Search results for: wireless sensor networks
3962 A SiGe Low Power RF Front-End Receiver for 5.8GHz Wireless Biomedical Application
Authors: Hyunwon Moon
Abstract:
It is necessary to realize new biomedical wireless communication systems which send the signals collected from various bio sensors located at human body in order to monitor our health. Also, it should seamlessly connect to the existing wireless communication systems. A 5.8 GHz ISM band low power RF front-end receiver for a biomedical wireless communication system is implemented using a 0.5 µm SiGe BiCMOS process. To achieve low power RF front-end, the current optimization technique for selecting device size is utilized. The implemented low noise amplifier (LNA) shows a power gain of 9.8 dB, a noise figure (NF) of below 1.75 dB, and an IIP3 of higher than 7.5 dBm while current consumption is only 6 mA at supply voltage of 2.5 V. Also, the performance of a down-conversion mixer is measured as a conversion gain of 11 dB and SSB NF of 10 dB.Keywords: biomedical, LNA, mixer, receiver, RF front-end, SiGe
Procedia PDF Downloads 3153961 Optimization of Thermopile Sensor Performance of Polycrystalline Silicon Film
Authors: Li Long, Thomas Ortlepp
Abstract:
A theoretical model for the optimization of thermopile sensor performance is developed for thermoelectric-based infrared radiation detection. It is shown that the performance of polycrystalline silicon film thermopile sensor can be optimized according to the thermoelectric quality factor, sensor layer structure factor, and sensor layout geometrical form factor. Based on the properties of electrons, phonons, grain boundaries, and their interactions, the thermoelectric quality factor of polycrystalline silicon is analyzed with the relaxation time approximation of the Boltzmann transport equation. The model includes the effect of grain structure, grain boundary trap properties, and doping concentration. The layer structure factor is analyzed with respect to the infrared absorption coefficient. The optimization of layout design is characterized by the form factor, which is calculated for different sensor designs. A double-layer polycrystalline silicon thermopile infrared sensor on a suspended membrane has been designed and fabricated with a CMOS-compatible process. The theoretical approach is confirmed by measurement results.Keywords: polycrystalline silicon, relaxation time approximation, specific detectivity, thermal conductivity, thermopile infrared sensor
Procedia PDF Downloads 1353960 Error Correction Method for 2D Ultra-Wideband Indoor Wireless Positioning System Using Logarithmic Error Model
Authors: Phornpat Chewasoonthorn, Surat Kwanmuang
Abstract:
Indoor positioning technologies have been evolved rapidly. They augment the Global Positioning System (GPS) which requires line-of-sight to the sky to track the location of people or objects. This study developed an error correction method for an indoor real-time location system (RTLS) based on an ultra-wideband (UWB) sensor from Decawave. Multiple stationary nodes (anchor) were installed throughout the workspace. The distance between stationary and moving nodes (tag) can be measured using a two-way-ranging (TWR) scheme. The result has shown that the uncorrected ranging error from the sensor system can be as large as 1 m. To reduce ranging error and thus increase positioning accuracy, This study purposes an online correction algorithm using the Kalman filter. The results from experiments have shown that the system can reduce ranging error down to 5 cm.Keywords: indoor positioning, ultra-wideband, error correction, Kalman filter
Procedia PDF Downloads 1583959 Impact of FACTS Devices on Power Networks Reliability
Authors: Alireza Alesaadi
Abstract:
Flexible AC transmission system (FACTS) devices have an important rule on expnded electrical transmission networks. In this paper, the effect of these diveces on reliability of electrical networks is studied and it is shown that using of FACTS devices can improve the relibiability of power networks, significantly.Keywords: FACTS devices, power networks, reliability
Procedia PDF Downloads 4263958 The Design, Development, and Optimization of a Capacitive Pressure Sensor Utilizing an Existing 9DOF Platform
Authors: Andrew Randles, Ilker Ocak, Cheam Daw Don, Navab Singh, Alex Gu
Abstract:
