Search results for: time efficient learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27102

Search results for: time efficient learning

26742 A Unified Deep Framework for Joint 3d Pose Estimation and Action Recognition from a Single Color Camera

Authors: Huy Hieu Pham, Houssam Salmane, Louahdi Khoudour, Alain Crouzil, Pablo Zegers, Sergio Velastin

Abstract:

We present a deep learning-based multitask framework for joint 3D human pose estimation and action recognition from color video sequences. Our approach proceeds along two stages. In the first, we run a real-time 2D pose detector to determine the precise pixel location of important key points of the body. A two-stream neural network is then designed and trained to map detected 2D keypoints into 3D poses. In the second, we deploy the Efficient Neural Architecture Search (ENAS) algorithm to find an optimal network architecture that is used for modeling the Spatio-temporal evolution of the estimated 3D poses via an image-based intermediate representation and performing action recognition. Experiments on Human3.6M, Microsoft Research Redmond (MSR) Action3D, and Stony Brook University (SBU) Kinect Interaction datasets verify the effectiveness of the proposed method on the targeted tasks. Moreover, we show that our method requires a low computational budget for training and inference.

Keywords: human action recognition, pose estimation, D-CNN, deep learning

Procedia PDF Downloads 146
26741 Improving the Run Times of Existing and Historical Demand Models Using Simple Python Scripting

Authors: Abhijeet Ostawal, Parmjit Lall

Abstract:

The run times for a large strategic model that we were managing had become too long leading to delays in project delivery, increased costs and loss in productivity. Software developers are continuously working towards developing more efficient tools by changing their algorithms and processes. The issue faced by our team was how do you apply the latest technologies on validated existing models which are based on much older versions of software that do not have the latest software capabilities. The multi-model transport model that we had could only be run in sequential assignment order. Recent upgrades to the software now allowed the assignment to be run in parallel, a concept called parallelization. Parallelization is a Python script working only within the latest version of the software. A full model transfer to the latest version was not possible due to time, budget and the potential changes in trip assignment. This article is to show the method to adapt and update the Python script in such a way that it can be used in older software versions by calling the latest version and then recalling the old version for assignment model without affecting the results. Through a process of trial-and-error run time savings of up to 30-40% have been achieved. Assignment results were maintained within the older version and through this learning process we’ve applied this methodology to other even older versions of the software resulting in huge time savings, more productivity and efficiency for both client and consultant.

Keywords: model run time, demand model, parallelisation, python scripting

Procedia PDF Downloads 119
26740 Social Semantic Web-Based Analytics Approach to Support Lifelong Learning

Authors: Khaled Halimi, Hassina Seridi-Bouchelaghem

Abstract:

The purpose of this paper is to describe how learning analytics approaches based on social semantic web techniques can be applied to enhance the lifelong learning experiences in a connectivist perspective. For this reason, a prototype of a system called SoLearn (Social Learning Environment) that supports this approach. We observed and studied literature related to lifelong learning systems, social semantic web and ontologies, connectivism theory, learning analytics approaches and reviewed implemented systems based on these fields to extract and draw conclusions about necessary features for enhancing the lifelong learning process. The semantic analytics of learning can be used for viewing, studying and analysing the massive data generated by learners, which helps them to understand through recommendations, charts and figures their learning and behaviour, and to detect where they have weaknesses or limitations. This paper emphasises that implementing a learning analytics approach based on social semantic web representations can enhance the learning process. From one hand, the analysis process leverages the meaning expressed by semantics presented in the ontology (relationships between concepts). From the other hand, the analysis process exploits the discovery of new knowledge by means of inferring mechanism of the semantic web.

Keywords: connectivism, learning analytics, lifelong learning, social semantic web

Procedia PDF Downloads 217
26739 Learning to Learn: A Course on Language Learning Strategies

Authors: Hélène Knoerr

Abstract:

In an increasingly global world, more and more international students attend academic courses and programs in a second or foreign language, and local students register in language learning classes in order to improve their employability. These students need to quickly become proficient in the new language. How can we, as administrators, curriculum developers and teachers, make sure that they have the tools they need in order to develop their language skills in an academic context? This paper will describe the development and implementation of a new course, Learning to learn, as part of the Major in French/English as a Second Language at the University of Ottawa. This academic program was recently completely overhauled in order to reflect the current approaches in language learning (more specifically, the action-oriented approach as embodied in the Common European Framework of Reference for Languages, and the concept of life-long autonomous learning). The course itself is based on research on language learning strategies, with a particular focus on the characteristics of the “good language learner”. We will present the methodological and pedagogical foundations, describe the course objectives and learning outcomes, the language learning strategies, and the classroom activities. The paper will conclude with students’ feedback and suggest avenues for further exploration.

