Search results for: stochastic volatility
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 675

Search results for: stochastic volatility

315 Determinants of Profit Efficiency among Poultry Egg Farmers in Ondo State, Nigeria: A Stochastic Profit Function Approach

Authors: Olufunke Olufunmilayo Ilemobayo, Barakat. O Abdulazeez

Abstract:

Profit making among poultry egg farmers has been a challenge to efficient distribution of scarce farm resources over the years, due majorly to low capital base, inefficient management, technical inefficiency, economic inefficiency, thus poultry egg production has moved into an underperformed situation, characterised by low profit margin. Though previous studies focus mainly on broiler production and efficiency of its production, however, paucity of information exist in the areas of profit efficiency in the study area. Hence, determinants of profit efficiency among poultry egg farmers in Ondo State, Nigeria were investigated. A purposive sampling technique was used to obtain primary data from poultry egg farmers in Owo and Akure local government area of Ondo State, through a well-structured questionnaire. socio-economic characteristics such as age, gender, educational level, marital status, household size, access to credit, extension contact, other variables were input and output data like flock size, cost of feeder and drinker, cost of feed, cost of labour, cost of drugs and medications, cost of energy, price of crate of table egg, price of spent layers were variables used in the study. Data were analysed using descriptive statistics, budgeting analysis, and stochastic profit function/inefficiency model. Result of the descriptive statistics shows that 52 per cent of the poultry farmers were between 31-40 years, 62 per cent were male, 90 per cent had tertiary education, 66 per cent were primarily poultry farmers, 78 per cent were original poultry farm owners and 55 per cent had more than 5 years’ work experience. Descriptive statistics on cost and returns indicated that 64 per cent of the return were from sales of egg, while the remaining 36 per cent was from sales of spent layers. The cost of feeding take the highest proportion of 69 per cent of cost of production and cost of medication the lowest (7 per cent). A positive gross margin of N5, 518,869.76, net farm income of ₦ 5, 500.446.82 and net return on investment of 0.28 indicated poultry egg production is profitable. Equipment’s cost (22.757), feeding cost (18.3437), labour cost (136.698), flock size (16.209), drug and medication cost (4.509) were factors that affecting profit efficiency, while education (-2.3143), household size (-18.4291), access to credit (-16.027), and experience (-7.277) were determinant of profit efficiency. Education, household size, access to credit and experience in poultry production were the main determinants of profit efficiency of poultry egg production in Ondo State. Other factors that affect profit efficiency were cost of feeding, cost of labour, flock size, cost of drug and medication, they positively and significantly influenced profit efficiency in Ondo State, Nigeria.

Keywords: cost and returns, economic inefficiency, profit margin, technical inefficiency

Procedia PDF Downloads 129
314 Mathematical Programming Models for Portfolio Optimization Problem: A Review

Authors: Mazura Mokhtar, Adibah Shuib, Daud Mohamad

Abstract:

Portfolio optimization problem has received a lot of attention from both researchers and practitioners over the last six decades. This paper provides an overview of the current state of research in portfolio optimization with the support of mathematical programming techniques. On top of that, this paper also surveys the solution algorithms for solving portfolio optimization models classifying them according to their nature in heuristic and exact methods. To serve these purposes, 40 related articles appearing in the international journal from 2003 to 2013 have been gathered and analyzed. Based on the literature review, it has been observed that stochastic programming and goal programming constitute the highest number of mathematical programming techniques employed to tackle the portfolio optimization problem. It is hoped that the paper can meet the needs of researchers and practitioners for easy references of portfolio optimization.

Keywords: portfolio optimization, mathematical programming, multi-objective programming, solution approaches

Procedia PDF Downloads 349
313 Proposed Alternative System for Existing Traffic Signal System

Authors: Alluri Swaroopa, L. V. N. Prasad

Abstract:

Alone with fast urbanization in world, traffic control problem became a big issue in urban construction. Having an efficient and reliable traffic control system is crucial to macro-traffic control. Traffic signal is used to manage conflicting requirement by allocating different sets of mutually compatible traffic movement during distinct time interval. Many approaches have been made proposed to solve this discrete stochastic problem. Recognizing the need to minimize right-of-way impacts while efficiently handling the anticipated high traffic volumes, the proposed alternative system gives effective design. This model allows for increased traffic capacity and reduces delays by eliminating a step in maneuvering through the freeway interchange. The concept proposed in this paper involves construction of bridges and ramps at intersection of four roads to control the vehicular congestion and to prevent traffic breakdown.