Nine Degrees of Freedom (9 DOF) systems are already in development in many areas. In this paper, an integrated pressure sensor is proposed that will make use of an already existing monolithic 9 DOF inertial MEMS platform. Capacitive pressure sensors can suffer from limited sensitivity for a given size of membrane. This novel pressure sensor design increases the sensitivity by over 5 times compared to a traditional array of square diaphragms while still fitting within a 2 mm x 2 mm chip and maintaining a fixed static capacitance. The improved design uses one large diaphragm supported by pillars with fixed electrodes placed above the areas of maximum deflection. The design optimization increases the sensitivity from 0.22 fF/kPa to 1.16 fF/kPa. Temperature sensitivity was also examined through simulation.Keywords: capacitive pressure sensor, 9 DOF, 10 DOF, sensor, capacitive, inertial measurement unit, IMU, inertial navigation system, INS
Procedia PDF Downloads 5443957 Supervised/Unsupervised Mahalanobis Algorithm for Improving Performance for Cyberattack Detection over Communications Networks
Authors: Radhika Ranjan Roy
Abstract:
Deployment of machine learning (ML)/deep learning (DL) algorithms for cyberattack detection in operational communications networks (wireless and/or wire-line) is being delayed because of low-performance parameters (e.g., recall, precision, and f₁-score). If datasets become imbalanced, which is the usual case for communications networks, the performance tends to become worse. Complexities in handling reducing dimensions of the feature sets for increasing performance are also a huge problem. Mahalanobis algorithms have been widely applied in scientific research because Mahalanobis distance metric learning is a successful framework. In this paper, we have investigated the Mahalanobis binary classifier algorithm for increasing cyberattack detection performance over communications networks as a proof of concept. We have also found that high-dimensional information in intermediate features that are not utilized as much for classification tasks in ML/DL algorithms are the main contributor to the state-of-the-art of improved performance of the Mahalanobis method, even for imbalanced and sparse datasets. With no feature reduction, MD offers uniform results for precision, recall, and f₁-score for unbalanced and sparse NSL-KDD datasets.Keywords: Mahalanobis distance, machine learning, deep learning, NS-KDD, local intrinsic dimensionality, chi-square, positive semi-definite, area under the curve
Procedia PDF Downloads 773956 A Bibliographical Research on the Use of Social Media Websites by the Deaf in Brazil
Authors: Juliana Guimarães Faria
Abstract:
The article focus on social networks and deaf people. It aims to analyze the studies done about this topic published in journals, as well as the ones done through dissertations and theses. It also aims to identify the thematic focus of the studies produced and to identify how the deaf relates to social networks, more specifically, trying to identify, starting with those productions, what are the benefits, or not, of social networks for the deaf and if there is some reflection about the way the deaf community has been organizing politically in search of bilingual education and inclusion, making use of the softwares of social networks. After reading, description and analysis of the eleven works identified about social networks and the deaf, we detected three thematic groups: four studies presented discussions about social networks and the socialization of the deaf; four works presented discussions about the contribution of social networks to the linguistic and cognitive development of the deaf; and three works presented discussions about the political bias of the use of social networks in favor of the deaf. We also identified that the works presented an optimistic view of social networks.Keywords: social networks, deaf, internet, Brazil
Procedia PDF Downloads 4083955 Pilot Directional Protection Scheme Using Wireless Communication
Authors: Nitish Sharma, G. G. Karady
Abstract:
This paper presents a scheme for the protection of loop system from all type of faults using the direction of fault current. The presence of distributed generation in today’s system increases the complexity of fault detection as the power flow is bidirectional. Hence, protection scheme specific to this purpose needs to be developed. This paper shows a fast protection scheme using communication which can be fiber optic or wireless. In this paper, the possibility of wireless communication for protection is studied to exchange the information between the relays. The negative sequence and positive sequence directional elements are used to determine the direction of fault current. A PSCAD simulation is presented and validated using commercial SEL relays.Keywords: smart grid protection, pilot protection, power system simulation, wireless communication
Procedia PDF Downloads 6353954 Utility Assessment Model for Wireless Technology in Construction
Authors: Yassir AbdelRazig, Amine Ghanem
Abstract:
Construction projects are information intensive in nature and involve many activities that are related to each other. Wireless technologies can be used to improve the accuracy and timeliness of data collected from construction sites and shares it with appropriate parties. Nonetheless, the construction industry tends to be conservative and shows hesitation to adopt new technologies. A main concern for owners, contractors or any person in charge on a job site is the cost of the technology in question. Wireless technologies are not cheap. There are a lot of expenses to be taken into consideration, and a study should be completed to make sure that the importance and savings resulting from the usage of this technology is worth the expenses. This research attempts to assess the effectiveness of using the appropriate wireless technologies based on criteria such as performance, reliability, and risk. The assessment is based on a utility function model that breaks down the selection issue into alternatives attribute. Then the attributes are assigned weights and single attributes are measured. Finally, single attribute are combined to develop one single aggregate utility index for each alternative.Keywords: analytic hierarchy process, decision theory, utility function, wireless technologies
Procedia PDF Downloads 3413953 Wireless Based System for Continuous Electrocardiography Monitoring during Surgery
Authors: K. Bensafia, A. Mansour, G. Le Maillot, B. Clement, O. Reynet, P. Ariès, S. Haddab
Abstract:
This paper presents a system designed for wireless acquisition, the recording of electrocardiogram (ECG) signals and the monitoring of the heart’s health during surgery. This wireless recording system allows us to visualize and monitor the state of the heart’s health during a surgery, even if the patient is moved from the operating theater to post anesthesia care unit. The acquired signal is transmitted via a Bluetooth unit to a PC where the data are displayed, stored and processed. To test the reliability of our system, a comparison between ECG signals processed by a conventional ECG monitoring system (Datex-Ohmeda) and by our wireless system is made. The comparison is based on the shape of the ECG signal, the duration of the QRS complex, the P and T waves, as well as the position of the ST segments with respect to the isoelectric line. The proposed system is presented and discussed. The results have confirmed that the use of Bluetooth during surgery does not affect the devices used and vice versa. Pre- and post-processing steps are briefly discussed. Experimental results are also provided.Keywords: electrocardiography, monitoring, surgery, wireless system
Procedia PDF Downloads 3693952 A Sensor Placement Methodology for Chemical Plants
Authors: Omid Ataei Nia, Karim Salahshoor
Abstract:
In this paper, a new precise and reliable sensor network methodology is introduced for unit processes and operations using the Constriction Coefficient Particle Swarm Optimization (CPSO) method. CPSO is introduced as a new search engine for optimal sensor network design purposes. Furthermore, a Square Root Unscented Kalman Filter (SRUKF) algorithm is employed as a new data reconciliation technique to enhance the stability and accuracy of the filter. The proposed design procedure incorporates precision, cost, observability, reliability together with importance-of-variables (IVs) as a novel measure in Instrumentation Criteria (IC). To the best of our knowledge, no comprehensive approach has yet been proposed in the literature to take into account the importance of variables in the sensor network design procedure. In this paper, specific weight is assigned to each sensor, measuring a process variable in the sensor network to indicate the importance of that variable over the others to cater to the ultimate sensor network application requirements. A set of distinct scenarios has been conducted to evaluate the performance of the proposed methodology in a simulated Continuous Stirred Tank Reactor (CSTR) as a highly nonlinear process plant benchmark. The obtained results reveal the efficacy of the proposed method, leading to significant improvement in accuracy with respect to other alternative sensor network design approaches and securing the definite allocation of sensors to the most important process variables in sensor network design as a novel achievement.Keywords: constriction coefficient PSO, importance of variable, MRMSE, reliability, sensor network design, square root unscented Kalman filter
Procedia PDF Downloads 1583951 Design of a Universal Wireless Battery Charger
Authors: Ahmad B. Musamih, Ahmad A. Albloushi, Ahmed H. Alshemeili, Abdulaziz Y. Alfili, Ala A. Hussien
Abstract:
This paper proposes a universal wireless battery charger design for portable electronic devices. As the number of portable electronics devices increases, the demand for more flexible and reliable charging techniques is becoming more urgent. A wireless battery charger differs from a traditional charger in the way the power transferred to the battery. In the latter, the power is transferred through electrical wires that connect the charger terminals to the battery terminals, while in the former; the power is transferred by induction without electrical connections. With a detection algorithm that detects the battery size and chemistry, the proposed charger will be able to accommodate a wide range of applications, and will allow a more flexible and reliable option to most of today’s portable electronics.Keywords: efficiency, magnetically-coupled resonators, resonance frequency, wireless power transfer
Procedia PDF Downloads 4513950 Lightweight and Seamless Distributed Scheme for the Smart Home
Authors: Muhammad Mehran Arshad Khan, Chengliang Wang, Zou Minhui, Danyal Badar Soomro
Abstract:
Security of the smart home in terms of behavior activity pattern recognition is a totally dissimilar and unique issue as compared to the security issues of other scenarios. Sensor devices (low capacity and high capacity) interact and negotiate each other by detecting the daily behavior activity of individuals to execute common tasks. Once a device (e.g., surveillance camera, smart phone and light detection sensor etc.) is compromised, an adversary can then get access to a specific device and can damage daily behavior activity by altering the data and commands. In this scenario, a group of common instruction processes may get involved to generate deadlock. Therefore, an effective suitable security solution is required for smart home architecture. This paper proposes seamless distributed Scheme which fortifies low computational wireless devices for secure communication. Proposed scheme is based on lightweight key-session process to upheld cryptic-link for trajectory by recognizing of individual’s behavior activities pattern. Every device and service provider unit (low capacity sensors (LCS) and high capacity sensors (HCS)) uses an authentication token and originates a secure trajectory connection in network. Analysis of experiments is revealed that proposed scheme strengthens the devices against device seizure attack by recognizing daily behavior activities, minimum utilization memory space of LCS and avoids network from deadlock. Additionally, the results of a comparison with other schemes indicate that scheme manages efficiency in term of computation and communication.Keywords: authentication, key-session, security, wireless sensors
Procedia PDF Downloads 3173949 Deep Learning-Based Channel Estimation for RIS-Assisted Unmanned Aerial Vehicle-Enabled Wireless Communication System
Authors: Getaneh Berie Tarekegn
Abstract:
Wireless communication via unmanned aerial vehicles (UAVs) has drawn a great deal of attention due to its flexibility in establishing line-of-sight (LoS) communications. However, in complex urban and dynamic environments, the movement of UAVs can be blocked by trees and high-rise buildings that obstruct directional paths. With reconfigurable intelligent surfaces (RIS), this problem can be effectively addressed. To achieve this goal, accurate channel estimation in RIS-assisted UAV-enabled wireless communications is crucial. This paper proposes an accurate channel estimation model using long short-term memory (LSTM) for a multi-user RIS-assisted UAV-enabled wireless communication system. According to simulation results, LSTM can improve the channel estimation performance of RIS-assisted UAV-enabled wireless communication.Keywords: channel estimation, reconfigurable intelligent surfaces, long short-term memory, unmanned aerial vehicles
Procedia PDF Downloads 553948 Challenges for Interface Designers in Designing Sensor Dashboards in the Context of Industry 4.0
Authors: Naveen Kumar, Shyambihari Prajapati
Abstract:
Industry 4.0 is the fourth industrial revolution that focuses on interconnectivity of machine to machine, human to machine and human to human via Internet of Things (IoT). Technologies of industry 4.0 facilitate communication between human and machine through IoT and forms Cyber-Physical Production System (CPPS). In CPPS, multiple shop floors sensor data are connected through IoT and displayed through sensor dashboard to the operator. These sensor dashboards have enormous amount of information to be presented which becomes complex for operators to perform monitoring, controlling and interpretation tasks. Designing handheld sensor dashboards for supervision task will become a challenge for the interface designers. This paper reports emerging technologies of industry 4.0, changing context of increasing information complexity in consecutive industrial revolutions and upcoming design challenges for interface designers in context of Industry 4.0. Authors conclude that information complexity of sensor dashboards design has increased with consecutive industrial revolutions and designs of sensor dashboard causes cognitive load on users. Designing such complex dashboards interfaces in Industry 4.0 context will become main challenges for the interface designers.Keywords: Industry4.0, sensor dashboard design, cyber-physical production system, Interface designer
