Search results for: variable structure control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19053

Search results for: variable structure control

18693 A New Approach towards the Development of Next Generation CNC

Authors: Yusri Yusof, Kamran Latif

Abstract:

Computer Numeric Control (CNC) machine has been widely used in the industries since its inception. Currently, in CNC technology has been used for various operations like milling, drilling, packing and welding etc. with the rapid growth in the manufacturing world the demand of flexibility in the CNC machines has rapidly increased. Previously, the commercial CNC failed to provide flexibility because its structure was of closed nature that does not provide access to the inner features of CNC. Also CNC’s operating ISO data interface model was found to be limited. Therefore, to overcome that problem, Open Architecture Control (OAC) technology and STEP-NC data interface model are introduced. At present the Personal Computer (PC) has been the best platform for the development of open-CNC systems. In this paper, both ISO data interface model interpretation, its verification and execution has been highlighted with the introduction of the new techniques. The proposed is composed of ISO data interpretation, 3D simulation and machine motion control modules. The system is tested on an old 3 axis CNC milling machine. The results are found to be satisfactory in performance. This implementation has successfully enabled sustainable manufacturing environment.

Keywords: CNC, ISO 6983, ISO 14649, LabVIEW, open architecture control, reconfigurable manufacturing systems, sustainable manufacturing, Soft-CNC

Procedia PDF Downloads 504
18692 Balancing and Synchronization Control of a Two Wheel Inverted Pendulum Vehicle

Authors: Shiuh-Jer Huang, Shin-Ham Lee, Sheam-Chyun Lin

Abstract:

A two wheel inverted pendulum (TWIP) vehicle is built with two hub DC motors for motion control evaluation. Arduino Nano micro-processor is chosen as the control kernel for this electric test plant. Accelerometer and gyroscope sensors are built in to measure the tilt angle and angular velocity of the inverted pendulum vehicle. Since the TWIP has significantly hub motor dead zone and nonlinear system dynamics characteristics, the vehicle system is difficult to control by traditional model based controller. The intelligent model-free fuzzy sliding mode controller (FSMC) was employed as the main control algorithm. Then, intelligent controllers are designed for TWIP balance control, and two wheels synchronization control purposes.

Keywords: balance control, synchronization control, two-wheel inverted pendulum, TWIP

Procedia PDF Downloads 378
18691 Knitting Stitches’ Manipulation for Catenary Textile Structures

Authors: Virginia Melnyk

Abstract:

This paper explores the design for catenary structure using knitted textiles. Using the advantages of Grasshopper and Kangaroo parametric software to simulate and pre-design an overall form, the design is then translated to a pattern that can be made with hand manipulated stitches on a knitting machine. The textile takes advantage of the structure of knitted materials and the ability for it to stretch. Using different types of stitches to control the amount of stretch that can occur in portions of the textile generates an overall formal design. The textile is then hardened in an upside-down hanging position and then flipped right-side-up. This then becomes a structural catenary form. The resulting design is used as a small Cat House for a cat to sit inside and climb on top of.

Keywords: architectural materials, catenary structures, knitting fabrication, textile design

Procedia PDF Downloads 172
18690 Flow Control around Bluff Bodies by Attached Permeable Plates

Authors: Gokturk Memduh Ozkan, Huseyin Akilli

Abstract:

The aim of present study is to control the unsteady flow structure downstream of a circular cylinder by use of attached permeable plates. Particle image velocimetry (PIV) technique and dye visualization experiments were performed in deep water and the flow characteristics were evaluated by means of time-averaged streamlines, Reynolds Shear Stress and Turbulent Kinetic Energy concentrations. The permeable plate was made of a chrome-nickel screen having a porosity value of β=0.6 and it was attached on the cylinder surface along its midspan. Five different angles were given to the plate (θ=0°, 15°, 30°, 45°, 60°) with respect to the centerline of the cylinder in order to examine its effect on the flow control. It was shown that the permeable plate is effective on elongating the vortex formation length and reducing the fluctuations in the wake region. Compared to the plain cylinder, the reductions in the values of maximum Reynolds shear stress and Turbulent Kinetic Energy were evaluated as 72.5% and 66%, respectively for the plate angles of θ=45° and 60° which were also found to be suggested for applications concerning the vortex shedding and consequent Vortex-Induced Vibrations.