Keywords: bridges, junctions, ramps, urban traffic control

Procedia PDF Downloads 554
312 Airport Check-In Optimization by IP and Simulation in Combination

Authors: Ahmed Al-Sultan

Abstract:

The check-in area of airport terminal is one of the busiest sections at airports at certain periods. The passengers are subjected to queues and delays during the check-in process. These delays and queues are due to constraints in the capacity of service facilities. In this project, the airport terminal is decomposed into several check-in areas. The airport check-in scheduling problem requires both a deterministic (integer programming) and stochastic (simulation) approach. Integer programming formulations are provided to minimize the total number of counters in each check-in area under the realistic constraint that counters for one and the same flight should be adjacent and the desired number of counters remaining in each area should be fixed during check-in operations. By using simulation, the airport system can be modeled to study the effects of various parameters such as number of passengers on a flight and check-in counter opening and closing time.

Keywords: airport terminal, integer programming, scheduling, simulation

Procedia PDF Downloads 389
311 Ionic Liquid 1-Butyl-3-Methylimidazolium Bromide as Reaction Medium for the Synthesis of Flavanones under Solvent-Free Conditions

Authors: Cecilia Espindola, Juan Carlos Palacios

Abstract:

Flavonoids are a large group of natural compounds which are found in many fruits and vegetables. A subgroup of these called flavanones display a wide range of biological activities, and they also have an important physiological role in plants. The ionic liquid (ILs) are compounds consisting of an organic cation with an organic or inorganic anion. Due to its unique properties such as high electrical conductivity, wide temperature range of the liquid state, thermal and electrochemical stability, high ionic density and low volatility and flammability, are considered as ecological solvents in organic synthesis, catalysis, electrolytes in accumulators, and electrochemistry, non-volatile plasticizers, and chemical separation. It was synthesized ionic liquid IL 1-butyl-3-methylimidazolium bromide free-solvent and used as reaction medium for flavanones synthesis, under several reaction conditions of temperature, time and production. The obtained compounds were analyzed by melting point, elemental analysis, IR and UV-vis spectroscopy.

Keywords: 1-butyl-3-methylimidazolium bromide, flavonoids, free-solvent, IR spectroscopy

Procedia PDF Downloads 120
310 Optimum Design of Grillage Systems Using Firefly Algorithm Optimization Method

Authors: F. Erdal, E. Dogan, F. E. Uz

Abstract:

In this study, firefly optimization based optimum design algorithm is presented for the grillage systems. Naming of the algorithm is derived from the fireflies, whose sense of movement is taken as a model in the development of the algorithm. Fireflies’ being unisex and attraction between each other constitute the basis of the algorithm. The design algorithm considers the displacement and strength constraints which are implemented from LRFD-AISC (Load and Resistance Factor Design-American Institute of Steel Construction). It selects the appropriate W (Wide Flange)-sections for the transverse and longitudinal beams of the grillage system among 272 discrete W-section designations given in LRFD-AISC so that the design limitations described in LRFD are satisfied and the weight of the system is confined to be minimal. Number of design examples is considered to demonstrate the efficiency of the algorithm presented.

Keywords: firefly algorithm, steel grillage systems, optimum design, stochastic search techniques

Procedia PDF Downloads 435
309 Hydrological Modeling of Watersheds Using the Only Corresponding Competitor Method: The Case of M’Zab Basin, South East Algeria

Authors: Oulad Naoui Noureddine, Cherif ELAmine, Djehiche Abdelkader

Abstract:

Water resources management includes several disciplines; the modeling of rainfall-runoff relationship is the most important discipline to prevent natural risks. There are several models to study rainfall-runoff relationship in watersheds. However, the majority of these models are not applicable in all basins of the world.  In this study, a new stochastic method called The Only Corresponding Competitor method (OCC) was used for the hydrological modeling of M’ZAB   Watershed (South East of Algeria) to adapt a few empirical models for any hydrological regime.  The results obtained allow to authorize a certain number of visions, in which it would be interesting to experiment with hydrological models that improve collectively or separately the data of a catchment by the OCC method.

Keywords: modelling, optimization, rainfall-runoff relationship, empirical model, OCC

Procedia PDF Downloads 265
308 Inventory Control for Purchased Part under Long Lead Time and Uncertain Demand: MRP vs Demand-Driven MRP Approach

Authors: M. J. Shofa, A. Hidayatno, O. M. Armand

Abstract:

MRP as a production control system is appropriate for the deterministic environment. Unfortunately, most production systems such as customer demands are stochastic. Demand-Driven MRP (DDMRP) is a new approach for inventory control system, and it deals with demand uncertainty. The objective of this paper is to compare the MRP and DDMRP work for a long lead time and uncertain demand in terms of on-hand inventory levels. The evaluation is conducted through a discrete event simulation using purchased part data from an automotive company. The result is MRP gives 50,759 pcs / day while DDMRP gives 34,835 pcs / day (reduce 32%), it means DDMRP is more effective inventory control than MRP in terms of on-hand inventory levels.

