Search results for: Jones learning center
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9215

Search results for: Jones learning center

5345 Robotics Education Continuity from Diaper Age to Doctorate

Authors: Vesa Salminen, Esa Santakallio, Heikki Ruohomaa

Abstract:

Introduction: The city of Riihimäki has decided robotics on well-being, service and industry as the main focus area on their ecosystem strategy. Robotics is going to be an important part of the everyday life of citizens and present in the working day of the average citizen and employee in the future. For that reason, also education system and education programs on all levels of education from diaper age to doctorate have been directed to fulfill this ecosystem strategy. Goal: The objective of this activity has been to develop education continuity from diaper age to doctorate. The main target of the development activity is to create a unique robotics study entity that enables ongoing robotics studies from preprimary education to university. The aim is also to attract students internationally and supply a skilled workforce to the private sector, capable of the challenges of the future. Methodology: Education instances (high school, second grade, Universities on all levels) in a large area of Tavastia Province have gradually directed their education programs to support this goal. On the other hand, applied research projects have been created to make proof of concept- phases on areal real environment field labs to test technology opportunities and digitalization to change business processes by applying robotic solutions. Customer-oriented applied research projects offer for students in robotics education learning environments to learn new knowledge and content. That is also a learning environment for education programs to adapt and co-evolution. New content and problem-based learning are used in future education modules. Major findings: Joint robotics education entity is being developed in cooperation with the city of Riihimäki (primary education), Syria Education (secondary education) and HAMK (bachelor and master education). The education modules have been developed to enable smooth transitioning from one institute to another. This article is introduced a case study of the change of education of wellbeing education because of digitalization and robotics. Riihimäki's Elderly citizen's service house, Riihikoti, has been working as a field lab for proof-of-concept phases on testing technology opportunities. According to successful case studies also education programs on various levels of education have been changing. Riihikoti has been developed as a physical learning environment for home care and robotics, investigating and developing a variety of digital devices and service opportunities and experimenting and learn the use of equipment. The environment enables the co-development of digital service capabilities in the authentic environment for all interested groups in transdisciplinary cooperation.

Keywords: ecosystem strategy, digitalization and robotics, education continuity, learning environment, transdisciplinary co-operation

Procedia PDF Downloads 176
5344 Professional Development in EFL Classroom: Motivation and Reflection

Authors: Iman Jabbar

Abstract:

Within the scope of professionalism and in order to compete with the modern world, teachers, are expected to develop their teaching skills and activities in addition to their professional knowledge. At the college level, the teacher should be able to face classroom challenges through his engagement with the learning situation to understand the students and their needs. In our field of TESOL, the role of the English teacher is no longer restricted to teaching English texts, but rather he should endeavor to enhance the students’ skills such as communication and critical analysis. Within the literature of professionalism, there are certain strategies and tools that an English teacher should adopt to develop his competence and performance. Reflective practice, which is an exploratory process, is one of these strategies. Another strategy contributing to classroom development is motivation. It is crucial in students’ learning as it affects the quality of learning English in the classroom in addition to determining success or failure as well as language achievement. This is a qualitative study grounded on interpretive perspectives of teachers and students regarding the process of professional development. This study aims at (a) understanding how teachers at the college level conceptualize reflective practice and motivation inside EFL classroom, and (b) exploring the methods and strategies that they implement to practice reflection and motivation. This study and is based on two questions: 1. How do EFL teachers perceive and view reflection and motivation in relation to their teaching and professional development? 2. How can reflective practice and motivation be developed into practical strategies and actions in EFL teachers’ professional context? The study is organized into two parts, theoretical and practical. The theoretical part reviews the literature on the concept of reflective practice and motivation in relation to professional development through providing certain definitions, theoretical models, and strategies. The practical part draws on the theoretical one, however; it is the core of the study since it deals with two issues. It involves the research design, methodology, and methods of data collection, sampling, and data analysis. It ends up with an overall discussion of findings and the researcher's reflections on the investigated topic. In terms of significance, the study is intended to contribute to the field of TESOL at the academic level through the selection of the topic and investigating it from theoretical and practical perspectives. Professional development is the path that leads to enhancing the quality of teaching English as a foreign or second language in a way that suits the modern trends of globalization and advanced technology.

Keywords: professional development, motivation, reflection, learning

Procedia PDF Downloads 451
5343 Familiarity with Nursing and Description of Nurses Duties

Authors: Narges Solaymani

Abstract:

medical training of patients. Nursing is a very important profession in the societies of the world. Although in the past, all caregivers of the sick and disabled were called nurses, nowadays, a nurse is a person who has a university education in this field. There are nurses in bachelor's, master's, and doctoral degrees in nursing. New courses have been launched in the master's degree based on duty-oriented nurses. A nurse cannot have an independent treatment center but is a member of the treatment team in established treatment centers such as hospitals, clinics, or offices. Nurses can establish counseling centers and provide nursing services at home. According to the standards, the number of nurses should be three times the number of doctors or twice the number of hospital beds, or there should be three nurses for every thousand people. Also, international standards show that in the internal and surgical department, every 4 to 6 patients should have a nurse.