Keywords: bluff body, flow control, permeable plate, PIV, VIV, vortex shedding

Procedia PDF Downloads 351
18689 The Control System Architecture of Space Environment Simulator

Authors: Zhan Haiyang, Gu Miao

Abstract:

This article mainly introduces the control system architecture of space environment simulator, simultaneously also briefly introduce the automation control technology of industrial process and the measurement technology of vacuum and cold black environment. According to the volume of chamber, the space environment simulator is divided into three types of small, medium and large. According to the classification and application of space environment simulator, the control system is divided into the control system of small, medium, large space environment simulator and the centralized control system of multiple space environment simulators.

Keywords: space environment simulator, control system, architecture, automation control technology

Procedia PDF Downloads 465
18688 Research on Architectural Steel Structure Design Based on BIM

Authors: Tianyu Gao

Abstract:

Digital architectures use computer-aided design, programming, simulation, and imaging to create virtual forms and physical structures. Today's customers want to know more about their buildings. They want an automatic thermostat to learn their behavior and contact them, such as the doors and windows they want to open with a mobile app. Therefore, the architectural display form is more closely related to the customer's experience. Based on the purpose of building informationization, this paper studies the steel structure design based on BIM. Taking the Zigan office building in Hangzhou as an example, it is divided into four parts, namely, the digital design modulus of the steel structure, the node analysis of the steel structure, the digital production and construction of the steel structure. Through the application of BIM software, the architectural design can be synergized, and the building components can be informationized. Not only can the architectural design be feedback in the early stage, but also the stability of the construction can be guaranteed. In this way, the monitoring of the entire life cycle of the building and the meeting of customer needs can be realized.

Keywords: digital architectures, BIM, steel structure, architectural design

Procedia PDF Downloads 181
18687 Exposing the Concealed Impact: Evaluating the Role of Development Projects on Corruption Perception in Afghanistan

Authors: Jawad Taheri

Abstract:

This paper investigates the impact of foreign aid-funded development projects on corruption perception in Afghanistan, utilizing instrumental variable (IV) approaches in regression analysis setting. Seven sub-categories of development projects are examined in order to have a glance over comparative usefulness of each project. The study incorporates natural disaster indicators as exogenous variables to mitigate endogeneity concerns and control variables. The findings reveal significant associations between certain types of projects and corruption perception. Road and bridge construction, irrigation, and agriculture projects are found to decrease corruption perception, fostering optimism and trust within affected communities. Mosque construction and healthcare initiatives aligned with religious beliefs also contribute to reduced corruption perception. However, drinking water projects are associated with increased corruption perception, highlighting potential challenges in their implementation. The study emphasizes the importance of well-implemented projects, cultural contexts, and effective governance in mitigating corruption and fostering trust within communities. These findings contribute to a refined understanding of the relationship between development projects and corruption perception in Afghanistan.

Keywords: foreign aid, development projects, corruption perception, Afghanistan, instrumental variable analysis, survey of Afghan people (SAP), natural disasters, exogenous variation

Procedia PDF Downloads 59
18686 Supply Air Pressure Control of HVAC System Using MPC Controller

Authors: P. Javid, A. Aeenmehr, J. Taghavifar

Abstract:

In this paper, supply air pressure of HVAC system has been modeled with second-order transfer function plus dead-time. In HVAC system, the desired input has step changes, and the output of proposed control system should be able to follow the input reference, so the idea of using model based predictive control is proceeded and designed in this paper. The closed loop control system is implemented in MATLAB software and the simulation results are provided. The simulation results show that the model based predictive control is able to control the plant properly.