Keywords: Demand-Driven MRP, long lead time, MRP, uncertain demand

Procedia PDF Downloads 301
307 Modelling Spatial Dynamics of Terrorism

Authors: André Python

Abstract:

To this day, terrorism persists as a worldwide threat, exemplified by the recent deadly attacks in January 2015 in Paris and the ongoing massacres perpetrated by ISIS in Iraq and Syria. In response to this threat, states deploy various counterterrorism measures, the cost of which could be reduced through effective preventive measures. In order to increase the efficiency of preventive measures, policy-makers may benefit from accurate predictive models that are able to capture the complex spatial dynamics of terrorism occurring at a local scale. Despite empirical research carried out at country-level that has confirmed theories explaining the diffusion processes of terrorism across space and time, scholars have failed to assess diffusion’s theories on a local scale. Moreover, since scholars have not made the most of recent statistical modelling approaches, they have been unable to build up predictive models accurate in both space and time. In an effort to address these shortcomings, this research suggests a novel approach to systematically assess the theories of terrorism’s diffusion on a local scale and provide a predictive model of the local spatial dynamics of terrorism worldwide. With a focus on the lethal terrorist events that occurred after 9/11, this paper addresses the following question: why and how does lethal terrorism diffuse in space and time? Based on geolocalised data on worldwide terrorist attacks and covariates gathered from 2002 to 2013, a binomial spatio-temporal point process is used to model the probability of terrorist attacks on a sphere (the world), the surface of which is discretised in the form of Delaunay triangles and refined in areas of specific interest. Within a Bayesian framework, the model is fitted through an integrated nested Laplace approximation - a recent fitting approach that computes fast and accurate estimates of posterior marginals. Hence, for each location in the world, the model provides a probability of encountering a lethal terrorist attack and measures of volatility, which inform on the model’s predictability. Diffusion processes are visualised through interactive maps that highlight space-time variations in the probability and volatility of encountering a lethal attack from 2002 to 2013. Based on the previous twelve years of observation, the location and lethality of terrorist events in 2014 are statistically accurately predicted. Throughout the global scope of this research, local diffusion processes such as escalation and relocation are systematically examined: the former process describes an expansion from high concentration areas of lethal terrorist events (hotspots) to neighbouring areas, while the latter is characterised by changes in the location of hotspots. By controlling for the effect of geographical, economical and demographic variables, the results of the model suggest that the diffusion processes of lethal terrorism are jointly driven by contagious and non-contagious factors that operate on a local scale – as predicted by theories of diffusion. Moreover, by providing a quantitative measure of predictability, the model prevents policy-makers from making decisions based on highly uncertain predictions. Ultimately, this research may provide important complementary tools to enhance the efficiency of policies that aim to prevent and combat terrorism.

Keywords: diffusion process, terrorism, spatial dynamics, spatio-temporal modeling

Procedia PDF Downloads 351
306 The Role of the Rate of Profit Concept in Creating Economic Stability in Islamic Financial Market

Authors: Trisiladi Supriyanto

Abstract:

This study aims to establish a concept of rate of profit on Islamic banking that can create economic justice and stability in the Islamic Financial Market (Banking and Capital Markets). A rate of profit that creates economic justice and stability can be achieved through its role in maintaining the stability of the financial system in which there is an equitable distribution of income and wealth. To determine the role of the rate of profit as the basis of the profit sharing system implemented in the Islamic financial system, we can see the connection of rate of profit in creating financial stability, especially in the asset-liability management of financial institutions that generate a stable net margin or the rate of profit that is not affected by the ups and downs of the market risk factors, including indirect effect on interest rates. Furthermore, Islamic financial stability can be seen from the role of the rate of profit on the stability of the Islamic financial assets value that are measured from the Islamic financial asset price volatility in the Islamic Bond Market in the Capital Market.