Keywords: curriculum development, language learning, learning strategies, second language

Procedia PDF Downloads 412
26738 Metareasoning Image Optimization Q-Learning

Authors: Mahasa Zahirnia

Abstract:

The purpose of this paper is to explore new and effective ways of optimizing satellite images using artificial intelligence, and the process of implementing reinforcement learning to enhance the quality of data captured within the image. In our implementation of Bellman's Reinforcement Learning equations, associated state diagrams, and multi-stage image processing, we were able to enhance image quality, detect and define objects. Reinforcement learning is the differentiator in the area of artificial intelligence, and Q-Learning relies on trial and error to achieve its goals. The reward system that is embedded in Q-Learning allows the agent to self-evaluate its performance and decide on the best possible course of action based on the current and future environment. Results show that within a simulated environment, built on the images that are commercially available, the rate of detection was 40-90%. Reinforcement learning through Q-Learning algorithm is not just desired but required design criteria for image optimization and enhancements. The proposed methods presented are a cost effective method of resolving uncertainty of the data because reinforcement learning finds ideal policies to manage the process using a smaller sample of images.

Keywords: Q-learning, image optimization, reinforcement learning, Markov decision process

Procedia PDF Downloads 216
26737 Learners and Teachers Experiences in Collaborative Learning

Authors: Bengi Sonyel, Kheder Kasem

Abstract:

Nowadays technology is growing so fast. Everybody agrees that technology should be enhanced more in educational field in order to achieve maximum level of teaching and learning effectiveness. Collaborative learning is one of the most important subjects that have been discussed widely in the last 20 years. In this growing of technology and the widely spread of e-learning systems most of face-to-face processes are changing to be completely online base. Online collaborative learning considered one of the new feature that applied recently in some e-Learning systems but still there are much differences between face-to-face instance of collaborative learning and what really occur and happen in networked online environment.In this research we will compare face-to-face collaborative learning with online collaborative learning to define the key success for achieving course’s outcomes. We will also study the current teachers and students experience in today e-Learning systems, more specifically in online collaborative system and study them interaction to today’s technology that related to education. We will apply quantitative and qualitative research method in order to get accurate results. Finally we will gather all of our findings, analyze it and try to find the advantages and disadvantages as well as the current problems and possible solutions.

Keywords: collaborative learning, learning by doing, technology, teachers, learners experiences

Procedia PDF Downloads 526
26736 A Literature Review and a Proposed Conceptual Framework for Learning Activities in Business Process Management

Authors: Carin Lindskog

Abstract:

Introduction: Long-term success requires an organizational balance between continuity (exploitation) and change (exploration). The problem of balancing exploitation and exploration is a common issue in studies of organizational learning. In order to better face the tough competition in the face of changes, organizations need to exploit their current business and explore new business fields by developing new capabilities. The purpose of this work in progress is to develop a conceptual framework to shed light on the relevance of 'learning activities', i.e., exploitation and exploration, on different levels. The research questions that will be addressed are as follows: What sort of learning activities are found in the Business Process Management (BPM) field? How can these activities be linked to the individual level, group, level, and organizational level? In the work, a literature review will first be conducted. This review will explore the status of learning activities in the BPM field. An outcome from the literature review will be a conceptual framework of learning activities based on the included publications. The learning activities will be categorized to focus on the categories exploitation, exploration or both and into the levels of individual, group, and organization. The proposed conceptual framework will be a valuable tool for analyzing the research field as well as identification of future research directions. Related Work: BPM has increased in popularity as a way of working to strengthen the quality of the work and meet the demands of efficiency. Due to the increase in BPM popularity, more and more organizations reporting on BPM failure. One reason for this is the lack of knowledge about the extended scope of BPM to other business contexts that include, for example, more creative business fields. Yet another reason for the failures are the fact of the employees’ are resistant to changes. The learning process in an organization is an ongoing cycle of reflection and action and is a process that can be initiated, developed and practiced. Furthermore, organizational learning is multilevel; therefore the theory of organizational learning needs to consider the individual, the group, and the organization level. Learning happens over time and across levels, but it also creates a tension between incorporating new learning (feed-forward) and exploiting or using what has already been learned (feedback). Through feed-forward processes, new ideas and actions move from the individual to the group to the organization level. At the same time, what has already been learned feeds back from the organization to a group to an individual and has an impact on how people act and think.