Keywords: air conditioning system, GPC, dead time, air supply control

Procedia PDF Downloads 517
18685 Optimal Design of Tuned Inerter Damper-Based System for the Control of Wind-Induced Vibration in Tall Buildings through Cultural Algorithm

Authors: Luis Lara-Valencia, Mateo Ramirez-Acevedo, Daniel Caicedo, Jose Brito, Yosef Farbiarz

Abstract:

Controlling wind-induced vibrations as well as aerodynamic forces, is an essential part of the structural design of tall buildings in order to guarantee the serviceability limit state of the structure. This paper presents a numerical investigation on the optimal design parameters of a Tuned Inerter Damper (TID) based system for the control of wind-induced vibration in tall buildings. The control system is based on the conventional TID, with the main difference that its location is changed from the ground level to the last two story-levels of the structural system. The TID tuning procedure is based on an evolutionary cultural algorithm in which the optimum design variables defined as the frequency and damping ratios were searched according to the optimization criteria of minimizing the root mean square (RMS) response of displacements at the nth story of the structure. A Monte Carlo simulation was used to represent the dynamic action of the wind in the time domain in which a time-series derived from the Davenport spectrum using eleven harmonic functions with randomly chosen phase angles was reproduced. The above-mentioned methodology was applied on a case-study derived from a 37-story prestressed concrete building with 144 m height, in which the wind action overcomes the seismic action. The results showed that the optimally tuned TID is effective to reduce the RMS response of displacements up to 25%, which demonstrates the feasibility of the system for the control of wind-induced vibrations in tall buildings.

Keywords: evolutionary cultural algorithm, Monte Carlo simulation, tuned inerter damper, wind-induced vibrations

Procedia PDF Downloads 126
18684 Slosh Investigations on a Spacecraft Propellant Tank for Control Stability Studies

Authors: Sarath Chandran Nair S, Srinivas Kodati, Vasudevan R, Asraff A. K

Abstract:

Spacecrafts generally employ liquid propulsion for their attitude and orbital maneuvers or raising it from geo-transfer orbit to geosynchronous orbit. Liquid propulsion systems use either mono-propellant or bi-propellants for generating thrust. These propellants are generally stored in either spherical tanks or cylindrical tanks with spherical end domes. The propellant tanks are provided with a propellant acquisition system/propellant management device along with vanes and their conical mounting structure to ensure propellant availability in the outlet for thrust generation even under a low/zero-gravity environment. Slosh is the free surface oscillations in partially filled containers under external disturbances. In a spacecraft, these can be due to control forces and due to varying acceleration. Knowledge of slosh and its effect due to internals is essential for understanding its stability through control stability studies. It is mathematically represented by a pendulum-mass model. It requires parameters such as slosh frequency, damping, sloshes mass and its location, etc. This paper enumerates various numerical and experimental methods used for evaluating the slosh parameters required for representing slosh. Numerical methods like finite element methods based on linear velocity potential theory and computational fluid dynamics based on Reynolds Averaged Navier Stokes equations are used for the detailed evaluation of slosh behavior in one of the spacecraft propellant tanks used in an Indian space mission. Experimental studies carried out on a scaled-down model are also discussed. Slosh parameters evaluated by different methods matched very well and finalized their dispersion bands based on experimental studies. It is observed that the presence of internals such as propellant management devices, including conical support structure, alters slosh parameters. These internals also offers one order higher damping compared to viscous/ smooth wall damping. It is an advantage factor for the stability of slosh. These slosh parameters are given for establishing slosh margins through control stability studies and finalize the spacecraft control system design.

Keywords: control stability, propellant tanks, slosh, spacecraft, slosh spacecraft

Procedia PDF Downloads 231
18683 Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization

Authors: Tomoaki Hashimoto

Abstract:

Recently, feedback control systems using random dither quantizers have been proposed for linear discrete-time systems. However, the constraints imposed on state and control variables have not yet been taken into account for the design of feedback control systems with random dither quantization. Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. An important advantage of model predictive control is its ability to handle constraints imposed on state and control variables. Based on the model predictive control approach, the objective of this paper is to present a control method that satisfies probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization. In other words, this paper provides a method for solving the optimal control problems subject to probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization.

