increasingly focused on the optimal indoor comfort, in particular on sufficient natural light indoors. An optimally energy-designed building with an optimal layout of glazed areas around the building envelope represents a great potential in modern timber construction. Usually, all these transparent façade elements, because of energy benefits, are primary asymmetrical oriented and if they are considered as non-resisting against a horizontal load impact, a strong torsion effects in the building can appear. The problem of structural stability against a strong horizontal load impact of such modern timber buildings especially increase in a case of high-rise structures where additional bracing elements have to be used. In such a case, special diagonal bracing systems or other bracing solutions with common timber wall elements have to be incorporated into the structure of the building to satisfy all prescribed resisting requirements given by the standards. However, all such structural solutions are usually not environmentally friendly and also not contribute to an improved living comfort, or they are not accepted by the architects at all. Consequently, it is a special need to develop innovative load-bearing timber-glass wall elements which are in the same time environmentally friendly, can increase internal comfort in the building, but are also load-bearing. The new developed load-bearing DSF elements can be a good answer on all these requirements. Timber-glass façade elements DSF wall elements consist of two transparent layers, thermal-insulated three-layered glass pane on the internal side and an additional single-layered glass pane on the external side of the wall. The both panes are separated by an air channel which can be of any dimensions and can have a significant influence on the thermal insulation or acoustic response of such a wall element. Most already published studies on DSF elements primarily deal only with energy and LCA solutions and do not address any structural problems. In previous studies according to experimental analysis and mathematical modeling it was already presented a possible benefit of such load-bearing DSF elements, especially comparing with previously developed load-bearing single-skin timber wall elements, but they were not applicate yet in any high-rise timber structure. Therefore, in the presented study specially selected 10-storey prefabricated timber building constructed in a cross-laminated timber (CLT) structural wall system is analyzed using the developed DSF elements in a sense to increase a structural lateral stability of the whole building. The results evidently highlight the importance the load-bearing DSF elements, as their incorporation can have a significant impact on the overall behavior of the structure through their influence on the stiffness properties. Taking these considerations into account is crucial to ensure compliance with seismic design codes and to improve the structural resilience of high-rise timber buildings.Keywords: glass, high-rise buildings, numerical analysis, timber
Procedia PDF Downloads 4610784 Heat and Flow Analysis of Solar Air Heaters with Artificial Roughness on the Absorber
Authors: Amel Boulemtafes-Boukadoum, Ahmed Benzaoui
Abstract:
Solar air heaters (SAH) are widely used in heating and drying applications using solar energy. Their efficiency needs to be improved to be competitive towards solar water heater. In this work, our goal is to study heat transfer enhancement in SAHs by the use of artificial roughness on the absorber. For this purpose, computational fluid dynamics (CFD) simulations were carried out to analyze the flow and heat transfer in the air duct of a solar air heater provided with transverse ribs. The air flows in forced convection and the absorber is heated with uniform flux. The effect of major parameters (Reynolds number, solar radiation, air inlet temperature, geometry of roughness) is examined and discussed. To highlight the effect of artificial roughness, we plotted the distribution of the important parameters: Nusselt number, friction factor, global thermohydraulic performance parameter etc. The results obtained are concordant to those found in the literature and shows clearly the heat transfer enhancement due to artifical roughness.Keywords: solar air heater, artificial roughness, heat transfer enhancement, CFD
Procedia PDF Downloads 57010783 Energy Metabolites Show Cross-Protective Plastic Responses for Stress Resistance in a Circumtropical Drosophila Species
Authors: Ankita Pathak, Ashok Munjal, Ravi Parkash
Abstract:
Plastic responses to multiple environmental stressors in wet or dry seasonal populations of tropical Drosophila species have received less attention. We tested plastic effects of heat hardening, acclimation to drought or starvation; and changes in trehalose, proline and body lipids in D. ananassae flies reared under wet or dry season specific conditions. Wet season flies revealed significant increase in heat knockdown, starvation resistance and body lipids after heat hardening. However, accumulation of proline was observed only after desiccation acclimation of dry season flies while wet season flies elicited no proline but trehalose only. Therefore, drought-induced proline can be a marker metabolite for dry season flies. Further, partial utilization of proline and trehalose under heat hardening reflects their possible thermoprotective effects. Heat hardening elicited cross-protection to starvation stress. Stressor-specific accumulation or utilization, as well as rates of metabolic change for each energy metabolite, were significantly higher in wet season flies than dry season flies. Energy metabolite changes due to inter-related stressors (heat vs. desiccation or starvation) resulted in possible maintenance of energetic homeostasis in wet or dry season flies. Thus, low or high humidity induced plastic changes in energy metabolites can provide cross-protection to seasonally varying climatic stressors.Keywords: wet-dry seasons, plastic changes, stress related traits, energy metabolites, cross protection
Procedia PDF Downloads 17010782 Investigation of Chlorophylls a and b Interaction with Inner and Outer Surfaces of Single-Walled Carbon Nanotube Using Molecular Dynamics Simulation
Authors: M. Dehestani, M. Ghasemi-Kooch
Abstract:
In this work, adsorption of chlorophylls a and b pigments in aqueous solution on the inner and outer surfaces of single-walled carbon nanotube (SWCNT) has been studied using molecular dynamics simulation. The linear interaction energy algorithm has been used to calculate the binding free energy. The results show that the adsorption of two pigments is fine on the both positions. Although there is the close similarity between these two pigments, their interaction with the nanotube is different. This result is useful to separate these pigments from one another. According to interaction energy between the pigments and carbon nanotube, interaction between these pigments-SWCNT on the inner surface is stronger than the outer surface. The interaction of SWCNT with chlorophylls phytol tail is stronger than the interaction of SWCNT with porphyrin ring of chlorophylls.Keywords: adsorption, chlorophyll, interaction, molecular dynamics simulation, nanotube
Procedia PDF Downloads 23510781 Improving Equipment Life and Overall Equipment Effectiveness (O.E.E.) through Proper Maintenance Strategy Using Value Engineering
Authors: Malay Niraj, Praveen Kumar
Abstract:
The present study is a new approach for improving equipment life and Overall Equipment Efficiency (O.E.E.) through suitable maintenance practice with the help of value engineering. Value engineering is a one of the most powerful decision-making techniques which depend on many factors. The improvements are the result of recommendations made by multidisciplinary teams representing all parties involved. VE is a rigorous, systematic effort to improve the OEE and optimize the life cycle cost of a facility. The study describes problems in maintenance arising due to the absence of having clear criteria and strong decision constrain how to maintain failing equipment. Using factor comparisons, the study has been made between different maintenance practices and finally best maintenance practice based on value engineering technique has been selected.Keywords: maintenance strategy, overall equipment efficiency, value engineering, decision-making
Procedia PDF Downloads 40910780 Organic Rankine Cycles (ORC) for Mobile Applications: Economic Feasibility in Different Transportation Sectors
Authors: Roberto Pili, Alessandro Romagnoli, Hartmut Spliethoff, Christoph Wieland
Abstract:
Internal combustion engines (ICE) are today the most common energy system to drive vehicles and transportation systems. Numerous studies state that 50-60% of the fuel energy content is lost to the ambient as sensible heat. ORC offers a valuable alternative to recover such waste heat from ICE, leading to fuel energy savings and reduced emissions. In contrast, the additional weight of the ORC affects the net energy balance of the overall system and the ORC occupies additional volume that competes with vehicle transportation capacity. Consequently, a lower income from delivered freight or passenger tickets can be achieved. The economic feasibility of integrating an ORC into an ICE and the resulting economic impact of weight and volume have not been analyzed in open literature yet. This work intends to define such a benchmark for ORC applications in the transportation sector and investigates the current situation on the market. The applied methodology refers to the freight market, but it can be extended to passenger transportation as well. The economic parameter X is defined as the ratio between the variation of the freight revenues and the variation of fuel costs when an ORC is installed as a bottoming cycle for an ICE with respect to a reference case without ORC. A good economic situation is obtained when the reduction in fuel costs is higher than the reduction of revenues for the delivered freight, i.e. X<1. Through this constraint, a maximum allowable change of transport capacity for a given relative reduction in fuel consumption is determined. The specific fuel consumption is influenced by the ORC in two ways. Firstly because the transportable freight is reduced and secondly because the total weight of the vehicle is increased. Note, that the generated electricity of the ORC influences the size of the ICE and the fuel consumption as well. Taking the above dependencies into account, the limiting condition X = 1 results in a second order equation for the relative change in transported cargo. The described procedure is carried out for a typical city bus, a truck of 24-40 t of payload capacity, a middle-size freight train (1000 t), an inland water vessel (Va RoRo, 2500 t) and handysize-like vessel (25000 t). The maximum allowable mass and volume of the ORC are calculated in dependence of its efficiency in order to satisfy X < 1. Subsequently, these values are compared with weight and volume of commercial ORC products. For ships of any size, the situation appears already highly favorable. A different result is obtained for road and rail vehicles. For trains, the mass and the volume of common ORC products have to be reduced at least by 50%. For trucks and buses, the situation looks even worse. The findings of the present study show a theoretical and practical approach for the economic application of ORC in the transportation sector. In future works, the potential for volume and mass reduction of the ORC will be addressed, together with the integration of an economic assessment for the ORC.Keywords: ORC, transportation, volume, weight
Procedia PDF Downloads 22710779 Evaluation of the Architect-Friendliness of LCA-Based Environmental Impact Assessment Tools
Authors: Elke Meex, Elke Knapen, Griet Verbeeck
Abstract:
The focus of sustainable building is gradually shifting from energy efficiency towards the more global environmental impact of building design during all life-cycle stages. In this context, many tools have been developed that use a LCA-approach to assess the environmental impact on a whole building level. Since the building design strongly influences the final environmental performance and the architect plays a key role in the design process, it is important that these tools are adapted to his work method and support the decision making from the early design phase on. Therefore, a comparative evaluation of the degree of architect-friendliness of some LCA tools on building level is made, based on an evaluation framework specifically developed for the architect’s viewpoint. In order to allow comparison of the results, a reference building has been designed, documented for different design phases and entered in all software tools. The evaluation according to the framework shows that the existing tools are not very architect-friendly. Suggestions for improvement are formulated.Keywords: architect-friendliness, design supportive value, evaluation framework, tool comparison
Procedia PDF Downloads 54010778 Lead-Free Inorganic Cesium Tin-Germanium Triiodide Perovskites for Photovoltaic Application
Authors: Seyedeh Mozhgan Seyed-Talebi, Javad Beheshtian
Abstract:
The toxicity of lead associated with the lifecycle of perovskite solar cells (PSCs( is a serious concern which may prove to be a major hurdle in the path toward their commercialization. The current proposed lead-free PSCs including Ag(I), Bi(III), Sb(III), Ti(IV), Ge(II), and Sn(II) low-toxicity cations are still plagued with the critical issues of poor stability and low efficiency. This is mainly because of their chemical stability. In the present research, utilization of all inorganic CsSnGeI3 based materials offers the advantages to enhance resistance of device to degradation, reduce the cost of cells, and minimize the carrier recombination. The presence of inorganic halide perovskite improves the photovoltaic parameters