Keywords: business process management, exploitation, exploration, learning activities

Procedia PDF Downloads 126
26735 The Roles of Teachers in Promoting Self-Regulated Learning

Authors: Mine Cekin

Abstract:

Self-regulated learning (SRL), which can be defined as learning that takes place when an individual is an active controller over his cognition, behavior, and motivation in the learning process, seems to be an essential educational goal. However, it is asserted that students need an assistance to become self-regulated learners. Therefore, teachers appear to play an important role in the introduction of SRL. Even though the importance of SRL has been shown by many researchers, the issue of how teachers can introduce it in a classroom environment needs to be investigated thoroughly. When it comes to mathematics learning particularly, it seems really difficult to associate this area with self-regulated learning because of the fact that it is mainly seen as a domain that is overwhelmingly memorizing written notations. As a result, self-regulated learning in mathematics education and what roles teachers have seem to deserve a significant attention. In this study, the significance of SRL and the roles of teachers in promoting SRL in the field of mathematics education particularly with the help of current literature have been highlighted. Some of the roles of teachers are becoming self-regulated learners themselves, facilitating motivation and collaboration with their colleagues in their schools.

Keywords: mathematics education, motivation, self-regulated learning, teacher self-regulation

Procedia PDF Downloads 170
26734 Educational Equity through Cross-Disciplinary Innovation: A Study of Fresh Developed E-Learning System from a Practitioner-Teacher

Authors: Peijen Pamela Chuang, Tzu-Hua Wang

Abstract:

To address the notion of educational equity, undergo the global pandemic, a digital learning system was cross-disciplinarily designed by a 15-year-experienced teaching practitioner. A study was performed on students through the use of this pioneering e-learning system, in which Taiwanese students with different learning styles and special needs have a foreign language- English as the target subject. 121 students are particularly selected from an N= 580 sample spread across 20 inclusive and special education schools throughout districts of Taiwan. To bring off equity, the participants are selected from a mix of different socioeconomic statuses. Grouped data, such as classroom observation, individual learning preference, prerequisite knowledge, learning interest, and learning performance of the population, is carefully documented for further analyzation. The paper focuses on documenting the awareness and needs of this pedagogical methodology revolution, data analysis of UX (User Experience), also examination and system assessment of this system. At the time of the pilot run, this newly-developed e-learning system had successfully applied for and received a national patent in Taiwan. This independent research hoped to expand the awareness of the importance of individual differences in SDG4 (Substantial Development Goals 4) as a part of the ripple effect, and serve as a comparison for future scholars in the pedagogical research with an interdisciplinary approach.

Keywords: e-learning, educational equity, foreign language acquisition, inclusive education, individual differences, interdisciplinary innovation, learning preferences, SDG4

Procedia PDF Downloads 76
26733 Polarity Classification of Social Media Comments in Turkish

Authors: Migena Ceyhan, Zeynep Orhan, Dimitrios Karras

Abstract:

People in modern societies are continuously sharing their experiences, emotions, and thoughts in different areas of life. The information reaches almost everyone in real-time and can have an important impact in shaping people’s way of living. This phenomenon is very well recognized and advantageously used by the market representatives, trying to earn the most from this means. Given the abundance of information, people and organizations are looking for efficient tools that filter the countless data into important information, ready to analyze. This paper is a modest contribution in this field, describing the process of automatically classifying social media comments in the Turkish language into positive or negative. Once data is gathered and preprocessed, feature sets of selected single words or groups of words are build according to the characteristics of language used in the texts. These features are used later to train, and test a system according to different machine learning algorithms (Naïve Bayes, Sequential Minimal Optimization, J48, and Bayesian Linear Regression). The resultant high accuracies can be important feedback for decision-makers to improve the business strategies accordingly.