Keywords: optimal control, stochastic systems, random dither, quantization

Procedia PDF Downloads 429
18682 Multi-Objective Variable Neighborhood Search Algorithm to Solving Scheduling Problem with Transportation Times

Authors: Majid Khalili

Abstract:

This paper deals with a bi-objective hybrid no-wait flowshop scheduling problem minimizing the makespan and total weighted tardiness, in which we consider transportation times between stages. Obtaining an optimal solution for this type of complex, large-sized problem in reasonable computational time by using traditional approaches and optimization tools is extremely difficult. This paper presents a new multi-objective variable neighborhood algorithm (MOVNS). A set of experimental instances are carried out to evaluate the algorithm by advanced multi-objective performance measures. The algorithm is carefully evaluated for its performance against available algorithm by means of multi-objective performance measures and statistical tools. The related results show that a variant of our proposed MOVNS provides sound performance comparing with other algorithms.

Keywords: no-wait hybrid flowshop scheduling; multi-objective variable neighborhood algorithm; makespan; total weighted tardiness

Procedia PDF Downloads 405
18681 Load Transfer of Steel Pipe Piles in Warming Permafrost

Authors: S. Amirhossein Tabatabaei, Abdulghader A. Aldaeef, Mohammad T. Rayhani

Abstract:

As the permafrost continues to melt in the northern regions due to global warming, a soil-water mixture is left behind with drastically lower strength; a phenomenon that directly impacts the resilience of existing structures and infrastructure systems. The frozen soil-structure interaction, which in ice-poor soils is controlled by both interface shear and ice-bonding, changes its nature into a sole frictional state. Adfreeze, the controlling mechanism in frozen soil-structure interaction, diminishes as the ground temperature approaches zero. The main purpose of this paper is to capture the altered behaviour of frozen interface with respect to rising temperature, especially near melting states. A series of pull-out tests are conducted on model piles inside a cold room to study how the strength parameters are influenced by the phase change in ice-poor soils. Steel model piles, embedded in artificially frozen cohesionless soil, are subjected to both sustained pull-out forces and constant rates of displacement to observe the creep behaviour and acquire load-deformation curves, respectively. Temperature, as the main variable of interest, is increased from a lower limit of -10°C up to the point of melting. During different stages of the temperature rise, both skin deformations and temperatures are recorded at various depths along the pile shaft. Significant reduction of pullout capacity and accelerated creep behaviour is found to be the primary consequences of rising temperature. By investigating the different pull-out capacities and deformations measured during step-wise temperature change, characteristics of the transition from frozen to unfrozen soil-structure interaction are studied.

Keywords: Adfreeze, frozen soil-structure interface, ice-poor soils, pull-out capacity, warming permafrost

Procedia PDF Downloads 101
18680 Solution for Thick Plate Resting on Winkler Foundation by Symplectic Geometry Method

Authors: Mei-Jie Xu, Yang Zhong

Abstract:

Based on the symplectic geometry method, the theory of Hamilton system can be applied in the analysis of problem solved using the theory of elasticity and in the solution of elliptic partial differential equations. With this technique, this paper derives the theoretical solution for a thick rectangular plate with four free edges supported on a Winkler foundation by variable separation method. In this method, the governing equation of thick plate was first transformed into state equations in the Hamilton space. The theoretical solution of this problem was next obtained by applying the method of variable separation based on the Hamilton system. Compared with traditional theoretical solutions for rectangular plates, this method has the advantage of not having to assume the form of deflection functions in the solution process. Numerical examples are presented to verify the validity of the proposed solution method.

Keywords: symplectic geometry method, Winkler foundation, thick rectangular plate, variable separation method, Hamilton system

Procedia PDF Downloads 291
18679 Vibration Control of Building Using Multiple Tuned Mass Dampers Considering Real Earthquake Time History

Authors: Rama Debbarma, Debanjan Das

Abstract:

The performance of multiple tuned mass dampers to mitigate the seismic vibration of structures considering real time history data is investigated in this paper. Three different real earthquake time history data like Kobe, Imperial Valley and Mammoth Lake are taken in the present study. The multiple tuned mass dampers (MTMD) are distributed at each storey. For comparative study, single tuned mass damper (STMD) is installed at top of the similar structure. This study is conducted for a fixed mass ratio (5%) and fixed damping ratio (5%) of structures. Numerical study is performed to evaluate the effectiveness of MTMDs and overall system performance. The displacement, acceleration, base shear and storey drift are obtained for both combined system (structure with MTMD and structure with STMD) for all earthquakes. The same responses are also obtained for structure without damper system. From obtained results, it is investigated that the MTMD configuration is more effective for controlling the seismic response of the primary system with compare to STMD configuration.