Keywords: Nurse, Intensive Care, CPR, Bandage

Procedia PDF Downloads 75
5342 Moulding Photovoice to Community: Supporting Aboriginal People Experiencing Homelessness to Share Their Stories through Photography

Authors: Jocelyn Jones, Louise Southalan, Lindey Andrews, Mandy Wilson, Emma Vieira, Jackie Oakley, Dorothy Bagshaw, Alice V. Brown, Patrick Egan, Duc Dau, Lucy Spanswick

Abstract:

Working with people experiencing homelessness requires careful use of methods that support them to comfortably share their experiences. This is particularly important for Aboriginal and Torres Strait Islander peoples, the traditional owners of Australia, who have experienced intergenerational and compounding trauma since colonisation. Aboriginal cultures regularly experience research fatigue and distrust in research’s potential for impact. They often view research as an extraction -a process of taking the knowledge that empowers the research team and its institution, rather than benefiting those being researched. Through a partnership between an Aboriginal Community Controlled Organisation and a university research institute, we conducted a community-driven research project with 70-90 Aboriginal people experiencing homelessness in Perth, Western Australia. The project aimed to listen to and advocate for the voices of those who are experiencing homelessness, guided by the Aboriginal community. In consultation with Aboriginal Elders, we selected methods that are considered culturally safe, including those who would prefer to express their experiences creatively. This led us to run a series of Photovoice workshops -an established method that supports people to share their experiences through photography. This method treats participants as experts and is regularly used with marginalised groups across the world. We detail our experience and lessons in using Photovoice with Aboriginal community members experiencing homelessness. This includes the ways the method needed to be moulded to community needs and driven by their individual choices, such as being dynamic in the length of time participants would spend with us, how we would introduce the method to them, and providing support workers for participants when taking photos. We also discuss lessons in establishing and retaining engagement and how the method was successful in supporting participants to comfortably share their stories. Finally, we outline the insights into homelessness that the method offered, including highlighting the difficulty experienced by participants in transitioning from homelessness to accommodation and the diversity of hopes people who have experienced homelessness have for the future.

Keywords: Aboriginal and Torres Strait Islander peoples, photovoice, homelessness, community-led research

Procedia PDF Downloads 100
5341 Cloud Effect on Power Generation of Grid-Connected Small PV Systems

Authors: Yehya Abdellatif, Ahmed Alsalaymeh, Iyad Muslih, Ali Alshduifat

Abstract:

Photovoltaic (PV) power generation systems, mainly small scale, are rapidly being deployed in Jordan. The impact of these systems on the grid has not been studied or analyzed. These systems can cause many technical problems such as reverse power flows and voltage rises in distribution feeders, and real and reactive power transients that affect the operation of the transmission system. To fully understand and address these problems, extensive research, simulation, and case studies are required. To this end, this paper studies the cloud shadow effect on the power generation of a ground mounted PV system installed at the test field of the Renewable Energy Center at the Applied Science University.

Keywords: photovoltaic, cloud effect, MPPT, power transients

Procedia PDF Downloads 599
5340 Implications of Optimisation Algorithm on the Forecast Performance of Artificial Neural Network for Streamflow Modelling

Authors: Martins Y. Otache, John J. Musa, Abayomi I. Kuti, Mustapha Mohammed

Abstract:

The performance of an artificial neural network (ANN) is contingent on a host of factors, for instance, the network optimisation scheme. In view of this, the study examined the general implications of the ANN training optimisation algorithm on its forecast performance. To this end, the Bayesian regularisation (Br), Levenberg-Marquardt (LM), and the adaptive learning gradient descent: GDM (with momentum) algorithms were employed under different ANN structural configurations: (1) single-hidden layer, and (2) double-hidden layer feedforward back propagation network. Results obtained revealed generally that the gradient descent with momentum (GDM) optimisation algorithm, with its adaptive learning capability, used a relatively shorter time in both training and validation phases as compared to the Levenberg- Marquardt (LM) and Bayesian Regularisation (Br) algorithms though learning may not be consummated; i.e., in all instances considering also the prediction of extreme flow conditions for 1-day and 5-day ahead, respectively especially using the ANN model. In specific statistical terms on the average, model performance efficiency using the coefficient of efficiency (CE) statistic were Br: 98%, 94%; LM: 98 %, 95 %, and GDM: 96 %, 96% respectively for training and validation phases. However, on the basis of relative error distribution statistics (MAE, MAPE, and MSRE), GDM performed better than the others overall. Based on the findings, it is imperative to state that the adoption of ANN for real-time forecasting should employ training algorithms that do not have computational overhead like the case of LM that requires the computation of the Hessian matrix, protracted time, and sensitivity to initial conditions; to this end, Br and other forms of the gradient descent with momentum should be adopted considering overall time expenditure and quality of the forecast as well as mitigation of network overfitting. On the whole, it is recommended that evaluation should consider implications of (i) data quality and quantity and (ii) transfer functions on the overall network forecast performance.

Keywords: streamflow, neural network, optimisation, algorithm

Procedia PDF Downloads 152
5339 Creation and Evaluation of an Academic Blog of Tools for the Self-Correction of Written Production in English

Authors: Brady, Imelda Katherine, Da Cunha Fanego, Iria

Abstract:

Today's university students are considered digital natives and the use of Information Technologies (ITs) forms a large part of their study and learning. In the context of language studies, applications that help with revisions of grammar or vocabulary are particularly useful, especially if they are open access. There are studies that show the effectiveness of this type of application in the learning of English as a foreign language and that using IT can help learners become more autonomous in foreign language acquisition, given that these applications can enhance awareness of the learning process; this means that learners are less dependent on the teacher for corrective feedback. We also propose that the exploitation of these technologies also enhances the work of the language instructor wishing to incorporate IT into his/her practice. In this context, the aim of this paper is to present the creation of a repository of tools that provide support in the writing and correction of texts in English and the assessment of their usefulness on behalf of university students enrolled in the English Studies Degree. The project seeks to encourage the development of autonomous learning through the acquisition of skills linked to the self-correction of written work in English. To comply with the above, our methodology follows five phases. First of all, a selection of the main open-access online applications available for the correction of written texts in English is made: AutoCrit, Hemingway, Grammarly, LanguageTool, OutWrite, PaperRater, ProWritingAid, Reverso, Slick Write, Spell Check Plus and Virtual Writing Tutor. Secondly, the functionalities of each of these tools (spelling, grammar, style correction, etc.) are analyzed. Thirdly, explanatory materials (texts and video tutorials) are prepared on each tool. Fourth, these materials are uploaded into a repository of our university in the form of an institutional blog, which is made available to students and the general public. Finally, a survey was designed to collect students’ feedback. The survey aimed to analyse the usefulness of the blog and the quality of the explanatory materials as well as the degree of usefulness that students assigned to each of the tools offered. In this paper, we present the results of the analysis of data received from 33 students in the 1st semester of the 21-22 academic year. One result we highlight in our paper is that the students have rated this resource very highly, in addition to offering very valuable information on the perceived usefulness of the applications provided for them to review. Our work, carried out within the framework of a teaching innovation project funded by our university, emphasizes that teachers need to design methodological strategies that help their students improve the quality of their productions written in English and, by extension, to improve their linguistic competence.