Keywords: feature selection, machine learning, natural language processing, sentiment analysis, social media reviews

Procedia PDF Downloads 147
26732 Lifelong Learning and Digital Literacies in Language Learning

Authors: Selma Karabinar

Abstract:

Lifelong learning can be described as a system where learning takes place for a person over the course of a lifespan and comprises formal, non-formal and informal learning to achieve the maximum possible improvement in personal, social, and vocational life. 21st century is marked with the digital technologies and people need to learn and adapt to new literacies as part of their lifelong learning. Our current knowledge gap brings to mind several questions: Do people with digital mindsets have different assumptions about affordances of digital technologies? How do digital mindsets lead language learners use digital technologies within and beyond classrooms? Does digital literacies have different significance for the learners? The presentation is based on a study attempted to answer these questions and show the relationship between lifelong learning and digital literacies. The study was conducted with learners of English language at a state university in Istanbul. The quantitative data in terms of participants' lifelong learning perception was collected through a lifelong learning scale from 150 students. Then 5 students with high and 5 with low lifelong learning perception were interviewed. They were questioned about their personal sense of agency in lifelong learning and how they use digital technologies in their language learning. Therefore, the qualitative data was analyzed in terms of their knowledge about digital literacies and actual use of it in their personal and educational life. The results of the study suggest why teaching new literacies are important for lifelong learning and also suggests implications for language teachers' education and language pedagogy.

Keywords: digital mindsets, language learning, lifelong learning, new literacies

Procedia PDF Downloads 381
26731 Exploring the Use of Mobile Technologies in Schools in Oman; Opportunities and Challenges

Authors: Muna Al-Siyabi

Abstract:

When students bring mobile devices into the classrooms, they are frequently viewed as distractions from their daily educational practices rather than developing the twenty-first century skills. Such skills may involve sorting and extracting information, solving problems and evaluating results. Mobile devices, such as smartphones and tablets, have great potential for learning. Currently, schools and universities are embracing these devices with the aim of enhancing education. In Oman, mobile technologies have been introduced in the last ten years in two private schools to keep pace with the technological advancement. The researcher set out to examine the benefits and challenges of employing mobile learning in these two schools with the aim to inform the implementation of mobile technologies in more schools in Oman. The total of 16 teachers and 237 students responded to questionnaires, and 7 teachers and three student focus groups (of 13 students) were involved in interviews to explore how mobile technologies are used in these two schools. The questionnaires indicated that 87.5% of the sample teachers considered mobile learning helpful for learning and teaching. The teachers believed that mobile learning could promote learning, help teaching, offer vast resources, motivate students and save lesson time. Moreover, interviews with the teachers showed that mobile learning could offer several benefits like immediacy, saving lesson time, supporting differentiation, opportunities to learn anywhere, showing understanding, and offering vast resources. Most of the sample were also facing technical and classroom management challenges when employing mobile technologies in their lessons. In the interviews, most teachers complained of the difficulty to control their classes when they had mobile devices, which distracted their attention and understanding. They reported that their students were distracted by games and they needed to be trained to use mobile technologies for educational purposes. Most teachers recommended that certain parameters or restrictions should be established in any mobile learning project that restrict the usage of mobile technologies to educational purposes. In addition, teachers also emphasised that students needed to be trained on the advantages and limitations of mobile technologies. Teachers were also recommending that pedagogical training for using mobile technologies should be considered when implementing mobile learning in schools. These findings reveal that although of the challenges of managing their classes, teachers believe that mobile learning has great potential for learning. These results imply that mobile learning can be effectively implemented in school in Oman if certain factors and restrictions are considered.

Keywords: effective implementation, challenges, mobile learning, opportunities

Procedia PDF Downloads 217
26730 Developing Learning in Organizations with Innovation Pedagogy Methods

Authors: T. Konst

Abstract:

Most jobs include training and communication tasks, but often the people in these jobs lack pedagogical competences to plan, implement and assess learning. This paper aims to discuss how a learning approach called innovation pedagogy developed in higher education can be utilized for learning development in various organizations. The methods presented how to implement innovation pedagogy such as process consultation and train the trainer model can provide added value to develop pedagogical knowhow in organizations and thus support their internal learning and development.