Keywords: Earthquake, multiple tuned mass dampers, single tuned mass damper, Time history.

Procedia PDF Downloads 260
18678 Research on Robot Adaptive Polishing Control Technology

Authors: Yi Ming Zhang, Zhan Xi Wang, Hang Chen, Gang Wang

Abstract:

Manual polishing has problems such as high labor intensity, low production efficiency and difficulty in guaranteeing the consistency of polishing quality. It is more and more necessary to replace manual polishing with robot polishing. Polishing force directly affects the quality of polishing, so accurate tracking and control of polishing force is one of the most important conditions for improving the accuracy of robot polishing. The traditional force control strategy is difficult to adapt to the strong coupling of force control and position control during the robot polishing process. Therefore, based on the analysis of force-based impedance control and position-based impedance control, this paper proposed a new type of adaptive controller. Based on force feedback control of active compliance control, the controller can adaptively estimate the stiffness and position of the external environment and eliminate the steady-state force error produced by traditional impedance control. The simulation results of the model shows that the adaptive controller has good adaptability to changing environmental positions and environmental stiffness, and can accurately track and control polishing force.

Keywords: robot polishing, force feedback, impedance control, adaptive control

Procedia PDF Downloads 185
18677 Carbide Structure and Fracture Toughness of High Speed Tool Steels

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

M2 steels, the typical Co-free high speed steel (HSS) possessing hardness level of 63~65 HRc, are most widely used for cutting tools. On the other hand, Co-containing HSS’s, such as M35 and M42, show a higher hardness level of 65~67 HRc and used for high quality cutting tools. In the fabrication of HSS’s, it is very important to control cleanliness and eutectic carbide structure of the ingot and it is required to increase productivity at the same time. Production of HSS ingots includes a variety of processes such as casting, electro-slag remelting (ESR), forging, blooming, and wire rod rolling processes. In the present study, electro-slag rapid remelting (ESRR) process, an advanced ESR process combined by continuous casting, was successfully employed to fabricate HSS billets of M2, M35, and M42 steels. Distribution and structure of eutectic carbides of the billets were analysed and cleanliness, hardness, and composition profile of the billets were also evaluated.

Keywords: high speed tool steel, eutectic carbide, microstructure, hardness, fracture toughness

Procedia PDF Downloads 434
18676 Particle Swarm Optimisation of a Terminal Synergetic Controllers for a DC-DC Converter

Authors: H. Abderrezek, M. N. Harmas

Abstract:

DC-DC converters are widely used as reliable power source for many industrial and military applications, computers and electronic devices. Several control methods were developed for DC-DC converters control mostly with asymptotic convergence. Synergetic control (SC) is a proven robust control approach and will be used here in a so-called terminal scheme to achieve finite time convergence. Lyapunov synthesis is adopted to assure controlled system stability. Furthermore particle swarm optimization (PSO) algorithm, based on an integral time absolute of error (ITAE) criterion will be used to optimize controller parameters. Simulation of terminal synergetic control of a DC-DC converter is carried out for different operating conditions and results are compared to classic synergetic control performance, that which demonstrate the effectiveness and feasibility of the proposed control method.

Keywords: DC-DC converter, PSO, finite time, terminal, synergetic control

Procedia PDF Downloads 487
18675 Control Configuration System as a Key Element in Distributed Control System

Authors: Goodarz Sabetian, Sajjad Moshfe

Abstract:

Control system for hi-tech industries could be realized generally and deeply by a special document. Vast heavy industries such as power plants with a large number of I/O signals are controlled by a distributed control system (DCS). This system comprises of so many parts from field level to high control level, and junior instrument engineers may be confused by this enormous information. The key document which can solve this problem is “control configuration system diagram” for each type of DCS. This is a road map that covers all of activities respect to control system in each industrial plant and inevitable to be studied by whom corresponded. It plays an important role from designing control system start point until the end; deliver the system to operate. This should be inserted in bid documents, contracts, purchasing specification and used in different periods of project EPC (engineering, procurement, and construction). Separate parts of DCS are categorized here in order of importance and a brief description and some practical plan is offered. This article could be useful for all instrument and control engineers who worked is EPC projects.