Keywords: academic blog, open access tools, online self-correction, written production in English, university learning

Procedia PDF Downloads 102
5338 The Importance of Elders in Guiding Research and Findings for Aboriginal People Experiencing Homelessness

Authors: Alice V. Brown, Patrick Egan, Dorothy Bagshaw, Jackie Oakley, Emma Vieira, Louise Southalan, Duc Dau, Lucy Spanswick, Lindey Andrews, Mandy Wilson, Jocelyn Jones

Abstract:

Western Australia has recently adopted a 10-year plan to end homelessness across its State, with sections of the plan focused particularly on the Aboriginal and Torres Strait Islander population. In 2022, we engaged with 70-90 Aboriginal people experiencing homelessness in Perth, Western Australia, through qualitative interviews and creative methods, listening to their experiences of homelessness and their views on how services, State plans, and policies could better support them. This research was driven by the Aboriginal community through a Community Ownership Group of 16 Aboriginal Elders, elected by Elders’ groups, from across the Perth metropolitan area. The Community Ownership Group met every six weeks across the 15-month project timeline to guide the research team, endorse methods chosen, and provide richer context to research findings to ensure they adequately represent the experiences of Aboriginal people. These meetings were audio-recorded when possible and documented through meeting notes, verbal and visual minutes, and film, providing insights into homelessness from the perspective of Aboriginal Elders. In this paper, we compare the views of those experiencing homelessness with the views of the Aboriginal Elders -many of whom have experienced homelessness firsthand- and literature regarding how those experiencing homelessness can be better supported. We detail the ‘survival-directed thinking’ of those we engaged with who was in the throes of homelessness, leading them to focus more on immediate solutions such as food and housing. We then compare these narratives to Elders’ views that have been more regularly focused on connection to culture and long-term plans for healing homelessness, alongside immediate outreach -views also reflected in the literature. Through these comparisons, we highlight the importance of engaging both with those currently experiencing homelessness as well as with Aboriginal Elders as important cultural caretakers and authorities. We demonstrate how these varied voices uncover both long and short-term perspectives on how homelessness can be better managed in policy and service provision. We also highlight the potential role Aboriginal Elders can play in supporting the Aboriginal homeless community and their transition into housing.

Keywords: Aboriginal and Torres strait islander peoples, aboriginal elders, homelessness, community-led research

Procedia PDF Downloads 108
5337 Chinese Sentence Level Lip Recognition

Authors: Peng Wang, Tigang Jiang

Abstract:

The computer based lip reading method of different languages cannot be universal. At present, for the research of Chinese lip reading, whether the work on data sets or recognition algorithms, is far from mature. In this paper, we study the Chinese lipreading method based on machine learning, and propose a Chinese Sentence-level lip-reading network (CNLipNet) model which consists of spatio-temporal convolutional neural network(CNN), recurrent neural network(RNN) and Connectionist Temporal Classification (CTC) loss function. This model can map variable-length sequence of video frames to Chinese Pinyin sequence and is trained end-to-end. More over, We create CNLRS, a Chinese Lipreading Dataset, which contains 5948 samples and can be shared through github. The evaluation of CNLipNet on this dataset yielded a 41% word correct rate and a 70.6% character correct rate. This evaluation result is far superior to the professional human lip readers, indicating that CNLipNet performs well in lipreading.

Keywords: lipreading, machine learning, spatio-temporal, convolutional neural network, recurrent neural network

Procedia PDF Downloads 128
5336 Investigation of Riders' Path on Horizontal Curves

Authors: Lemonakis Panagiotis, Eliou Nikos, Karakasidis Theodoros, Botzoris George

Abstract:

It is well known that trajectory along with speed are two of the most important contributing factors in road accidents. Trajectory is meant as the "line“, usually different from the center-line that a driver traverses through horizontal curves which depends on the characteristics of the road environment (especially the curvature), the vehicle and the driver himself. Drivers and especially riders, tend to broaden their paths in order to succeed greater path radiuses and hence, reduce the applied centrifugal force enhancing safety. The objective of the present research is to investigate riders’ path on horizontal curves. Within the context of the research, field measurements were conducted on a rural two lane highway, with the participation of eight riders and the use of an instrumented motorcycle. The research has shown that the trajectory of the riders is correlated to the radius and the length of the horizontal curve as well.

Keywords: trajectory, path, riders, horizontal curves

Procedia PDF Downloads 341
5335 Impact of Reclamation on the Water Exchange in Bohai Bay

Authors: Luyao Liu, Dekui Yuan, Xu Li

Abstract:

As one of the most important bays of China, the water exchange capacity of Bohai Bay can influence the economic development and urbanization of surrounding cities. However, the rapid reclamation has influenced the weak water exchange capacity of this semi-enclosed bay in recent years. This paper sets two hydrodynamic models of Bohai Bay with two shorelines before and after reclamation. The mean value and distribution of Turn-over Time, the distribution of residual current, and the feature of the tracer path are compared. After comparison, it is found that Bohai Bay keeps these characteristics; the spending time of water exchange in the northern is longer than southern, and inshore is longer than offshore. However, the mean water exchange time becomes longer after reclamation. In addition, the material spreading is blocked because of the inwardly extending shorelines, and the direction changed from along the shoreline to towards the center after reclamation.