Keywords: innovation pedagogy, learning, organizational development, process consultation

Procedia PDF Downloads 369
26729 Unsupervised Echocardiogram View Detection via Autoencoder-Based Representation Learning

Authors: Andrea Treviño Gavito, Diego Klabjan, Sanjiv J. Shah

Abstract:

Echocardiograms serve as pivotal resources for clinicians in diagnosing cardiac conditions, offering non-invasive insights into a heart’s structure and function. When echocardiographic studies are conducted, no standardized labeling of the acquired views is performed. Employing machine learning algorithms for automated echocardiogram view detection has emerged as a promising solution to enhance efficiency in echocardiogram use for diagnosis. However, existing approaches predominantly rely on supervised learning, necessitating labor-intensive expert labeling. In this paper, we introduce a fully unsupervised echocardiographic view detection framework that leverages convolutional autoencoders to obtain lower dimensional representations and the K-means algorithm for clustering them into view-related groups. Our approach focuses on discriminative patches from echocardiographic frames. Additionally, we propose a trainable inverse average layer to optimize decoding of average operations. By integrating both public and proprietary datasets, we obtain a marked improvement in model performance when compared to utilizing a proprietary dataset alone. Our experiments show boosts of 15.5% in accuracy and 9.0% in the F-1 score for frame-based clustering, and 25.9% in accuracy and 19.8% in the F-1 score for view-based clustering. Our research highlights the potential of unsupervised learning methodologies and the utilization of open-sourced data in addressing the complexities of echocardiogram interpretation, paving the way for more accurate and efficient cardiac diagnoses.

Keywords: artificial intelligence, echocardiographic view detection, echocardiography, machine learning, self-supervised representation learning, unsupervised learning

Procedia PDF Downloads 38
26728 Reinforcement Learning for Quality-Oriented Production Process Parameter Optimization Based on Predictive Models

Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt

Abstract:

Producing faulty products can be costly for manufacturing companies and wastes resources. To reduce scrap rates in manufacturing, process parameters can be optimized using machine learning. Thus far, research mainly focused on optimizing specific processes using traditional algorithms. To develop a framework that enables real-time optimization based on a predictive model for an arbitrary production process, this study explores the application of reinforcement learning (RL) in this field. Based on a thorough review of literature about RL and process parameter optimization, a model based on maximum a posteriori policy optimization that can handle both numerical and categorical parameters is proposed. A case study compares the model to state–of–the–art traditional algorithms and shows that RL can find optima of similar quality while requiring significantly less time. These results are confirmed in a large-scale validation study on data sets from both production and other fields. Finally, multiple ways to improve the model are discussed.

Keywords: reinforcement learning, production process optimization, evolutionary algorithms, policy optimization, actor critic approach

Procedia PDF Downloads 98
26727 Efficient Control of Brushless DC Motors with Pulse Width Modulation

Authors: S. Shahzadi, J. Rizk

Abstract:

This paper describes the pulse width modulated control of a three phase, 4 polar DC brushless motor. To implement this practically the Atmel’s AVR ATmega 328 microcontroller embedded on an Arduino Eleven board is utilized. The microcontroller programming is done in an open source Arduino IDE development environment. The programming logic effectively manipulated a six MOSFET bridge which was used to energize the stator windings as per control requirements. The results obtained showed accurate, precise and efficient pulse width modulated operation. Another advantage offered by this pulse width modulated control was the efficient speed control of the motor. By varying the time intervals between successive commutations, faster energizing of the stator windings was possible thereby leading to quicker rotor alignment with these energized phases and faster revolutions.

Keywords: brushless DC motors, commutation, MOSFET, PWM

Procedia PDF Downloads 512
26726 The Relationships among Learning Emotion, Major Satisfaction, Learning Flow, and Academic Achievement in Medical School Students

Authors: S. J. Yune, S. Y. Lee, S. J. Im, B. S. Kam, S. Y. Baek

Abstract:

This study explored whether academic emotion, major satisfaction, and learning flow are associated with academic achievement in medical school. We know that emotion and affective factors are important factors in students' learning and performance. Emotion has taken the stage in much of contemporary educational psychology literature, no longer relegated to secondary status behind traditionally studied cognitive constructs. Medical school students (n=164) completed academic emotion, major satisfaction, and learning flow online survey. Academic performance was operationalized as students' average grade on two semester exams. For data analysis, correlation analysis, multiple regression analysis, hierarchical multiple regression analyses and ANOVA were conducted. The results largely confirmed the hypothesized relations among academic emotion, major satisfaction, learning flow and academic achievement. Positive academic emotion had a correlation with academic achievement (β=.191). Positive emotion had 8.5% explanatory power for academic achievement. Especially, sense of accomplishment had a significant impact on learning performance (β=.265). On the other hand, negative emotion, major satisfaction, and learning flow did not affect academic performance. Also, there were differences in sense of great (F=5.446, p=.001) and interest (F=2.78, p=.043) among positive emotion, boredom (F=3.55, p=.016), anger (F=4.346, p=.006), and petulance (F=3.779, p=.012) among negative emotion by grade. This study suggested that medical students' positive emotion was an important contributor to their academic achievement. At the same time, it is important to consider that some negative emotions can act to increase one’s motivation. Of particular importance is the notion that instructors can and should create learning environment that foster positive emotion for students. In doing so, instructors improve their chances of positively impacting students’ achievement emotions, as well as their subsequent motivation, learning, and performance. This result had an implication for medical educators striving to understand the personal emotional factors that influence learning and performance in medical training.