Keywords: economic justice, equitable distribution of income, equitable distribution of wealth, rate of profit, stability in the financial system

Procedia PDF Downloads 314
305 Forecasting Issues in Energy Markets within a Reg-ARIMA Framework

Authors: Ilaria Lucrezia Amerise

Abstract:

Electricity markets throughout the world have undergone substantial changes. Accurate, reliable, clear and comprehensible modeling and forecasting of different variables (loads and prices in the first instance) have achieved increasing importance. In this paper, we describe the actual state of the art focusing on reg-SARMA methods, which have proven to be flexible enough to accommodate the electricity price/load behavior satisfactory. More specifically, we will discuss: 1) The dichotomy between point and interval forecasts; 2) The difficult choice between stochastic (e.g. climatic variation) and non-deterministic predictors (e.g. calendar variables); 3) The confrontation between modelling a single aggregate time series or creating separated and potentially different models of sub-series. The noteworthy point that we would like to make it emerge is that prices and loads require different approaches that appear irreconcilable even though must be made reconcilable for the interests and activities of energy companies.

Keywords: interval forecasts, time series, electricity prices, reg-SARIMA methods

Procedia PDF Downloads 131
304 Decision Support System for Optimal Placement of Wind Turbines in Electric Distribution Grid

Authors: Ahmed Ouammi

Abstract:

This paper presents an integrated decision framework to support decision makers in the selection and optimal allocation of wind power plants in the electric grid. The developed approach intends to maximize the benefice related to the project investment during the planning period. The proposed decision model considers the main cost components, meteorological data, environmental impacts, operation and regulation constraints, and territorial information. The decision framework is expressed as a stochastic constrained optimization problem with the aim to identify the suitable locations and related optimal wind turbine technology considering the operational constraints and maximizing the benefice. The developed decision support system is applied to a case study to demonstrate and validate its performance.

Keywords: decision support systems, electric power grid, optimization, wind energy

Procedia PDF Downloads 153
303 Transition Dynamic Analysis of the Urban Disparity in Iran “Case Study: Iran Provinces Center”

Authors: Marzieh Ahmadi, Ruhullah Alikhan Gorgani

Abstract:

The usual methods of measuring regional inequalities can not reflect the internal changes of the country in terms of their displacement in different development groups, and the indicators of inequalities are not effective in demonstrating the dynamics of the distribution of inequality. For this purpose, this paper examines the dynamics of the urban inertial transport in the country during the period of 2006-2016 using the CIRD multidimensional index and stochastic kernel density method. it firstly selects 25 indicators in five dimensions including macroeconomic conditions, science and innovation, environmental sustainability, human capital and public facilities, and two-stage Principal Component Analysis methodology are developed to create a composite index of inequality. Then, in the second stage, using a nonparametric analytical approach to internal distribution dynamics and a stochastic kernel density method, the convergence hypothesis of the CIRD index of the Iranian provinces center is tested, and then, based on the ergodic density, long-run equilibrium is shown. Also, at this stage, for the purpose of adopting accurate regional policies, the distribution dynamics and process of convergence or divergence of the Iranian provinces for each of the five. According to the results of the first Stage, in 2006 & 2016, the highest level of development is related to Tehran and zahedan is at the lowest level of development. The results show that the central cities of the country are at the highest level of development due to the effects of Tehran's knowledge spillover and the country's lower cities are at the lowest level of development. The main reason for this may be the lack of access to markets in the border provinces. Based on the results of the second stage, which examines the dynamics of regional inequality transmission in the country during 2006-2016, the first year (2006) is not multifaceted and according to the kernel density graph, the CIRD index of about 70% of the cities. The value is between -1.1 and -0.1. The rest of the sequence on the right is distributed at a level higher than -0.1. In the kernel distribution, a convergence process is observed and the graph points to a single peak. Tends to be a small peak at about 3 but the main peak at about-0.6. According to the chart in the final year (2016), the multidimensional pattern remains and there is no mobility in the lower level groups, but at the higher level, the CIRD index accounts for about 45% of the provinces at about -0.4 Take it. That this year clearly faces the twin density pattern, which indicates that the cities tend to be closely related to each other in terms of development, so that the cities are low in terms of development. Also, according to the distribution dynamics results, the provinces of Iran follow the single-density density pattern in 2006 and the double-peak density pattern in 2016 at low and moderate inequality index levels and also in the development index. The country diverges during the years 2006 to 2016.