Procedia PDF Downloads 1263947 Performance Comparison of Reactive, Proactive and Hybrid Routing Protocols in Wireless Ad Hoc Networks
Authors: Kumar Manoj, Ramesh Kumar, Kumari Arti, Kumar Prashant
Abstract:
Routing protocols have a central role in any mobile ad hoc network (MANET). There are many routing protocols that exhibit different performance levels in different scenarios. In this paper we compare AODV, DSDV, DSR and ZRP routing protocol in mobile ad hoc networks to determine the best operational conditions for each protocol. We analyses these routing protocols by extensive simulations in OPNET simulator and show that how pause time and the number of nodes affect their performance. In this study, performance is measured in terms of control traffic received, control traffic sent, data traffic received, data traffic sent, throughput, retransmission attempts.Keywords: MANET, AODV, DSDV, DSR, ZRP
Procedia PDF Downloads 6773946 An Intelligent Cloud Radio Access Network (RAN) Architecture for Future 5G Heterogeneous Wireless Network
Authors: Jin Xu
Abstract:
5G network developers need to satisfy the necessary requirements of additional capacity from massive users and spectrally efficient wireless technologies. Therefore, the significant amount of underutilized spectrum in network is motivating operators to combine long-term evolution (LTE) with intelligent spectrum management technology. This new LTE intelligent spectrum management in unlicensed band (LTE-U) has the physical layer topology to access spectrum, specifically the 5-GHz band. We proposed a new intelligent cloud RAN for 5G.Keywords: cloud radio access network, wireless network, cloud computing, multi-agent
Procedia PDF Downloads 4223945 Implementation of Distributed Randomized Algorithms for Resilient Peer-to-Peer Networks
Authors: Richard Tanaka, Ying Zhu
Abstract:
This paper studies a few randomized algorithms in application-layer peer-to-peer networks. The significant gain in scalability and resilience that peer-to-peer networks provide has made them widely used and adopted in many real-world distributed systems and applications. The unique properties of peer-to-peer networks make them particularly suitable for randomized algorithms such as random walks and gossip algorithms. Instead of simulations of peer-to-peer networks, we leverage the Docker virtual container technology to develop implementations of the peer-to-peer networks and these distributed randomized algorithms running on top of them. We can thus analyze their behaviour and performance in realistic settings. We further consider the problem of identifying high-risk bottleneck links in the network with the objective of improving the resilience and reliability of peer-to-peer networks. We propose a randomized algorithm to solve this problem and evaluate its performance by simulations.Keywords: distributed randomized algorithms, peer-to-peer networks, virtual container technology, resilient networks
Procedia PDF Downloads 2143944 HPA Pre-Distorter Based on Neural Networks for 5G Satellite Communications
Authors: Abdelhamid Louliej, Younes Jabrane
Abstract:
Satellites are becoming indispensable assets to fifth-generation (5G) new radio architecture, complementing wireless and terrestrial communication links. The combination of satellites and 5G architecture allows consumers to access all next-generation services anytime, anywhere, including scenarios, like traveling to remote areas (without coverage). Nevertheless, this solution faces several challenges, such as a significant propagation delay, Doppler frequency shift, and high Peak-to-Average Power Ratio (PAPR), causing signal distortion due to the non-linear saturation of the High-Power Amplifier (HPA). To compensate for HPA non-linearity in 5G satellite transmission, an efficient pre-distorter scheme using Neural Networks (NN) is proposed. To assess the proposed NN pre-distorter, two types of HPA were investigated: Travelling Wave Tube Amplifier (TWTA) and Solid-State Power Amplifier (SSPA). The results show that the NN pre-distorter design presents EVM improvement by 95.26%. NMSE and ACPR were reduced by -43,66 dB and 24.56 dBm, respectively. Moreover, the system suffers no degradation of the Bit Error Rate (BER) for TWTA and SSPA amplifiers.Keywords: satellites, 5G, neural networks, HPA, TWTA, SSPA, EVM, NMSE, ACPR