Keywords: academic achievement, learning emotion, learning flow, major satisfaction

Procedia PDF Downloads 274
26725 Open and Distance Learning (ODL) Education in Nigeria: Challenge of Academic Quality

Authors: Edu Marcelina, Sule Sheidu A., Nsor Eunice

Abstract:

As open and distance education is gradually becoming an acceptable means of solving the problem of access in higher education, quality has now become one of the main concerns among institutions and stakeholders of open and distance learning (ODL) and the education sector in general. This study assessed the challenges of academic quality in the open and distance learning (ODL) education in Nigeria using Distance Learning Institute (DLI), University of Lagos and National Open University of Nigeria as a case. In carrying out the study, a descriptive survey research design was employed. A researcher-designed and validated questionnaire was used to elicit responses that translated to the quantitative data for this study. The sample comprised 665 students of the Distance Learning Institute (DLI), and National Open University of Nigeria (NOUN), carefully selected through the method of simple random sampling. Data collected from the study were analyzed using Chi-Square (X2) at 0.05 Level of significance. The results of the analysis revealed that; the use of ICT tools is a factor in ensuring quality in the Open and Distance Learning (ODL) operations; the quality of the materials made available to ODL students will determine the quality of education that will be received by the students; and the time scheduled for students for self-study, online lecturing/interaction and face to face study and the quality of education in Open and Distance Learning Institutions has a lot of impact on the quality of education the students receive. Based on the findings, a number of recommendations were made.

Keywords: open and distance learning, quality, ICT, face-to-face interaction

Procedia PDF Downloads 378
26724 Enhanced Extra Trees Classifier for Epileptic Seizure Prediction

Authors: Maurice Ntahobari, Levin Kuhlmann, Mario Boley, Zhinoos Razavi Hesabi

Abstract:

For machine learning based epileptic seizure prediction, it is important for the model to be implemented in small implantable or wearable devices that can be used to monitor epilepsy patients; however, current state-of-the-art methods are complex and computationally intensive. We use Shapley Additive Explanation (SHAP) to find relevant intracranial electroencephalogram (iEEG) features and improve the computational efficiency of a state-of-the-art seizure prediction method based on the extra trees classifier while maintaining prediction performance. Results for a small contest dataset and a much larger dataset with continuous recordings of up to 3 years per patient from 15 patients yield better than chance prediction performance (p < 0.004). Moreover, while the performance of the SHAP-based model is comparable to that of the benchmark, the overall training and prediction time of the model has been reduced by a factor of 1.83. It can also be noted that the feature called zero crossing value is the best EEG feature for seizure prediction. These results suggest state-of-the-art seizure prediction performance can be achieved using efficient methods based on optimal feature selection.

Keywords: machine learning, seizure prediction, extra tree classifier, SHAP, epilepsy

Procedia PDF Downloads 113
26723 Data Augmentation for Automatic Graphical User Interface Generation Based on Generative Adversarial Network

Authors: Xulu Yao, Moi Hoon Yap, Yanlong Zhang

Abstract:

As a branch of artificial neural network, deep learning is widely used in the field of image recognition, but the lack of its dataset leads to imperfect model learning. By analysing the data scale requirements of deep learning and aiming at the application in GUI generation, it is found that the collection of GUI dataset is a time-consuming and labor-consuming project, which is difficult to meet the needs of current deep learning network. To solve this problem, this paper proposes a semi-supervised deep learning model that relies on the original small-scale datasets to produce a large number of reliable data sets. By combining the cyclic neural network with the generated countermeasure network, the cyclic neural network can learn the sequence relationship and characteristics of data, make the generated countermeasure network generate reasonable data, and then expand the Rico dataset. Relying on the network structure, the characteristics of collected data can be well analysed, and a large number of reasonable data can be generated according to these characteristics. After data processing, a reliable dataset for model training can be formed, which alleviates the problem of dataset shortage in deep learning.