Keywords: Urban Disparity, CIRD Index, Convergence, Distribution Dynamics, Random Kernel Density

Procedia PDF Downloads 124
302 ARIMA-GARCH, A Statistical Modeling for Epileptic Seizure Prediction

Authors: Salman Mohamadi, Seyed Mohammad Ali Tayaranian Hosseini, Hamidreza Amindavar

Abstract:

In this paper, we provide a procedure to analyze and model EEG (electroencephalogram) signal as a time series using ARIMA-GARCH to predict an epileptic attack. The heteroskedasticity of EEG signal is examined through the ARCH or GARCH, (Autore- gressive conditional heteroskedasticity, Generalized autoregressive conditional heteroskedasticity) test. The best ARIMA-GARCH model in AIC sense is utilized to measure the volatility of the EEG from epileptic canine subjects, to forecast the future values of EEG. ARIMA-only model can perform prediction, but the ARCH or GARCH model acting on the residuals of ARIMA attains a con- siderable improved forecast horizon. First, we estimate the best ARIMA model, then different orders of ARCH and GARCH modelings are surveyed to determine the best heteroskedastic model of the residuals of the mentioned ARIMA. Using the simulated conditional variance of selected ARCH or GARCH model, we suggest the procedure to predict the oncoming seizures. The results indicate that GARCH modeling determines the dynamic changes of variance well before the onset of seizure. It can be inferred that the prediction capability comes from the ability of the combined ARIMA-GARCH modeling to cover the heteroskedastic nature of EEG signal changes.

Keywords: epileptic seizure prediction , ARIMA, ARCH and GARCH modeling, heteroskedasticity, EEG

Procedia PDF Downloads 406
301 Good Banks, Bad Banks, and Public Scrutiny: The Determinants of Corporate Social Responsibility in Times of Financial Volatility

Authors: A. W. Chalmers, O. M. van den Broek

Abstract:

This article examines the relationship between the global financial crisis and corporate social responsibility activities of financial services firms. It challenges the general consensus in existing studies that firms, when faced with economic hardship, tend to jettison CSR commitments. Instead, and building on recent insights into the institutional determinants of CSR, it is argued that firms are constrained in their ability to abandon CSR by the extent to which they are subject to intense public scrutiny by regulators and the news media. This argument is tested in the context of the European sovereign debt crisis drawing on a unique dataset of 170 firms in 15 different countries over a six-year period. Controlling for a battery of alternative explanations and comparing financial service providers to firms operating in other economic sectors, results indicate considerable evidence supporting the main argument. Rather than abandoning CSR during times of economic hardship, financial industry firms ramp up their CSR commitments in order to manage their public image and foster public trust in light of intense public scrutiny.

Keywords: corporate social responsibility (CSR), public scrutiny, global financial crisis, financial services firms

Procedia PDF Downloads 306
300 Voltage Profile Enhancement in the Unbalanced Distribution Systems during Fault Conditions

Authors: K. Jithendra Gowd, Ch. Sai Babu, S. Sivanagaraju

Abstract:

Electric power systems are daily exposed to service interruption mainly due to faults and human accidental interference. Short circuit currents are responsible for several types of disturbances in power systems. The fault currents are high and the voltages are reduced at the time of fault. This paper presents two suitable methods, consideration of fault resistance and Distributed Generator are implemented and analyzed for the enhancement of voltage profile during fault conditions. Fault resistance is a critical parameter of electric power systems operation due to its stochastic nature. If not considered, this parameter may interfere in fault analysis studies and protection scheme efficiency. The effect of Distributed Generator is also considered. The proposed methods are tested on the IEEE 37 bus test systems and the results are compared.

Keywords: distributed generation, electrical distribution systems, fault resistance

Procedia PDF Downloads 516
299 High-Frequency Cryptocurrency Portfolio Management Using Multi-Agent System Based on Federated Reinforcement Learning

Authors: Sirapop Nuannimnoi, Hojjat Baghban, Ching-Yao Huang

Abstract:

Over the past decade, with the fast development of blockchain technology since the birth of Bitcoin, there has been a massive increase in the usage of Cryptocurrencies. Cryptocurrencies are not seen as an investment opportunity due to the market’s erratic behavior and high price volatility. With the recent success of deep reinforcement learning (DRL), portfolio management can be modeled and automated. In this paper, we propose a novel DRL-based multi-agent system to automatically make proper trading decisions on multiple cryptocurrencies and gain profits in the highly volatile cryptocurrency market. We also extend this multi-agent system with horizontal federated transfer learning for better adapting to the inclusion of new cryptocurrencies in our portfolio; therefore, we can, through the concept of diversification, maximize our profits and minimize the trading risks. Experimental results through multiple simulation scenarios reveal that this proposed algorithmic trading system can offer three promising key advantages over other systems, including maximized profits, minimized risks, and adaptability.