Procedia PDF Downloads 903943 A Fabrication Method for PEDOT: PSS Based Humidity Sensor
Authors: Nazia Tarannum, M. Ayaz Ahmad
Abstract:
The main goal of this article is to report some interesting features for the fabrication/design of PEDOT:PSS based humidity sensor. Here first we fabricated humidity sensor and then studied its electro-mechanical characteristics. In general the humidity plays an important role in various private and government sectors all over the world. Monitoring and controlling the humidity is a great task for the reliable operation of various systems. The PEDOT:PSS is very much promising humidity sensor and also is fabricated by performing various analyses. The interdigited electrode (IDE) has channel length 200 microns prepared by lithography. Lithography of IDE was done on PPR coated glass substrate using negative mask and exposing it with UV light for 10 secs via DSA. During the above said fabrication, we have taken account for the following steps: •Plasma ashing of IDE •Spincoating of PEDOT:PSS was done @3000 rpm on IDE substrace •Baked the substrace at 130 °C up to time limit 15 mins. •Resistance measurement using Labtracer 2.9 software via Keithley 2400source meter.Keywords: fabrication method, PEDOT:PSS material, humidity sensor, electro-mechanical
Procedia PDF Downloads 3493942 Study and Analysis of Optical Intersatellite Links
Authors: Boudene Maamar, Xu Mai
Abstract:
Optical Intersatellite Links (OISLs) are wireless communications using optical signals to interconnect satellites. It is expected to be the next generation wireless communication technology according to its inherent characteristics like: an increased bandwidth, a high data rate, a data transmission security, an immunity to interference, and an unregulated spectrum etc. Optical space links are the best choice for the classical communication schemes due to its distinctive properties; high frequency, small antenna diameter and lowest transmitted power, which are critical factors to define a space communication. This paper discusses the development of free space technology and analyses the parameters and factors to establish a reliable intersatellite links using an optical signal to exchange data between satellites.Keywords: optical intersatellite links, optical wireless communications, free space optical communications, next generation wireless communication
Procedia PDF Downloads 4453941 Overview of a Quantum Model for Decision Support in a Sensor Network
Authors: Shahram Payandeh
Abstract:
This paper presents an overview of a model which can be used as a part of a decision support system when fusing information from multiple sensing environment. Data fusion has been widely studied in the past few decades and numerous frameworks have been proposed to facilitate decision making process under uncertainties. Multi-sensor data fusion technology plays an increasingly significant role during people tracking and activity recognition. This paper presents an overview of a quantum model as a part of a decision-making process in the context of multi-sensor data fusion. The paper presents basic definitions and relationships associating the decision-making process and quantum model formulation in the presence of uncertainties.Keywords: quantum model, sensor space, sensor network, decision support
Procedia PDF Downloads 2253940 Review on Implementation of Artificial Intelligence and Machine Learning for Controlling Traffic and Avoiding Accidents
Authors: Neha Singh, Shristi Singh
Abstract:
Accidents involving motor vehicles are more likely to cause serious injuries and fatalities. It also has a host of other perpetual issues, such as the regular loss of life and goods in accidents. To solve these issues, appropriate measures must be implemented, such as establishing an autonomous incident detection system that makes use of machine learning and artificial intelligence. In order to reduce traffic accidents, this article examines the overview of artificial intelligence and machine learning in autonomous event detection systems. The paper explores the major issues, prospective solutions, and use of artificial intelligence and machine learning in road transportation systems for minimising traffic accidents. There is a lot of discussion on additional, fresh, and developing approaches that less frequent accidents in the transportation industry. The study structured the following subtopics specifically: traffic management using machine learning and artificial intelligence