of PCSs via improved surface coverage and stability. The inverted structure of simulated devices using a 1D simulator like solar cell capacitance simulator (SCAPS) version 3308 involves TCOHTL/Perovskite/ETL/Au contact layer. PEDOT:PSS, PCBM, and CsSnGeI3 used as hole transporting layer (HTL), electron transporting layer (ETL), and perovskite absorber layer in the inverted structure for the first time. The holes are injected from highly stable and air tolerant Sn0.5Ge0.5I3 perovskite composition to HTM and electrons from the perovskite to ETL. Simulation results revealed a great dependence of power conversion efficiency (PCE) on the thickness and defect density of perovskite layer. Here the effect of an increase in operating temperature from 300 K to 400 K on the performance of CsSnGeI3 based perovskite devices is investigated. Comparison between simulated CsSnGeI3 based PCSs and similar real testified devices with spiro-OMeTAD as HTL showed that the extraction of carriers at the interfaces of perovskite absorber depends on the energy level mismatches between perovskite and HTL/ETL. We believe that optimization results reported here represent a critical avenue for fabricating the stable, low-cost, efficient, and eco-friendly all-inorganic Cs-Sn-Ge based lead-free perovskite devices.Keywords: hole transporting layer, lead-free, perovskite solar cell, SCAPS-1D, Sn-Ge based
Procedia PDF Downloads 15510777 Effective of Different Doses of Bacterial Insecticide Against Trogoderma Granarium (Everts)
Authors: Fatima Huda Hallak
Abstract:
The current study aimed to evaluate the activity of bacterial insecticide Vertinic against the second star larvae of Trogoderma granarium (Everts) by four treatments: A, B, C, D, at seven concentrations: 0.001, 0.01, 0.1,1,10,100,1000 PPM. The mortality rate of larvae was 100% at concentrations 10 and 100 in treatments A and B after 24 hours and after 48 hours in treatment D at 1 PPM. The efficiency of treatment A was greater as compared to treatment B at all concentrations and all exposure times. The efficiency of treatment D was greater as compared to treatment C; for example, at 0.001, 0.01, 0.1, 1 PPM, after 120 hours, the Mortality rate of larve was 6.76, 13.33, 43.33, 100% in treatment D, which it was 0.00, 0.00, 23.33, 96.67%, respectively in the treatment C.Keywords: bacterial insecticide, trogoderma granarium (everts), fourth star larvae, vertimic
Procedia PDF Downloads 5110776 Evaluation of Hybrid Viscoelastic Damper for Passive Energy Dissipation
Authors: S. S. Ghodsi, M. H. Mehrabi, Zainah Ibrahim, Meldi Suhatril
Abstract:
This research examines the performance of a hybrid passive control device for enhancing the seismic response of steel frame structures. The device design comprises a damper which employs a viscoelastic material to control both shear and axial strain. In the design, energy is dissipated through the shear strain of a two-layer system of viscoelastic pads which are located between steel plates. In addition, viscoelastic blocks have been included on either side of the main shear damper which obtains compressive strains in the viscoelastic blocks. These dampers not only dissipate energy but also increase the stiffness of the steel frame structure, and the degree to which they increase the stiffness may be controlled by the size and shape. In this research, the cyclical behavior of the damper was examined both experimentally and numerically with finite element modeling. Cyclic loading results of the finite element modeling reveal fundamental characteristics of this hybrid viscoelastic damper. The results indicate that incorporating a damper of the design can significantly improve the seismic performance of steel frame structures.Keywords: cyclic loading, energy dissipation, hybrid damper, passive control system, viscoelastic damper
Procedia PDF Downloads 20810775 Use of Fault Tree Analysis for Technical Assessment of Waste-to-Energy Plants
Authors: Ying-Chu Chen
Abstract:
Waste to energy (WTE) technology is becoming increasingly important throughout the world. There are 24 WTE plants in operation in Taiwan that might be ranked the top in density (number of MSW incinerators/area) in the world. Many problems exist in WTE plants, such as low-quality construction, leakage of pipelines, irregular feedings, and lack of maintenance. These problems should be identified and analyzed for effective implementation and efficient operation of WTE plants. This research applies a fault tree analysis (FTA) to identify failures and evaluate their effects on the operation of WTE plants from a technical point of view. Five subsystems of a WTE plant were defined, including loading system, incineration system, effluent disposal system, structural components, and control system. This research results proved that FTA is suitable for WTE evaluation and is an effective analysis tool for technical evaluation in the field of WTE technology.Keywords: delphi method, fault tree approach, municipal solid waste, waste to energy, WTE