Keywords: cryptocurrency portfolio management, algorithmic trading, federated learning, multi-agent reinforcement learning

Procedia PDF Downloads 119
298 Quality of Service of Transportation Networks: A Hybrid Measurement of Travel Time and Reliability

Authors: Chin-Chia Jane

Abstract:

In a transportation network, travel time refers to the transmission time from source node to destination node, whereas reliability refers to the probability of a successful connection from source node to destination node. With an increasing emphasis on quality of service (QoS), both performance indexes are significant in the design and analysis of transportation systems. In this work, we extend the well-known flow network model for transportation networks so that travel time and reliability are integrated into the QoS measurement simultaneously. In the extended model, in addition to the general arc capacities, each intermediate node has a time weight which is the travel time for per unit of commodity going through the node. Meanwhile, arcs and nodes are treated as binary random variables that switch between operation and failure with associated probabilities. For pre-specified travel time limitation and demand requirement, the QoS of a transportation network is the probability that source can successfully transport the demand requirement to destination while the total transmission time is under the travel time limitation. This work is pioneering, since existing literatures that evaluate travel time reliability via a single optimization path, the proposed QoS focuses the performance of the whole network system. To compute the QoS of transportation networks, we first transfer the extended network model into an equivalent min-cost max-flow network model. In the transferred network, each arc has a new travel time weight which takes value 0. Each intermediate node is replaced by two nodes u and v, and an arc directed from u to v. The newly generated nodes u and v are perfect nodes. The new direct arc has three weights: travel time, capacity, and operation probability. Then the universal set of state vectors is recursively decomposed into disjoint subsets of reliable, unreliable, and stochastic vectors until no stochastic vector is left. The decomposition is made possible by applying existing efficient min-cost max-flow algorithm. Because the reliable subsets are disjoint, QoS can be obtained directly by summing the probabilities of these reliable subsets. Computational experiments are conducted on a benchmark network which has 11 nodes and 21 arcs. Five travel time limitations and five demand requirements are set to compute the QoS value. To make a comparison, we test the exhaustive complete enumeration method. Computational results reveal the proposed algorithm is much more efficient than the complete enumeration method. In this work, a transportation network is analyzed by an extended flow network model where each arc has a fixed capacity, each intermediate node has a time weight, and both arcs and nodes are independent binary random variables. The quality of service of the transportation network is an integration of customer demands, travel time, and the probability of connection. We present a decomposition algorithm to compute the QoS efficiently. Computational experiments conducted on a prototype network show that the proposed algorithm is superior to existing complete enumeration methods.

Keywords: quality of service, reliability, transportation network, travel time

Procedia PDF Downloads 221
297 Model of Optimal Centroids Approach for Multivariate Data Classification

Authors: Pham Van Nha, Le Cam Binh

Abstract:

Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.

Keywords: analysis of optimization, artificial intelligence based optimization, optimization for learning and data analysis, global optimization

Procedia PDF Downloads 208
296 A Literature Review on Development of a Forecast Supported Approach for the Continuous Pre-Planning of Required Transport Capacity for the Design of Sustainable Transport Chains

Authors: Georg Brunnthaller, Sandra Stein, Wilfried Sihn

Abstract:

Logistics service providers are facing increasing volatility concerning future transport demand. Short-term planning horizons and planning uncertainties lead to reduced capacity utilisation and increasing empty mileage. To overcome these challenges, a model is proposed to continuously pre-plan future transport capacity in order to redesign and adjust the intermodal fleet accordingly. It is expected that the model will enable logistics service providers to organise more economically and ecologically sustainable transport chains in a more flexible way. To further describe such planning aspects, this paper gives a structured literature review on transport planning problems. The focus is on strategic and tactical planning levels, comprising relevant fleet-sizing-, network-design- and choice-of-carriers-problems. Models and their developed solution techniques are presented and the literature review is concluded with an outlook to our future research objectives

Keywords: choice of transport mode, fleet-sizing, freight transport planning, multimodal, review, service network design

Procedia PDF Downloads 364
295 Stochastic Modeling of Secretion Dynamics in Inner Hair Cells of the Auditory Pathway

Authors: Jessica A. Soto-Bear, Virginia González-Vélez, Norma Castañeda-Villa, Amparo Gil

Abstract:

Glutamate release of the cochlear inner hair cell (IHC) ribbon synapse is a fundamental step in transferring sound information in the auditory pathway. Otoferlin is the calcium sensor in the IHC and its activity has been related to many auditory disorders. In order to simulate secretion dynamics occurring in the IHC in a few milliseconds timescale and with high spatial resolution, we proposed an active-zone model solved with Monte Carlo algorithms. We included models for calcium buffered diffusion, calcium-binding schemes for vesicle fusion, and L-type voltage-gated calcium channels. Our results indicate that calcium influx and calcium binding is managing IHC secretion as a function of voltage depolarization, which in turn mean that IHC response depends on sound intensity.