Keywords: control, configuration, DCS, power plant, bus

Procedia PDF Downloads 478
18674 Control and Control Systems of Administration in Nigeria

Authors: Inuwa Abdu Ibrahim

Abstract:

Public officials are required to posses certain values to adequately protect public interest, by being leaders that are servants of the people. The reality in Nigeria is that leaders rule as masters of the people rather than servants. The paper looked at control and control systems of administration in Nigeria, its resultant consequences and ways of achieving true control of administrators and administration. Secondary source of data was adopted for the research. It concludes that the keys to administrative efficiency and effectiveness through control are implementation of the already existing procedures and laws, as well as commitment on the part of public officials.

Keywords: Accountability, Fraud, Administration, Nigeria

Procedia PDF Downloads 346
18673 Soret and Dufour Effect on Variable Viscosity and Thermal Conductivity of an Inclined Magnetic Field with Dissipation in Non-Darcy Porous Medium

Authors: Rasaq A. Kareem, Sulyman O. Salawu

Abstract:

The study of Soret and Dufour effect on variable viscosity and thermal conductivity of an inclined magnetic field with dissipation in non-Darcy porous medium over a continuously stretching sheet for power-law variation in the sheet temperature and concentration are investigated. The viscosity of the fluid flow and thermal conductivity are considered to vary as a function of temperature. The local similarity solutions for different values of the physical parameters are presented for velocity, temperature and concentration. The result shows that variational increase in the values of Soret and Dufour parameters increase the temperature and concentration distribution. Finally, the effects of skin friction, Nusselt and Sherwood numbers which are of physical and engineering interest are considered and discussed.

Keywords: Dufour, non-Darcy Flow, Soret, thermal conductivity, variable viscosity

Procedia PDF Downloads 320
18672 Design of Control Systems for Grid Interconnection and Power Control of a Grid Tie Inverter for Micro-Grid Application

Authors: Deepak Choudhary

Abstract:

COEP-Microgrid, a project by the students of College of Engineering Pune aims at establishing a micro grid in the college campus serving as a living laboratory for research and development of novel grid technologies. Proposed micro grid has an AC-bus and DC-bus, interconnected together with a tie line DC-AC converter. In grid-connected mode AC bus of microgrid is synchronized with utility grid. Synchronization with utility grid requires grid and AC bus to have synchronism in frequency, phase sequence and voltage. Power flow requires phase difference between grid and AC bus. Control System is required to effectively regulate power flow between the grid and AC bus. The grid synchronizing control system is composed of frequency and phase control for regulated power flow and voltage control system for reduction of reactive power flow. The control system involves automatic active power flow control. It takes the feedback of DC link Capacitor and changes the power angle accordingly. Control system incorporating voltage, phase and power control was developed for grid-tie inverter. This paper discusses the design, simulation and practical implementation of control system described in various micro grid scenarios.

Keywords: microgrid, Grid-tie inverter, voltage control, automatic power control

Procedia PDF Downloads 646
18671 Application of Groundwater Level Data Mining in Aquifer Identification

Authors: Liang Cheng Chang, Wei Ju Huang, You Cheng Chen

Abstract:

Investigation and research are keys for conjunctive use of surface and groundwater resources. The hydrogeological structure is an important base for groundwater analysis and simulation. Traditionally, the hydrogeological structure is artificially determined based on geological drill logs, the structure of wells, groundwater levels, and so on. In Taiwan, groundwater observation network has been built and a large amount of groundwater-level observation data are available. The groundwater level is the state variable of the groundwater system, which reflects the system response combining hydrogeological structure, groundwater injection, and extraction. This study applies analytical tools to the observation database to develop a methodology for the identification of confined and unconfined aquifers. These tools include frequency analysis, cross-correlation analysis between rainfall and groundwater level, groundwater regression curve analysis, and decision tree. The developed methodology is then applied to groundwater layer identification of two groundwater systems: Zhuoshui River alluvial fan and Pingtung Plain. The abovementioned frequency analysis uses Fourier Transform processing time-series groundwater level observation data and analyzing daily frequency amplitude of groundwater level caused by artificial groundwater extraction. The cross-correlation analysis between rainfall and groundwater level is used to obtain the groundwater replenishment time between infiltration and the peak groundwater level during wet seasons. The groundwater regression curve, the average rate of groundwater regression, is used to analyze the internal flux in the groundwater system and the flux caused by artificial behaviors. The decision tree uses the information obtained from the above mentioned analytical tools and optimizes the best estimation of the hydrogeological structure. The developed method reaches training accuracy of 92.31% and verification accuracy 93.75% on Zhuoshui River alluvial fan and training accuracy 95.55%, and verification accuracy 100% on Pingtung Plain. This extraordinary accuracy indicates that the developed methodology is a great tool for identifying hydrogeological structures.

Keywords: aquifer identification, decision tree, groundwater, Fourier transform

Procedia PDF Downloads 147
18670 Large-Eddy Simulations for Flow Control

Authors: Reda Mankbadi

Abstract:

There are several technologically-important flow situations in which there is a need to control the outcome of the fluid flow. This could include flow separation, drag, noise, as well as particulate separations, to list only a few. One possible approach is the passive control, in which the design geometry is changed. An alternative approach is the Active Flow Control (AFC) technology in which an actuator is imbedded in the flow field to change the outcome. Examples of AFC are pulsed jets, synthetic jets, plasma actuators, heating and cooling, Etc. In this work will present an overview of the development of this field. Some examples will include: Airfoil Noise Suppression: LES is used to simulate the effect of the synthetic jet actuator on controlling the far field sound of a transitional airfoil. The results show considerable suppression of the noise if the synthetic jet is operated at frequencies. Mixing Enhancement and suppression: Results will be presented to show that imposing acoustic excitations at the nozzle exit can lead to enhancement or reduction of the jet plume mixing. In a vertical takeoff of Aircraft or in Space Launch, we will present results on the effects of water injection on reducing noise, and on protect the structure and pay load from fatigue damage. Other applications will include airfoil-gust interaction and propulsion systems optimizations.

Keywords: aerodynamics, simulations, aeroacoustics, active flow control (AFC), Large-Eddy Simulations (LES)

Procedia PDF Downloads 269
18669 A Method of Drilling a Ground Using a Robotic Arm

Authors: Lotfi Beji, Laredj Benchikh

Abstract:

Underground tunnel face bolting and pipe umbrella reinforcement are one of the most challenging tasks in construction whether industrial or not, and infrastructures such as roads or pipelines. It is one of the first sectors of economic activity in the world. Through a variety of soil and rock, a cyclic Conventional Tunneling Method (CTM) remains the best one for projects with highly variable ground conditions or shapes. CTM is the only alternative for the renovation of existing tunnels and creating emergency exit. During the drilling process, a wide variety of non-desired vibrations may arise, and a method using a robot arm is proposed. The main kinds of drilling through vibration here is the bit-bouncing phenomenon (resonant axial vibration). Hence, assisting the task by a robot arm may play an important role on drilling performances and security. We propose to control the axial-vibration phenomenon along the drillstring at a practical resonant frequency, and embed a Resonant Sonic Drilling Head (RSDH) as a robot end effector for drilling. Many questionable industry drilling criteria and stability are discussed in this paper.

Keywords: drilling, resonant vibration, robot arm, control

Procedia PDF Downloads 275
18668 Viability of Slab Sliding System for Single Story Structure

Authors: C. Iihoshi, G. A. MacRae, G. W. Rodgers, J. G. Chase

Abstract:

Slab Sliding System (SSS) with Coulomb friction interface between slab and supporting frame is a passive structural vibration control technology. The system can significantly reduce the slab acceleration and accompanied lateral force of the frame. At the same time it is expected to cause the slab displacement magnification by sliding movement. To obtain the general comprehensive seismic response of a single story structure, inelastic response spectra were computed for a large ensemble of ground motions and a practical range of structural periods and friction coefficient values. It was shown that long period structures have no trade-off relation between force reduction and displacement magnification with respect to elastic response, unlike short period structures. For structures with the majority of mass in the slab, the displacement magnification value can be predicted according to simple inelastic displacement relation for in elastically responding SDOF structures because the system behaves elastically to a SDOF structure.