and an incident detector with these two technologies. The internet of vehicles and vehicle ad hoc networks, as well as the use of wireless communication technologies like 5G wireless networks and the use of machine learning and artificial intelligence for the planning of road transportation systems, are elaborated. In addition, safety is the primary concern of road transportation. Route optimization, cargo volume forecasting, predictive fleet maintenance, real-time vehicle tracking, and traffic management, according to the review's key conclusions, are essential for ensuring the safety of road transportation networks. In addition to highlighting research trends, unanswered problems, and key research conclusions, the study also discusses the difficulties in applying artificial intelligence to road transport systems. Planning and managing the road transportation system might use the work as a resource.Keywords: artificial intelligence, machine learning, incident detector, road transport systems, traffic management, automatic incident detection, deep learning
Procedia PDF Downloads 1103939 A Fundamental Study for Real-Time Safety Evaluation System of Landing Pier Using FBG Sensor
Authors: Heungsu Lee, Youngseok Kim, Jonghwa Yi, Chul Park
Abstract:
A landing pier is subjected to safety assessment by visual inspection and design data, but it is difficult to check the damage in real-time. In this study, real - time damage detection and safety evaluation methods were studied. As a result of structural analysis of the arbitrary landing pier structure, the inflection point of deformation and moment occurred at 10%, 50%, and 90% of pile length. The critical value of Fiber Bragg Grating (FBG) sensor was set according to the safety factor, and the FBG sensor application method for real - time safety evaluation was derived.Keywords: FBG sensor, harbor structure, maintenance, safety evaluation system
Procedia PDF Downloads 2163938 Experimental and Characterization Studies on Micro Direct Methanol Fuel Cell
Authors: S. Muthuraja Soundrapandian, C.K. Subramaniam
Abstract:
A micro Direct Methanol Fuel Cell (DMFC) of 1 cm2 active area with selective sensor materials to sense methanol for redox, has been developed. Among different Pt alloys, Pt-Sn/C was able to produce high current density and repeatability. Membrane Elecctrode Assembly (MEA) of anode catalyst Pt-Sn/C was prepared with nafion as active membrane and Pt black as cathode catalyst. The sensor’s maximum ability to detect the trace levels of methanol in ppm has been analyzed. A compact sensor set up has also been made and the characterization studies were carried out. The acceptable value of current density was derived by the cell and the results are able to fulfill the needs of DMFC technology for the practical applications.Keywords: DMFC, sensor, MEA, Pt-Sn
Procedia PDF Downloads 1383937 On the Use of Reliability Factors to Reduce Conflict between Information Sources in Dempster-Shafer Theory
Authors: A. Alem, Y. Dahmani, A. Hadjali, A. Boualem
Abstract:
Managing the problem of the conflict, either by using the Dempster-Shafer theory, or by the application of the fusion process to push researchers in recent years to find ways to get to make best decisions especially; for information systems, vision, robotic and wireless sensor networks. In this paper we are interested to take account of the conflict in the combination step that took the conflict into account and tries to manage such a way that it does not influence the decision step, the conflict what from reliable sources. According to [1], the conflict lead to erroneous decisions in cases where was with strong degrees between sources of information, if the conflict is more than the maximum of the functions of belief mass K > max1...n (mi (A)), then the decision becomes impossible. We will demonstrate in this paper that the multiplication of mass functions by coefficients of reliability is a decreasing function; it leads to the reduction of conflict and a good decision. The definition of reliability coefficients accurately and multiply them by the mass functions of each information source to resolve the conflict and allow deciding whether the degree of conflict. The evaluation of this technique is done by a use case; a comparison of the combination of springs with a maximum conflict without, and with reliability coefficients.Keywords: Dempster-Shafer theory, fusion process, conflict managing, reliability factors, decision
Procedia PDF Downloads 4253936 Impact of Social Media on Content of Saudi Television News Networks
Authors: Majed Alshaibani
Abstract:
Social media has emerged as a serious contender to TV news networks in Saudi Arabia. The growing usage of social media as a source of news and information has led to significant impact on the content presented by the news networks in Saudi Arabia. This study explored the various ways in which social media has influenced content aired on Saudi news networks. Data were collected by using semi structured interviews with 13 journalists and content editors working for four Saudi TV news networks and six senior academic experts on TV and media teaching in Saudi universities. The findings of the study revealed that social media has affected four aspects of the content on Saudi TV news networks. As a result the content aired on Saudi news networks is more neutral, real time, diverse in terms of sources and includes content on broader subjects and from different parts of the world. This research concludes that social media has contributed positively and significantly to improving the content on Saudi TV news networks.Keywords: TV news networks, Saudi Arabia, social media, media content
Procedia PDF Downloads 2353935 A New Reliability based Channel Allocation Model in Mobile Networks
Authors: Anujendra, Parag Kumar Guha Thakurta
Abstract:
The data transmission between mobile hosts and base stations (BSs) in Mobile networks are often vulnerable to failure. Thus, efficient link connectivity, in terms of the services of both base stations and communication channels of the network, is required in wireless mobile networks to achieve highly reliable data transmission. In addition, it is observed that the number of blocked hosts is increased due to insufficient number of channels during heavy load in the network. Under such scenario, the channels are allocated accordingly to offer a reliable communication at any given time. Therefore, a reliability-based channel allocation model with acceptable system performance is proposed as a MOO problem in this paper. Two conflicting parameters known as Resource Reuse factor (RRF) and the number of blocked calls are optimized under reliability constraint in this problem. The solution to such MOO problem is obtained through NSGA-II (Non-dominated Sorting Genetic Algorithm). The effectiveness of the proposed model in this work is shown with a set of experimental results.Keywords: base station, channel, GA, pareto-optimal, reliability
Procedia PDF Downloads 4083934 Specific Emitter Identification Based on Refined Composite Multiscale Dispersion Entropy
Authors: Shaoying Guo, Yanyun Xu, Meng Zhang, Weiqing Huang
Abstract:
The wireless communication network is developing rapidly, thus the wireless security becomes more and more important. Specific emitter identification (SEI) is an vital part of wireless communication security as a technique to identify the unique transmitters. In this paper, a SEI method based on multiscale dispersion entropy (MDE) and refined composite multiscale dispersion entropy (RCMDE) is proposed. The algorithms of MDE and RCMDE are used to extract features for identification of five wireless devices and cross-validation support vector machine (CV-SVM) is used as the classifier. The experimental results show that the total identification accuracy is 99.3%, even at low signal-to-noise ratio(SNR) of 5dB, which proves that MDE and RCMDE can describe the communication signal series well. In addition, compared with other methods, the proposed method is effective and provides better accuracy and stability for SEI.Keywords: cross-validation support vector machine, refined com- posite multiscale dispersion entropy, specific emitter identification, transient signal, wireless communication device
Procedia PDF Downloads 1283933 Deep Learning-Based Channel Estimation for Reconfigurable Intelligent Surface-Assisted Unmanned Aerial Vehicle-Enabled Wireless Communication System
Authors: Getaneh Berie Tarekegn
Abstract:
Wireless communication via unmanned aerial vehicles (UAVs) has drawn a great deal of attention due to its flexibility in establishing line-of-sight (LoS) communications. However, in complex urban and dynamic environments, the movement of UAVs can be blocked by trees and high-rise buildings that obstruct directional paths. With reconfigurable intelligent surfaces (RIS), this problem can be effectively addressed. To achieve this goal, accurate channel estimation in RIS-assisted UAV-enabled wireless communications is crucial. This paper proposes an accurate channel estimation model using long short-term memory (LSTM) for a multi-user RIS-assisted UAV-enabled wireless communication system. According to simulation results, LSTM can improve the channel estimation performance of RIS-assisted UAV-enabled wireless communication.Keywords: channel estimation, reconfigurable intelligent surfaces, long short-term memory, unmanned aerial vehicles
Procedia PDF Downloads 107