Keywords: inner hair cells, Monte Carlo algorithm, Otoferlin, secretion

Procedia PDF Downloads 221
294 Analysis of Technical Efficiency and Its Determinants among Cattle Fattening Enterprises in Kebbi State, Nigeria

Authors: Gona Ayuba, Isiaka Mohammed, Kotom Mohammed Baba, Mohammed Aabubakar Maikasuwa

Abstract:

The study examined the technical efficiency and its determinants of cattle fattening enterprises in Kebbi state, Nigeria. Data were collected from a sample of 160 fatteners between June 2010 and June 2011 using the multistage random sampling technique. Translog stochastic frontier production function was employed for the analysis. Results of the analysis show that technical efficiency indices varied from 0.74 to 0.98%, with a mean of 0.90%, indicating that there was no wide gap between the efficiency of best technical efficient fatteners and that of the average fattener. The result also showed that fattening experience and herd size influenced the level of technical efficiency at 1% levels. It is recommended that credit agencies should ensure that credit made available to the fatteners is monitored to ensure appropriate utilization.

Keywords: technical efficiency, determinants, cattle, fattening enterprises

Procedia PDF Downloads 451
293 Obsessive-Compulsive Disorder: Development of Demand-Controlled Deep Brain Stimulation with Methods from Stochastic Phase Resetting

Authors: Mahdi Akhbardeh

Abstract:

Synchronization of neuronal firing is a hallmark of several neurological diseases. Recently, stimulation techniques have been developed which make it possible to desynchronize oscillatory neuronal activity in a mild and effective way, without suppressing the neurons' firing. As yet, these techniques are being used to establish demand-controlled deep brain stimulation (DBS) techniques for the therapy of movement disorders like severe Parkinson's disease or essential tremor. We here present a first conceptualization suggesting that the nucleus accumbens is a promising target for the standard, that is, permanent high-frequency, DBS in patients with severe and chronic obsessive-compulsive disorder (OCD). In addition, we explain how demand-controlled DBS techniques may be applied to the therapy of OCD in those cases that are refractory to behavioral therapies and pharmacological treatment.

Keywords: stereotactic neurosurgery, deep brain stimulation, obsessive-compulsive disorder, phase resetting

Procedia PDF Downloads 512
292 Development of a Forecast-Supported Approach for the Continuous Pre-Planning of Mandatory Transportation Capacity for the Design of Sustainable Transport Chains: A Literature Review

Authors: Georg Brunnthaller, Sandra Stein, Wilfried Sihn

Abstract:

Transportation service providers are facing increasing volatility concerning future transport demand. Short-term planning horizons and planning uncertainties lead to reduced capacity utilization and increasing empty mileage. To overcome these challenges, a model is proposed to continuously pre-plan future transportation capacity in order to redesign and adjust the intermodal fleet accordingly. It is expected that the model will enable logistics service providers to organize more economically and ecologically sustainable transport chains in a more flexible way. To further describe these planning aspects, this paper gives an overview on transportation planning problems in a structured way. The focus is on strategic and tactical planning levels, comprising relevant fleet-sizing, service-network-design and choice-of-carriers-problems. Models and their developed solution techniques are presented, and the literature review is concluded with an outlook to our future research directions.

Keywords: freight transportation planning, multimodal, fleet-sizing, service network design, choice of transportation mode, review

Procedia PDF Downloads 317
291 Commodity Price Shocks and Monetary Policy

Authors: Faisal Algosair

Abstract:

We examine the role of monetary policy in the presence of commodity price shocks using a Dynamic stochastic general equilibrium (DSGE) model with price and wage rigidities. The model characterizes a commodity exporter by its degree of export diversification, and explores the following monetary regimes: flexible domestic inflation targeting; flexible Consumer Price Index inflation targeting; exchange rate peg; and optimal rule. An increase in the degree of diversification is found to mitigate responses to commodity shocks. The welfare comparison suggests that a flexible exchange rate regime under the optimal rule is preferred to an exchange rate peg. However, monetary policy provides limited stabilization effects in an economy with low degree of export diversification.