Keywords: earthquake, isolation, slab, sliding

Procedia PDF Downloads 238
18667 Unsteadiness Effects on Variable Thrust Nozzle Performance

Authors: A. M. Tahsini, S. Tadayon Mousavi

Abstract:

The purpose of this paper is to elucidate the flow unsteady behavior for moving plug in convergent-divergent variable thrust nozzle. Compressible axisymmetric Navier-Stokes equations are used to study this physical phenomenon. Different velocities are set for plug to investigate the effect of plug movement on flow unsteadiness. Variation of mass flow rate and thrust are compared under two conditions: First, the plug is placed at different positions and flow is simulated to reach the steady state (quasi steady simulation) and second, the plug is moved with assigned velocity and flow simulation is coupled with plug movement (unsteady simulation). If plug speed is high enough and its movement time scale is at the same order of the flow time scale, variation of the mass flow rate and thrust level versus plug position demonstrate a vital discrepancy under the quasi steady and unsteady conditions. This phenomenon should be considered especially from response time viewpoints in thrusters design.

Keywords: nozzle, numerical study, unsteady, variable thrust

Procedia PDF Downloads 337
18666 An Approach to Low Velocity Impact Damage Modelling of Variable Stiffness Curved Composite Plates

Authors: Buddhi Arachchige, Hessam Ghasemnejad

Abstract:

In this study, the post impact behavior of curved composite plates subjected to low velocity impact was studied analytically and numerically. Approaches to damage modelling are proposed through the degradation of stiffness in the damaged region by reduction of thickness in the damage region. Spring-mass models were used to model the impact response of the plate and impactor. The study involved designing two damage models to compare and contrast the model best fitted with the numerical results. The theoretical force-time responses were compared with the numerical results obtained through a detailed study carried out in LS-DYNA. The modified damage model established a good prediction with the analytical force-time response for different layups and geometry. This study provides a gateway in selecting the most effective layups for variable stiffness curved composite panels able to withstand a higher impact damage.

Keywords: analytical modelling, composite damage, impact, variable stiffness

Procedia PDF Downloads 266
18665 Shear Elastic Waves in Disordered Anisotropic Multi-Layered Periodic Structure

Authors: K. B. Ghazaryan, R. A. Ghazaryan

Abstract:

Based on the constitutive model and anti-plane equations of anisotropic elastic body of monoclinic symmetry we consider the problem of shear wave propagation in multi-layered disordered composite structure with point defect. Using transfer matrix method the analytic expression is obtained providing solutions of shear Floquet wave propagation in periodic disordered anisotropic structure. The usefulness of the obtained analytical expression was discussed also in reflection and refraction problems from multi-layered reflector as well as in vibration problem of multi-layered waveguides. Numerical results are presented highlighting the effects arising in disordered periodic structure due to defects of multi-layered structure.

Keywords: shear elastic waves, monoclinic anisotropic media, periodic structure, disordered multilayer laminae, multi-layered waveguide

Procedia PDF Downloads 395
18664 SVM-DTC Using for PMSM Speed Tracking Control

Authors: Kendouci Khedidja, Mazari Benyounes, Benhadria Mohamed Rachid, Dadi Rachida

Abstract:

In recent years, direct torque control (DTC) has become an alternative to the well-known vector control especially for permanent magnet synchronous motor (PMSM). However, it presents a problem of field linkage and torque ripple. In order to solve this problem, the conventional DTC is combined with space vector pulse width modulation (SVPWM). This control theory has achieved great success in the control of PMSM. That has become a hotspot for resolving. The main objective of this paper gives us an introduction of the DTC and SVPWM-DTC control theory of PMSM which has been simulating on each part of the system via Matlab/Simulink based on the mathematical modeling. Moreover, the outcome of the simulation proved that the improved SVPWM- DTC of PMSM has a good dynamic and static performance.

Keywords: PMSM, DTC, SVM, speed control

Procedia PDF Downloads 372