Keywords: GUI, deep learning, GAN, data augmentation

Procedia PDF Downloads 185
26722 Challenges Faced by the Teachers Regarding Student Assessment at Distant and Online Learning Mode

Authors: Ameema Mahroof, Muhammad Saeed

Abstract:

Purpose: The paper aimed to explore the problems faced by the faculty in a distant and online learning environment. It proposes the remedies of the problems faced by the teachers. In distant and online learning mode, the methods of student assessment are different than traditional learning mode. In this paper, the assessment strategies of these learning modes are identified, and the challenges faced by the teachers regarding these assessment methods are explored. Design/Methodology/Approach: The study is qualitative and opted for an exploratory study, including eight interviews with faculty of distant and online universities. The data for this small scale study was gathered using semi-structured interviews. Findings: Findings of the study revealed that assignment and tests are the most effective way of assessment in these modes. It further showed that less student-teacher interaction, plagiarized assignments, passive students, less time for marking are the main challenges faced by the teachers in these modes. Research Limitations: Because of the chosen research approach, the study might not be able to provide generalizable results. That’s why it is recommended to do further studies on this topic. Practical Implications: The paper includes implications for the better assessment system in online and distant learning mode. Originality/Value: This paper fulfills an identified need to study the challenges and problems faced by the teachers regarding student assessment.

Keywords: online learning, distant learning, student assessment, assignments

Procedia PDF Downloads 167
26721 Teaching the Student Agenda: A Case Study of Using Film Production in Students' English Learning

Authors: Ali Zefeiti

Abstract:

There has always been a debate on critical versus pragmatic approach to learning English. Different elements of teaching take different shapes in the two approaches. This study concerns itself with the students who are the main pillar of the teaching/learning operation. Students have always been placed into classrooms to learn what the curricula of different courses offer. There is little room for students to state their own learning needs as they often have to conform with the group requirement. This study focuses on an extra-curricular activity students did alongside their mainstream learning. The students come from different colleges and different EAP courses. They are united by their passion for the task and learning many things along the way. The data are collected through interviews and students' journals. The study was concerned with the effect of this extra-curricular activity on students' main learning trajectory. The students were engaged in the task of film production over the period of their English Language course. The findings show that students are able to set their own agenda for learning and have actually had a lot of skills and vocabulary to take to class.

Keywords: critical EAP, pragmatic EAP, self-directed learning, teaching methods

Procedia PDF Downloads 457
26720 Extent of Constructivist Learning in Science Classes of the College Department of Southville International School and Colleges: Implication to Effective College Teaching

Authors: Mark Edward S. Paulo

Abstract:

This study was conducted to determine the extent of constructivist learning in science classes of the college department of Southville International School and Colleges. This explores the students’ assessment of their learning when professors would give lecture and various activities in the classroom and at the same time their perception on how their professors maintain a constructivist learning environment. In this study, a total of 185 students participated. These students were enrolled in Science courses offered in the first semester of AY 2014 to 2015. Descriptive correlational method was used in this study while simple random sampling technique was utilized in getting the number of target population. The results revealed that student often observed that their professors apply constructivist approach when teaching sciences. A positive correlation was found between students’ level of learning and extent of constructivism.

Keywords: college teaching, constructivism, pedagogy, student-centered approach

Procedia PDF Downloads 252
26719 A Study of Various Ontology Learning Systems from Text and a Look into Future

Authors: Fatima Al-Aswadi, Chan Yong

Abstract:

With the large volume of unstructured data that increases day by day on the web, the motivation of representing the knowledge in this data in the machine processable form is increased. Ontology is one of the major cornerstones of representing the information in a more meaningful way on the semantic Web. The goal of Ontology learning from text is to elicit and represent domain knowledge in the machine readable form. This paper aims to give a follow-up review on the ontology learning systems from text and some of their defects. Furthermore, it discusses how far the ontology learning process will enhance in the future.

Keywords: concept discovery, deep learning, ontology learning, semantic relation, semantic web

Procedia PDF Downloads 525
26718 Using Machine Learning Techniques to Extract Useful Information from Dark Data

Authors: Nigar Hussain

Abstract:

It is a subset of big data. Dark data means those data in which we fail to use for future decisions. There are many issues in existing work, but some need powerful tools for utilizing dark data. It needs sufficient techniques to deal with dark data. That enables users to exploit their excellence, adaptability, speed, less time utilization, execution, and accessibility. Another issue is the way to utilize dark data to extract helpful information to settle on better choices. In this paper, we proposed upgrade strategies to remove the dark side from dark data. Using a supervised model and machine learning techniques, we utilized dark data and achieved an F1 score of 89.48%.