Keywords: business cycle, commodity price, exchange rate, global financial cycle

Procedia PDF Downloads 97
290 Effective Scheduling of Hybrid Reconfigurable Microgrids Considering High Penetration of Renewable Sources

Authors: Abdollah Kavousi Fard

Abstract:

This paper addresses the optimal scheduling of hybrid reconfigurable microgrids considering hybrid electric vehicle charging demands. A stochastic framework based on unscented transform to model the high uncertainties of renewable energy sources including wind turbine and photovoltaic panels, as well as the hybrid electric vehicles’ charging demand. In order to get to the optimal scheduling, the network reconfiguration is employed as an effective tool for changing the power supply path and avoiding possible congestions. The simulation results are analyzed and discussed in three different scenarios including coordinated, uncoordinated and smart charging demand of hybrid electric vehicles. A typical grid-connected microgrid is employed to show the satisfying performance of the proposed method.

Keywords: microgrid, renewable energy sources, reconfiguration, optimization

Procedia PDF Downloads 272
289 Disruption Coordination of Supply Chain with Loss-Averse Retailer Under Buy-Back Contract

Authors: Yuan Tian, Benhe Gao

Abstract:

This paper aims to investigate a two stage supply chain of one leading supplier and one following retailer that experiences two factors perturbation out of supplier's production cost, retailer's marginal cost and retail price in stochastic demand environment. Granted that risk neutral condition has long been discussed, little attention has been given to disruptions under the premise of risk neutral supplier and risk aversion retailer. We establish the optimal order quantity and revealed the profit distribution coefficient in risk-neutral static model, make adjustment under disruption scenario, and then select utility function method for risk aversion model. Using buy-back contract policy, the improvement of parameters can achieve channel coordination where Pareto optimal is realized.

Keywords: supply chain coordination, disruption management, buy-back contract, lose aversion

Procedia PDF Downloads 327
288 General Mathematical Framework for Analysis of Cattle Farm System

Authors: Krzysztof Pomorski

Abstract:

In the given work we present universal mathematical framework for modeling of cattle farm system that can set and validate various hypothesis that can be tested against experimental data. The presented work is preliminary but it is expected to be valid tool for future deeper analysis that can result in new class of prediction methods allowing early detection of cow dieseaes as well as cow performance. Therefore the presented work shall have its meaning in agriculture models and in machine learning as well. It also opens the possibilities for incorporation of certain class of biological models necessary in modeling of cow behavior and farm performance that might include the impact of environment on the farm system. Particular attention is paid to the model of coupled oscillators that it the basic building hypothesis that can construct the model showing certain periodic or quasiperiodic behavior.

Keywords: coupled ordinary differential equations, cattle farm system, numerical methods, stochastic differential equations

Procedia PDF Downloads 145
287 Sustainable Wood Stains Derived From Natural Dyes for Green Applications

Authors: Alexis Dorado, Aralyn Quintos

Abstract:

This study explores the utilization of natural dyes for wood stains as a transformative agent for wood, encompassing color alteration, grain enhancement, and protection against harm. Commonly, wood stains are petroleum-based and synthetically derived. Notably, commercially accessible wood stains exhibit around 4% greater volatility than the formulated wood stain (FWS), potentially indicating a heightened environmental impact. The application of FWS does not significantly affect the performance of polyurethane varnish. The impact of incorporating an FWS when was applied to Gmelina arborea wood sample, the initial lightness value (L*) of 68.5, a* 7.7, b* 29.2 decreased to 44.36, a* 23.49, b* 32.60, where a* denotes the red/ green value, b* denotes the yellow/ blue, indicating a shift towards darker shades. This alteration in lightness suggests that the FWS contains compounds or pigments that effectively absorb or scatter light, resulting in a change in the perceived color and visual appearance of the wood surface. Moreover, the successful formulation of an eco-friendly natural wood stain is detailed, presenting a promising alternative. This method finds applicability in the domains of furniture and handicraft creation, offering a sustainable choice for creative artisans.

Keywords: formulated wood stain (FWS), natural dyes, wood stains, eco-friendly natural wood stain,

Procedia PDF Downloads 98
286 Conservativeness of Probabilistic Constrained Optimal Control Method for Unknown Probability Distribution

Authors: Tomoaki Hashimoto

Abstract:

In recent decades, probabilistic constrained optimal control problems have attracted much attention in many research field. Although probabilistic constraints are generally intractable in an optimization problem, several tractable methods haven been proposed to handle probabilistic constraints. In most methods, probabilistic constraints are reduced to deterministic constraints that are tractable in an optimization problem. However, there is a gap between the transformed deterministic constraints in case of known and unknown probability distribution. This paper examines the conservativeness of probabilistic constrained optimization method with the unknown probability distribution. The objective of this paper is to provide a quantitative assessment of the conservatism for tractable constraints in probabilistic constrained optimization with the unknown probability distribution.

Keywords: optimal control, stochastic systems, discrete time systems, probabilistic constraints

Procedia PDF Downloads 581