Keywords: Bohai Bay, water exchange, reclamation, turn-over time

Procedia PDF Downloads 147
5334 Investigation of Different Machine Learning Algorithms in Large-Scale Land Cover Mapping within the Google Earth Engine

Authors: Amin Naboureh, Ainong Li, Jinhu Bian, Guangbin Lei, Hamid Ebrahimy

Abstract:

Large-scale land cover mapping has become a new challenge in land change and remote sensing field because of involving a big volume of data. Moreover, selecting the right classification method, especially when there are different types of landscapes in the study area is quite difficult. This paper is an attempt to compare the performance of different machine learning (ML) algorithms for generating a land cover map of the China-Central Asia–West Asia Corridor that is considered as one of the main parts of the Belt and Road Initiative project (BRI). The cloud-based Google Earth Engine (GEE) platform was used for generating a land cover map for the study area from Landsat-8 images (2017) by applying three frequently used ML algorithms including random forest (RF), support vector machine (SVM), and artificial neural network (ANN). The selected ML algorithms (RF, SVM, and ANN) were trained and tested using reference data obtained from MODIS yearly land cover product and very high-resolution satellite images. The finding of the study illustrated that among three frequently used ML algorithms, RF with 91% overall accuracy had the best result in producing a land cover map for the China-Central Asia–West Asia Corridor whereas ANN showed the worst result with 85% overall accuracy. The great performance of the GEE in applying different ML algorithms and handling huge volume of remotely sensed data in the present study showed that it could also help the researchers to generate reliable long-term land cover change maps. The finding of this research has great importance for decision-makers and BRI’s authorities in strategic land use planning.

Keywords: land cover, google earth engine, machine learning, remote sensing

Procedia PDF Downloads 113
5333 AI-Based Information System for Hygiene and Safety Management of Shared Kitchens

Authors: Jongtae Rhee, Sangkwon Han, Seungbin Ji, Junhyeong Park, Byeonghun Kim, Taekyung Kim, Byeonghyeon Jeon, Jiwoo Yang

Abstract:

The shared kitchen is a concept that transfers the value of the sharing economy to the kitchen. It is a type of kitchen equipped with cooking facilities that allows multiple companies or chefs to share time and space and use it jointly. These shared kitchens provide economic benefits and convenience, such as reduced investment costs and rent, but also increase the risk of safety management, such as cross-contamination of food ingredients. Therefore, to manage the safety of food ingredients and finished products in a shared kitchen where several entities jointly use the kitchen and handle various types of food ingredients, it is critical to manage followings: the freshness of food ingredients, user hygiene and safety and cross-contamination of cooking equipment and facilities. In this study, it propose a machine learning-based system for hygiene safety and cross-contamination management, which are highly difficult to manage. User clothing management and user access management, which are most relevant to the hygiene and safety of shared kitchens, are solved through machine learning-based methodology, and cutting board usage management, which is most relevant to cross-contamination management, is implemented as an integrated safety management system based on artificial intelligence. First, to prevent cross-contamination of food ingredients, we use images collected through a real-time camera to determine whether the food ingredients match a given cutting board based on a real-time object detection model, YOLO v7. To manage the hygiene of user clothing, we use a camera-based facial recognition model to recognize the user, and real-time object detection model to determine whether a sanitary hat and mask are worn. In addition, to manage access for users qualified to enter the shared kitchen, we utilize machine learning based signature recognition module. By comparing the pairwise distance between the contract signature and the signature at the time of entrance to the shared kitchen, access permission is determined through a pre-trained signature verification model. These machine learning-based safety management tasks are integrated into a single information system, and each result is managed in an integrated database. Through this, users are warned of safety dangers through the tablet PC installed in the shared kitchen, and managers can track the cause of the sanitary and safety accidents. As a result of system integration analysis, real-time safety management services can be continuously provided by artificial intelligence, and machine learning-based methodologies are used for integrated safety management of shared kitchens that allows dynamic contracts among various users. By solving this problem, we were able to secure the feasibility and safety of the shared kitchen business.

Keywords: artificial intelligence, food safety, information system, safety management, shared kitchen

Procedia PDF Downloads 69
5332 The Academic Achievement of Writing via Project-Based Learning

Authors: Duangkamol Thitivesa

Abstract:

This paper focuses on the use of project work as a pretext for applying the conventions of writing, or the correctness of mechanics, usage, and sentence formation, in a content-based class in a Rajabhat University. Its aim was to explore to what extent the student teachers’ academic achievement of the basic writing features against the 70% attainment target after the use of project is. The organization of work around an agreed theme in which the students reproduce language provided by texts and instructors is expected to enhance students’ correct writing conventions. The sample of the study comprised of 38 fourth-year English major students. The data was collected by means of achievement test and student writing works. The scores in the summative achievement test were analyzed by mean score, standard deviation, and percentage. It was found that the student teachers do more achieve of practicing mechanics and usage, and less in sentence formation. The students benefited from the exposure to texts during conducting the project; however, their automaticity of how and when to form phrases and clauses into simple/complex sentences had room for improvement.

Keywords: project-based learning, project work, writing conventions, academic achievement

Procedia PDF Downloads 333
5331 The Intercultural Communicative Competence (ICC) Perspective in the Film Classroom

Authors: Yan Zhang

Abstract:

With the development of commercial movies, more and more instructors are drawn to adapt film pedagogy to teach history and culture. By challenging traditional standards of classroom culture, instruction through film represents an intersection of modernity and adaptability which is no longer optional but essential to maintaining educational accessibility. First, this presentation describes special features of the film that can be used in the classroom and help students acquire intercultural communicative competence (ICC) and achieve the learning goal. Second, the author brings forward the 5 A STAIRCASE model (Acknowledge-Adjust-Acculturate-Act-Assess) to explore how students acquire international communicative competence. Third, this article presents the intersections between new digital environments and classroom practice, such as how films can contribute to combining classical and contemporary Chinese cultures seamlessly and how film pedagogy can be an effective way to get students to engage in deeper critical thinking by exposing them to visuals, music, language, and styling which do not exist in traditional learning formats. Last, the student’s final video project will be exemplified at the end, demonstrating how to engage students in the analysis and experience of history and culture.