Keywords: big data, dark data, machine learning, heatmap, random forest

Procedia PDF Downloads 31
26717 Use of Artificial Intelligence Should Be Centred Around Emotions to Create Effective Learning Environment in the Corporate Workplace

Authors: Artur Willoński

Abstract:

This research introduces the concept of Emotions Based Collaborative Prompting (EBCP) as a response to the need for a unified learning environment in the corporate workplace. The first section examines the key characteristics of workplace learning, presenting three core propositions: (1) workplace learning is both informal and diverse, requiring adaptable approaches; (2) corporate settings provide inherent structures that can be leveraged for collaborative learning; and (3) emotional engagement and human interaction play a central role in effective learning processes. The second section describes how EBCP framework creates an environment that helps identify emotions, assign emotions with parameters, and allows these parameters to be collected, analysed, and turned into a context-aware learning environment. It concludes that EBCP allows people who come from different social backgrounds, age groups, and positions in the organisation to collaborate and generate knowledge based on both formal and informal interactions.

Keywords: collaborative learning, self-regulated learning, emotions, AI

Procedia PDF Downloads 16
26716 Learning Object Repositories as Developmental Resources for Educational Institutions in the 21st Century

Authors: Hanan A. Algamdi, Huda Y. Alyami

Abstract:

Learning object repositories contribute to developing educational process through its advantages; as they employ technology effectively, and use it to create new resources for effective learning, as well as they provide opportunities for collaboration in content through providing the ability for editing, modifying and developing it. This supports the relationships between communities that benefit from these repositories, and reflects positively on the content quality. Therefore, this study aims at exploring the most prominent learning topics in the 21st century, which should be included in learning object repositories, and identifying the necessary set of learning skills that the repositories should develop among today students. For conducting this study, the analytical descriptive method will be employed, and study sample will include a group of leaders, experts, and specialists in curricula and e-learning at ministry of education in Kingdom of Saudi Arabia.

Keywords: learning object, repositories, 21st century, quality

Procedia PDF Downloads 306
26715 Experimental Verification of the Relationship between Physiological Indexes and the Presence or Absence of an Operation during E-learning

Authors: Masaki Omata, Shumma Hosokawa

Abstract:

An experiment to verify the relationships between physiological indexes of an e-learner and the presence or absence of an operation during e-learning is described. Electroencephalogram (EEG), hemoencephalography (HEG), skin conductance (SC), and blood volume pulse (BVP) values were measured while participants performed experimental learning tasks. The results show that there are significant differences between the SC values when reading with clicking on learning materials and the SC values when reading without clicking, and between the HEG ratio when reading (with and without clicking) and the HEG ratio when resting for four of five participants. We conclude that the SC signals can be used to estimate whether or not a learner is performing an active task and that the HEG ratios can be used to estimate whether a learner is learning.

Keywords: e-learning, physiological index, physiological signal, state of learning

Procedia PDF Downloads 380
26714 ICTs Knowledge as a Way of Enhancing Literacy and Lifelong Learning in Nigeria

Authors: Jame O. Ezema, Odenigbo Veronica

Abstract:

The study covers the topic Information Communication and Technology (ICTs) knowledge as a way of enhancing Literacy and Lifelong learning in Nigeria. This work delved into defining of ICTs. Types of ICTs and media technologies were also mentioned. It further explained how ICTs can be strengthened and the uses of ICTs in education was duly emphasized. The paper also enumerated some side effects of ICTs on learners while the role of ICTs in enhancing literacy was explained. The study carried out strategies to use ICTs meaningfully in Literacy Programs and also emphasized the word lifelong learning in Nigeria. Some recommendations were made towards acquiring ICTs knowledge, so as to enhance Literacy and Lifelong learning in Nigeria.

Keywords: literacy, distance-learning, life-long learning for sustainable development, e-learning

Procedia PDF Downloads 507
26713 Prediction on Housing Price Based on Deep Learning

Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang

Abstract:

In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.

Keywords: deep learning, convolutional neural network, LSTM, housing prediction

Procedia PDF Downloads 307