Procedia PDF Downloads 56710774 Reconstruction of Holographic Dark Energy in Chameleon Brans-Dicke Cosmology
Authors: Surajit Chattopadhyay
Abstract:
Accelerated expansion of the current universe is well-established in the literature. Dark energy and modified gravity are two approaches to account for this accelerated expansion. In the present work, we consider scalar field models of dark energy, namely, tachyon and DBI essence in the framework of chameleon Brans-Dicke cosmology. The equation of state parameter is reconstructed and the subsequent cosmological implications are studied. We examined the stability for the obtained solutions of the crossing of the phantom divide under a quantum correction of massless conformally invariant fields and we have seen that quantum correction could be small when the phantom crossing occurs and the obtained solutions of the phantom crossing could be stable under the quantum correction. In the subsequent phase, we have established a correspondence between the NHDE model and the quintessence, the DBI-essence and the tachyon scalar field models in the framework of chameleon Brans–Dicke cosmology. We reconstruct the potentials and the dynamics for these three scalar field models we have considered. The reconstructed potentials are found to increase with the evolution of the universe and in a very late stage they are observed to decay.Keywords: dark energy, holographic principle, modified gravity, reconstruction
Procedia PDF Downloads 41210773 Event Driven Dynamic Clustering and Data Aggregation in Wireless Sensor Network
Authors: Ashok V. Sutagundar, Sunilkumar S. Manvi
Abstract:
Energy, delay and bandwidth are the prime issues of wireless sensor network (WSN). Energy usage optimization and efficient bandwidth utilization are important issues in WSN. Event triggered data aggregation facilitates such optimal tasks for event affected area in WSN. Reliable delivery of the critical information to sink node is also a major challenge of WSN. To tackle these issues, we propose an event driven dynamic clustering and data aggregation scheme for WSN that enhances the life time of the network by minimizing redundant data transmission. The proposed scheme operates as follows: (1) Whenever the event is triggered, event triggered node selects the cluster head. (2) Cluster head gathers data from sensor nodes within the cluster. (3) Cluster head node identifies and classifies the events out of the collected data using Bayesian classifier. (4) Aggregation of data is done using statistical method. (5) Cluster head discovers the paths to the sink node using residual energy, path distance and bandwidth. (6) If the aggregated data is critical, cluster head sends the aggregated data over the multipath for reliable data communication. (7) Otherwise aggregated data is transmitted towards sink node over the single path which is having the more bandwidth and residual energy. The performance of the scheme is validated for various WSN scenarios to evaluate the effectiveness of the proposed approach in terms of aggregation time, cluster formation time and energy consumed for aggregation.Keywords: wireless sensor network, dynamic clustering, data aggregation, wireless communication
Procedia PDF Downloads 45110772 Exploring Data Stewardship in Fog Networking Using Blockchain Algorithm
Authors: Ruvaitha Banu, Amaladhithyan Krishnamoorthy
Abstract:
IoT networks today solve various consumer problems, from home automation systems to aiding in driving autonomous vehicles with the exploration of multiple devices. For example, in an autonomous vehicle environment, multiple sensors are available on roads to monitor weather and road conditions and interact with each other to aid the vehicle in reaching its destination safely and timely. IoT systems are predominantly dependent on the cloud environment for data storage, and computing needs that result in latency problems. With the advent of Fog networks, some of this storage and computing is pushed to the edge/fog nodes, saving the network bandwidth and reducing the latency proportionally. Managing the data stored in these fog nodes becomes crucial as it might also store sensitive information required for a certain application. Data management in fog nodes is strenuous because Fog networks are dynamic in terms of their