Keywords: intercultural education, curriculum, media, history

Procedia PDF Downloads 74
5330 Hyper Parameter Optimization of Deep Convolutional Neural Networks for Pavement Distress Classification

Authors: Oumaima Khlifati, Khadija Baba

Abstract:

Pavement distress is the main factor responsible for the deterioration of road structure durability, damage vehicles, and driver comfort. Transportation agencies spend a high proportion of their funds on pavement monitoring and maintenance. The auscultation of pavement distress was based on the manual survey, which was extremely time consuming, labor intensive, and required domain expertise. Therefore, the automatic distress detection is needed to reduce the cost of manual inspection and avoid more serious damage by implementing the appropriate remediation actions at the right time. Inspired by recent deep learning applications, this paper proposes an algorithm for automatic road distress detection and classification using on the Deep Convolutional Neural Network (DCNN). In this study, the types of pavement distress are classified as transverse or longitudinal cracking, alligator, pothole, and intact pavement. The dataset used in this work is composed of public asphalt pavement images. In order to learn the structure of the different type of distress, the DCNN models are trained and tested as a multi-label classification task. In addition, to get the highest accuracy for our model, we adjust the structural optimization hyper parameters such as the number of convolutions and max pooling, filers, size of filters, loss functions, activation functions, and optimizer and fine-tuning hyper parameters that conclude batch size and learning rate. The optimization of the model is executed by checking all feasible combinations and selecting the best performing one. The model, after being optimized, performance metrics is calculated, which describe the training and validation accuracies, precision, recall, and F1 score.

Keywords: distress pavement, hyperparameters, automatic classification, deep learning

Procedia PDF Downloads 93
5329 Evaluation of Disease Risk Variables in the Control of Bovine Tuberculosis

Authors: Berrin Şentürk

Abstract:

In this study, due to the recurrence of bovine tuberculosis, in the same areas, the risk factors for the disease were determined and evaluated at the local level. This study was carried out in 32 farms where the disease was detected in the district and center of Samsun province in 2014. Predetermined risk factors, such as farm, environmental and economic risks, were investigated with the survey method. It was predetermined that risks in the three groups are similar to the risk variables of the disease on the global scale. These risk factors that increase the susceptibility of the infection must be understood by the herd owners. The risk-based contagious disease management system approach should be applied for bovine tuberculosis by farmers, animal health professionals and public and private sector decision makers.

Keywords: bovine tuberculosis, disease management, control, outbreak, risk analysis

Procedia PDF Downloads 402
5328 Material Response Characterisation of a PolyJet 3D Printed Human Infant Skull

Authors: G. A. Khalid, R. Prabhu, W. Whittington, M. D. Jones

Abstract:

To establish a causal relationship of infant head injury consequences, this present study addresses the necessary challenges of cranial geometry and the physical response complexities of the paediatric head tissues. Herein, we describe a new approach to characterising and understanding infant head impact mechanics by developing printed head models, using high resolution clinical postmortem imaging, to provide the most complete anatomical representation currently available, and biological material response data-matched polypropylene polymers, to replicate the relative mechanical response properties of immature cranial bone, sutures and fontanelles. Additive manufacturing technology was applied to creating a physical polymeric model of a newborn infant skull, using PolyJet printed materials. Infant skull materials responses, were matched by a response characterisation study, utilising uniaxial tensile testing (1 mm min-1 loading rate), to determine: the stiffness, ultimate tensile strength and maximum strain of rigid and rubber additively manufactured acrylates. The results from the mechanical experiments confirm that the polymeric materials RGD835 Vero White Plus (White), representing the frontal and parietal bones; RGD8510- DM Rigid Light Grey25 (Grey), representing the occipital bone; and FLX9870-DM (Black) representing the suture and fontanelles, were found to show a close stiffness -correlation (E) at ambient temperatures. A 3D physical model of infant head was subsequently printed from the matched materials and subsequently validated against results obtained from a series of Post Mortem Human Surrogate (PMHS) tests. A close correlation was demonstrated between the model impact tests and the PMHS. This study, therefore, represents a key step towards applying printed physical models to understanding head injury biomechanics and is useful in the efforts to predict and mitigate head injury consequences in infants, whether accidental or by abuse.

Keywords: infant head trauma, infant skull, material response, post mortem human subjects, polyJet printing

Procedia PDF Downloads 140
5327 Deep Learning in Chest Computed Tomography to Differentiate COVID-19 from Influenza

Authors: Hongmei Wang, Ziyun Xiang, Ying liu, Li Yu, Dongsheng Yue

Abstract:

Intro: The COVID-19 (Corona Virus Disease 2019) has greatly changed the global economic, political and financial ecology. The mutation of the coronavirus in the UK in December 2020 has brought new panic to the world. Deep learning was performed on Chest Computed tomography (CT) of COVID-19 and Influenza and describes their characteristics. The predominant features of COVID-19 pneumonia was ground-glass opacification, followed by consolidation. Lesion density: most lesions appear as ground-glass shadows, and some lesions coexist with solid lesions. Lesion distribution: the focus is mainly on the dorsal side of the periphery of the lung, with the lower lobe of the lungs as the focus, and it is often close to the pleura. Other features it has are grid-like shadows in ground glass lesions, thickening signs of diseased vessels, air bronchi signs and halo signs. The severe disease involves whole bilateral lungs, showing white lung signs, air bronchograms can be seen, and there can be a small amount of pleural effusion in the bilateral chest cavity. At the same time, this year's flu season could be near its peak after surging throughout the United States for months. Chest CT for Influenza infection is characterized by focal ground glass shadows in the lungs, with or without patchy consolidation, and bronchiole air bronchograms are visible in the concentration. There are patchy ground-glass shadows, consolidation, air bronchus signs, mosaic lung perfusion, etc. The lesions are mostly fused, which is prominent near the hilar and two lungs. Grid-like shadows and small patchy ground-glass shadows are visible. Deep neural networks have great potential in image analysis and diagnosis that traditional machine learning algorithms do not. Method: Aiming at the two major infectious diseases COVID-19 and influenza, which are currently circulating in the world, the chest CT of patients with two infectious diseases is classified and diagnosed using deep learning algorithms. The residual network is proposed to solve the problem of network degradation when there are too many hidden layers in a deep neural network (DNN). The proposed deep residual system (ResNet) is a milestone in the history of the Convolutional neural network (CNN) images, which solves the problem of difficult training of deep CNN models. Many visual tasks can get excellent results through fine-tuning ResNet. The pre-trained convolutional neural network ResNet is introduced as a feature extractor, eliminating the need to design complex models and time-consuming training. Fastai is based on Pytorch, packaging best practices for in-depth learning strategies, and finding the best way to handle diagnoses issues. Based on the one-cycle approach of the Fastai algorithm, the classification diagnosis of lung CT for two infectious diseases is realized, and a higher recognition rate is obtained. Results: A deep learning model was developed to efficiently identify the differences between COVID-19 and influenza using chest CT.

Keywords: COVID-19, Fastai, influenza, transfer network

Procedia PDF Downloads 142
5326 Study of Ion Density Distribution and Sheath Thickness in Warm Electronegative Plasma

Authors: Rajat Dhawan, Hitendra K. Malik

Abstract:

Electronegative plasmas comprising electrons, positive ions, and negative ions are advantageous for their expanding applications in industries. In plasma cleaning, plasma etching, and plasma deposition process, electronegative plasmas are preferred because of relatively less potential developed on the surface of the material under investigation. Also, the presence of negative ions avoid the irregularity in etching shapes and also enhance the material working during the fabrication process. The interaction of metallic conducting surface with plasma becomes mandatory to understand these applications. A metallic conducting probe immersed in a plasma results in the formation of a thin layer of charged species around the probe called as a sheath. The density of the ions embedded on the surface of the material and the sheath thickness are the important parameters for the surface-plasma interaction. Sheath thickness will give rise to the information of affected plasma region due to conducting surface/probe. The knowledge of the density of ions in the sheath region is advantageous in plasma nitriding, and their temperature is equally important as it strongly influences the thickness of the modified layer during surface plasma interaction. In the present work, we considered a negatively biased metallic probe immersed in a warm electronegative plasma. For this system, we adopted the continuity equation and momentum transfer equation for both the positive and negative ions, whereas electrons are described by Boltzmann distribution. Finally, we use the Poisson’s equation. Here, we assumed the spherical geometry for small probe radius. Poisson’s equation reveals the behaviour of potential surrounding a conducting metallic probe along with the use of the continuity and momentum transfer equations, with the help of proper boundary conditions. In turn, it gives rise to the information about the density profile of charged species and most importantly the thickness of the sheath. By keeping in mind, the well-known Bohm-Sheath criterion, all calculations are done. We found that positive ion density decreases with an increase in positive ion temperature, whereas it increases with the higher temperature of the negative ions. Positive ion density decreases as we move away from the center of the probe and is found to show a discontinuity at a particular distance from the center of the probe. The distance where discontinuity occurs is designated as sheath edge, i.e., the point where sheath ends. These results are beneficial for industrial applications, as the density of ions embedded on material surface is strongly affected by the temperature of plasma species. It has a drastic influence on the surface properties, i.e., the hardness, corrosion resistance, etc. of the materials.

Keywords: electronegative plasmas, plasma surface interaction positive ion density, sheath thickness

Procedia PDF Downloads 133
5325 Artificial Intelligence for Cloud Computing

Authors: Sandesh Achar

Abstract:

Artificial intelligence is being increasingly incorporated into many applications across various sectors such as health, education, security, and agriculture. Recently, there has been rapid development in cloud computing technology, resulting in AI’s implementation into cloud computing to enhance and optimize the technology service rendered. The deployment of AI in cloud-based applications has brought about autonomous computing, whereby systems achieve stated results without human intervention. Despite the amount of research into autonomous computing, work incorporating AI/ML into cloud computing to enhance its performance and resource allocation remain a fundamental challenge. This paper highlights different manifestations, roles, trends, and challenges related to AI-based cloud computing models. This work reviews and highlights excellent investigations and progress in the domain. Future directions are suggested for leveraging AI/ML in next-generation computing for emerging computing paradigms such as cloud environments. Adopting AI-based algorithms and techniques to increase operational efficiency, cost savings, automation, reducing energy consumption and solving complex cloud computing issues are the major findings outlined in this paper.

Keywords: artificial intelligence, cloud computing, deep learning, machine learning, internet of things

Procedia PDF Downloads 109
5324 Train-The-Trainer in Neonatal Resuscitation in Rural Uganda: A Model for Sustainability and the Barriers Faced

Authors: Emilia K. H. Danielsson-Waters, Malaz Elsaddig, Kevin Jones

Abstract:

Unfortunately, it is well known that neonatal deaths are a common and potentially preventable occurrence across the world. Neonatal resuscitation is a simple and inexpensive intervention that can effectively reduce this rate, and can be taught and implemented globally. This project is a follow-on from one in 2012, which found that neonatal resuscitation simulation was valuable for education, but would be better improved by being delivered by local staff. Methods: This study involved auditing the neonatal admission and death records within a rural Ugandan hospital, alongside implementing a Train-The-Trainer teaching scheme to teach Neonatal Resuscitation. One local doctor was trained for simulating neonatal resuscitation, whom subsequently taught an additional 14 staff members in one-afternoon session. Participants were asked to complete questionnaires to assess their knowledge and confidence pre- and post-simulation, and a survey to identify barriers and drivers to simulation. Results: The results found that the neonatal mortality rate in this hospital was 25% between July 2016- July 2017, with birth asphyxia, prematurity and sepsis being the most common causes. Barriers to simulation that were identified predominantly included a lack of time, facilities and opportunity, yet all members stated simulation was beneficial for improving skills and confidence. The simulation session received incredibly positive qualitative feedback, and also a 0.58-point increase in knowledge (p=0.197) and 0.73-point increase in confidence (0.079). Conclusion: This research shows that it is possible to create a teaching scheme in a rural hospital, however, many barriers are in place for its sustainability, and a larger sample size with a more sensitive scale is required to achieve statistical significance. This is undeniably important, because teaching neonatal resuscitation can have a direct impact on neonatal mortality. Subsequently, recommendations include that efforts should be put in place to create a sustainable training scheme, for example, by employing a resuscitation officer. Moreover, neonatal resuscitation teaching should be conducted more frequently in hospitals, and conducted in a wider geographical context, including within the community, in order to achieve its full effect.

Keywords: neonatal resuscitation, sustainable medical education, train-the-trainer, Uganda

Procedia PDF Downloads 149
5323 Characteristics of Middle Grade Students' Solution Strategies While Reasoning the Correctness of the Statements Related to Numbers

Authors: Ayşegül Çabuk, Mine Işıksal

Abstract:

Mathematics is a sense-making activity so that it requires meaningful learning. Hence based on this idea, meaningful mathematical connections are necessary to learn mathematics. At that point, the major question has become that which educational methods can provide opportunities to provide mathematical connections and to understand mathematics. The amalgam of reasoning and proof can be the one of the methods that creates opportunities to learn mathematics in a meaningful way. However, even if reasoning and proof should be included from prekindergarten to grade 12, studies in literature generally include secondary school students and pre-service mathematics teachers. With the light of the idea that the amalgam of reasoning and proof has significant effect on middle school students' mathematical learning, this study aims to investigate middle grade students' tendencies while reasoning the correctness of statements related to numbers. The sample included 272 middle grade students, specifically 69 of them were sixth grade students (25.4%), 101 of them were seventh grade students (37.1%) and 102 of them were eighth grade students (37.5%). Data was gathered through an achievement test including 2 essay types of problems about algebra. The answers of two items were analyzed both quantitatively and qualitatively in terms of students' solutions strategies while reasoning the correctness of the statements. Similar on the findings in the literature, most of the students, in all grade levels, used numerical examples to judge the statements. Moreover the results also showed that the majority of these students appear to believe that providing one or more selected examples is sufficient to show the correctness of the statement. Hence based on the findings of the study, even students in earlier ages have proving and reasoning abilities their reasoning's generally based on the empirical evidences. Therefore, it is suggested that examples and example-based reasoning can be a fundamental role on to generate systematical reasoning and proof insight in earlier ages.

Keywords: reasoning, mathematics learning, middle grade students

Procedia PDF Downloads 423
5322 The Output Fallacy: An Investigation into Input, Noticing, and Learners’ Mechanisms

Authors: Samantha Rix

Abstract:

The purpose of this research paper is to investigate the cognitive processing of learners who receive input but produce very little or no output, and who, when they do produce output, exhibit a similar language proficiency as do those learners who produced output more regularly in the language classroom. Previous studies have investigated the benefits of output (with somewhat differing results); therefore, the presentation will begin with an investigation of what may underlie gains in proficiency without output. Consequently, a pilot study was designed and conducted to gain insight into the cognitive processing of low-output language learners looking, for example, at quantity and quality of noticing. This will be carried out within the paradigm of action classroom research, observing and interviewing low-output language learners in an intensive English program at a small Midwest university. The results of the pilot study indicated that autonomy in language learning, specifically utilizing strategies such self-monitoring, self-talk, and thinking 'out-loud', were crucial in the development of language proficiency for academic-level performance. The presentation concludes with an examination of pedagogical implication for classroom use in order to aide students in their language development.

Keywords: cognitive processing, language learners, language proficiency, learning strategies

Procedia PDF Downloads 475
5321 Creating Bridges: The Importance of Intergenerational Experiences in the Educational Context

Authors: A. Eiguren-Munitis, N. Berasategi, J. M. Correa

Abstract:

Changes in family structures, immigration, economic crisis, among others, hinder the connection between different generations. This situation gives rise to a greater lack of social protection of the groups in vulnerable situations, such as the elderly and children. There is a growing need to search for shared spaces where different generations manage to break negative stereotypes and interact with each other. The school environment provides a favourable context in which the approach of different generations can be worked on. The intergenerational experiences that take place within the school context help to introduce the educational ideology for a lifetime. This induces bilateral learning, which encourages citizen participation. For this reason, the general objective of this research is to deepen the impact that intergenerational experiences have on participating students. The research is carried out based on mixed methods. The qualitative and quantitative evaluation included pre-test and post-test questionnaires (n=148) and group interviews (n=43). The results indicate that the intergenerational experiences influence different levels, on the one hand, help to promote school motivation and on the other hand, help to reduce negative stereotypes towards older people thus contributing to greater social cohesion.

Keywords: intergenerational learning, school, stereotypes, social cohesion

Procedia PDF Downloads 142
5320 Analysing Stem Student Interests in Developing Critical Thinking Skills in Pakistan

Authors: Muhammad Ramzan

Abstract:

STEM Education and Critical Thinking Skills are important 21st-century skills. STEM Education is necessary to promote secondary school students’ critical thinking skills. These skills are critical for teachers to respond to students. Pakistan is in the preliminary stages of integrating STEM Education in institutions like other developing countries. Unfortunately, most secondary school students in Pakistan are unaware of STEM Education and teachers are not applying critical thinking skills in classrooms. The study's objectives mainly deal with; to identify the importance of STEM Education in the teaching-learning process; to find out the factors affecting critical thinking skills that can develop interest in students in STEM Education and suggestions on how to improve critical thinking skills in students regarding STEM Education. This study was descriptive. The population of the study was secondary school students. Data was collected from 200 secondary school students through a questionnaire. The research results show that critical thinking skills develop interest in students towards STEM Education.

Keywords: STEM education, teachers, students, critical thinking skills, teaching and learning process

Procedia PDF Downloads 44
5319 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities

Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun

Abstract:

The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.

Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids

Procedia PDF Downloads 64
5318 Domain-Specific Deep Neural Network Model for Classification of Abnormalities on Chest Radiographs

Authors: Nkechinyere Joy Olawuyi, Babajide Samuel Afolabi, Bola Ibitoye

Abstract:

This study collected a preprocessed dataset of chest radiographs and formulated a deep neural network model for detecting abnormalities. It also evaluated the performance of the formulated model and implemented a prototype of the formulated model. This was with the view to developing a deep neural network model to automatically classify abnormalities in chest radiographs. In order to achieve the overall purpose of this research, a large set of chest x-ray images were sourced for and collected from the CheXpert dataset, which is an online repository of annotated chest radiographs compiled by the Machine Learning Research Group, Stanford University. The chest radiographs were preprocessed into a format that can be fed into a deep neural network. The preprocessing techniques used were standardization and normalization. The classification problem was formulated as a multi-label binary classification model, which used convolutional neural network architecture to make a decision on whether an abnormality was present or not in the chest radiographs. The classification model was evaluated using specificity, sensitivity, and Area Under Curve (AUC) score as the parameter. A prototype of the classification model was implemented using Keras Open source deep learning framework in Python Programming Language. The AUC ROC curve of the model was able to classify Atelestasis, Support devices, Pleural effusion, Pneumonia, A normal CXR (no finding), Pneumothorax, and Consolidation. However, Lung opacity and Cardiomegaly had a probability of less than 0.5 and thus were classified as absent. Precision, recall, and F1 score values were 0.78; this implies that the number of False Positive and False Negative is the same, revealing some measure of label imbalance in the dataset. The study concluded that the developed model is sufficient to classify abnormalities present in chest radiographs into present or absent.

Keywords: transfer learning, convolutional neural network, radiograph, classification, multi-label

Procedia PDF Downloads 129
5317 Evaluation: Developing An Appropriate Survey Instrument For E-Learning

Authors: Brenda Ravenscroft, Ulemu Luhanga, Bev King

Abstract:

A comprehensive evaluation of online learning needs to include a blend of educational design, technology use, and online instructional practices that integrate technology appropriately for developing and delivering quality online courses. Research shows that classroom-based evaluation tools do not adequately capture the dynamic relationships between content, pedagogy, and technology in online courses. Furthermore, studies suggest that using classroom evaluations for online courses yields lower than normal scores for instructors, and may affect faculty negatively in terms of administrative decisions. In 2014, the Faculty of Arts and Science at Queen’s University responded to this evidence by seeking an alternative to the university-mandated evaluation tool, which is designed for classroom learning. The Faculty is deeply engaged in e-learning, offering large variety of online courses and programs in the sciences, social sciences, humanities and arts. This paper describes the process by which a new student survey instrument for online courses was developed and piloted, the methods used to analyze the data, and the ways in which the instrument was subsequently adapted based on the results. It concludes with a critical reflection on the challenges of evaluating e-learning. The Student Evaluation of Online Teaching Effectiveness (SEOTE), developed by Arthur W. Bangert in 2004 to assess constructivist-compatible online teaching practices, provided the starting point. Modifications were made in order to allow the instrument to serve the two functions required by the university: student survey results provide the instructor with feedback to enhance their teaching, and also provide the institution with evidence of teaching quality in personnel processes. Changes were therefore made to the SEOTE to distinguish more clearly between evaluation of the instructor’s teaching and evaluation of the course design, since, in the online environment, the instructor is not necessarily the course designer. After the first pilot phase, involving 35 courses, the results were analyzed using Stobart's validity framework as a guide. This process included statistical analyses of the data to test for reliability and validity, student and instructor focus groups to ascertain the tool’s usefulness in terms of the feedback it provided, and an assessment of the utility of the results by the Faculty’s e-learning unit responsible for supporting online course design. A set of recommendations led to further modifications to the survey instrument prior to a second pilot phase involving 19 courses. Following the second pilot, statistical analyses were repeated, and more focus groups were used, this time involving deans and other decision makers to determine the usefulness of the survey results in personnel processes. As a result of this inclusive process and robust analysis, the modified SEOTE instrument is currently being considered for adoption as the standard evaluation tool for all online courses at the university. Audience members at this presentation will be stimulated to consider factors that differentiate effective evaluation of online courses from classroom-based teaching. They will gain insight into strategies for introducing a new evaluation tool in a unionized institutional environment, and methodologies for evaluating the tool itself.

Keywords: evaluation, online courses, student survey, teaching effectiveness

Procedia PDF Downloads 266
5316 Challenges Encountered by English Language Teachers in Same-Ability Classrooms: Evidence from United Arab Emirates High Schools

Authors: Eman Mohamed Abdelwahab, Badreyya Alkhanbooli

Abstract:

This study focuses on exploring the challenges encountered by English language teachers in same-ability English language classrooms in the United Arab Emirates public schools. This qualitative study uses open-ended questions for data collection from teacher participants. The study sample includes the participation of 60 English language teachers from 8 public schools across 4 emirates/cities in the United Arab Emirates. The study results highlight a number of challenges that are mostly encountered by English language teachers in their classrooms while teaching in same-ability classrooms, including lack of diversity in abilities, class-time limitation, difficulty in engaging all students (especially lower-achieving students), limited opportunities for peer learning and limited linguistic diversity. A set of suggestions is to be provided by participating teachers and researchers to improve the same-ability teaching and learning experience in English language classrooms.

Keywords: English language teaching, same ability grouping, ESL, English language learners

Procedia PDF Downloads 62