availability and hardware capability. It becomes more challenging when the nodes in the network also live a short span, detaching and joining frequently. When an end-user or Fog Node wants to access, read, or write data stored in another Fog Node, then a new protocol becomes necessary to access/manage the data stored in the fog devices as a conventional static way of managing the data doesn’t work in Fog Networks. The proposed solution discusses a protocol that acts by defining sensitivity levels for the data being written and read. Additionally, a distinct data distribution and replication model among the Fog nodes is established to decentralize the access mechanism. In this paper, the proposed model implements stewardship towards the data stored in the Fog node using the application of Reinforcement Learning so that access to the data is determined dynamically based on the requests.Keywords: IoT, fog networks, data stewardship, dynamic access policy
Procedia PDF Downloads 5910771 Effect of Electromagnetic Fields on Protein Extraction from Shrimp By-Products for Electrospinning Process
Authors: Guido Trautmann-Sáez, Mario Pérez-Won, Vilbett Briones, María José Bugueño, Gipsy Tabilo-Munizaga, Luis Gonzáles-Cavieres
Abstract:
Shrimp by-products are a valuable source of protein. However, traditional protein extraction methods have limitations in terms of their efficiency. Protein extraction from shrimp (Pleuroncodes monodon) industrial by-products assisted with ohmic heating (OH), microwave (MW) and pulsed electric field (PEF). It was performed by chemical method (using NaOH and HCl 2M) assisted with OH, MW and PEF in a continuous flow system (5 ml/s). Protein determination, differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR). Results indicate a 19.25% (PEF) 3.65% (OH) and 28.19% (MW) improvement in protein extraction efficiency. The most efficient method was selected for the electrospinning process and obtaining fiber.Keywords: electrospinning process, emerging technology, protein extraction, shrimp by-products
Procedia PDF Downloads 9010770 A Study of the Tactile Codification on the Philippine Banknote: Redesigning for the Blind
Authors: Ace Mari S. Simbajon, Rhaella J. Ybañez, Mae G. Nadela, Cherry E. Sagun, Nera Mae A. Puyo
Abstract:
This study determined the usability of the Philippine banknotes. An experimental design was used in the study involving twenty (n=20) randomly selected blind participants. The three aspects of usability were measured: effectiveness, efficiency, and satisfaction. It was found out that the effectiveness rate of the current Philippine Banknotes ranges from 20 percent to 35 percent which means it is not effective basing from Cauro’s threshold of average effectiveness rate which is 78 percent. Its efficiency rate is ranging from 18.06 to 26.22 seconds per denomination. The average satisfaction rate is 1.45 which means the blind are very dissatisfied. These results were used as a guide in making the proposed tactile codification using embossed dots or embossed lines. A round of simulation was conducted with the blind to assess the usability of the two proposals. Results were then statistically treated using t-test. Results show statistically significant difference between the usability of the current banknotes versus the proposed designs. Moreover, it was found out that the use of embossed dots is more effective, more efficient, and more satisfying than the embossed lines with an effectiveness rate ranging from 90 percent to 100 percent, efficiency rate ranging from 6.73 seconds to 12.99 seconds, and satisfaction rate of 3.4 which means the blind are very satisfied.Keywords: blind, Philippine banknotes, tactile codification, usability
Procedia PDF Downloads 28810769 Advanced Electric Motor Design Using Hollow Conductors for Maximizing Power, Density and Degree of Efficiency
Authors: Michael Naderer, Manuel Hartong, Raad Al-Kinani
Abstract:
The use of hollow conductors is known in electric generators of large MW scale. The application of motors of small scale between 50 and 200kW is new. The latest results in the practical application and set up of machines show that the power density can be raised significantly and the common problem of derating of the motors is prevented. Furthermore, new design dimensions can be realised as continuous current densities up to 75A/mm² are achievable. This paper shows the results of the application of hollow conductors for a motor design used for automotive traction machines comparing common coolings with hollow conductor cooling.Keywords: degree of efficiency, electric motor design, hollow conductors, power density
Procedia PDF Downloads 197