Search results for: recalcitrant organic compounds
3997 Optimization of Samarium Extraction via Nanofluid-Based Emulsion Liquid Membrane Using Cyanex 272 as Mobile Carrier
Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari
Abstract:
Samarium as a rare-earth element is playing a growing important role in high technology. Traditional methods for extraction of rare earth metals such as ion exchange and solvent extraction have disadvantages of high investment and high energy consumption. Emulsion liquid membrane (ELM) as an improved solvent extraction technique is an effective transport method for separation of various compounds from aqueous solutions. In this work, the extraction of samarium from aqueous solutions by ELM was investigated using response surface methodology (RSM). The organic membrane phase of the ELM was a nanofluid consisted of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as mobile carrier, and kerosene as base fluid. 1 M nitric acid solution was used as internal aqueous phase. The effects of the important process parameters on samarium extraction were investigated, and the values of these parameters were optimized using the Central Composition Design (CCD) of RSM. These parameters were the concentration of MWCNT in nanofluid, the carrier concentration, and the volume ratio of organic membrane phase to internal phase (Roi). The three-dimensional (3D) response surfaces of samarium extraction efficiency were obtained to visualize the individual and interactive effects of the process variables. A regression model for % extraction was developed, and its adequacy was evaluated. The result shows that % extraction improves by using MWCNT nanofluid in organic membrane phase and extraction efficiency of 98.92% can be achieved under the optimum conditions. In addition, demulsification was successfully performed and the recycled membrane phase was proved to be effective in the optimum condition.Keywords: Cyanex 272, emulsion liquid membrane, MWCNT nanofluid, response surface methology, Samarium
Procedia PDF Downloads 4263996 Possibility of Membrane Filtration to Treatment of Effluent from Digestate
Authors: Marcin Debowski, Marcin Zielinski, Magdalena Zielinska, Paulina Rusanowska
Abstract:
The problem with digestate management is one of the most important factors influencing on the development and operation of biogas plant. Turbidity and bacterial contamination negatively affect the growth of algae, which can limit the use of the effluent in the production of algae biomass on a large scale. These problems can be overcome by cultivating of algae species resistant to environmental factors, such as Chlorella sp., Scenedesmus sp., or reducing load of organic compounds to prevent bacterial contamination. The effluent requires dilution and/or purification. One of the methods of effluent treatment is the use of a membrane technology such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO), depending on the membrane pore size and the cut off point. Membranes are a physical barrier to solids and particles larger than the size of the pores. MF membranes have the largest pores and are used to remove turbidity, suspensions, bacteria and some viruses. UF membranes remove also color, odor and organic compounds with high molecular weight. In treatment of wastewater or other waste streams, MF and UF can provide a sufficient degree of purification. NF membranes are used to remove natural organic matter from waters, water disinfection products and sulfates. RO membranes are applied to remove monovalent ions such as Na⁺ or K⁺. The effluent was used in UF for medium to cultivation of two microalgae: Chlorella sp. and Phaeodactylum tricornutum. Growth rates of Chlorella sp. and P. tricornutum were similar: 0.216 d⁻¹ and 0.200 d⁻¹ (Chlorella sp.); 0.128 d⁻¹ and 0.126 d⁻¹ (P. tricornutum), on synthetic medium and permeate from UF, respectively. The final biomass composition was also similar, regardless of the medium. Removal of nitrogen was 92% and 71% by Chlorella sp. and P. tricornutum, respectively. The fermentation effluents after UF and dilution were also used for cultivation of algae Scenedesmus sp. that is resistant to environmental conditions. The authors recommended the development of biorafinery based on the production of algae for the biogas production. There are examples of using a multi-stage membrane system to purify the liquid fraction from digestate. After the initial UF, RO is used to remove ammonium nitrogen and COD. To obtain a permeate with a concentration of ammonium nitrogen allowing to discharge it into the environment, it was necessary to apply three-stage RO. The composition of the permeate after two-stage RO was: COD 50–60 mg/dm³, dry solids 0 mg/dm³, ammonium nitrogen 300–320 mg/dm³, total nitrogen 320–340 mg/dm³, total phosphorus 53 mg/dm³. However compostion of permeate after three-stage RO was: COD < 5 mg/dm³, dry solids 0 mg/dm³, ammonium nitrogen 0 mg/dm³, total nitrogen 3.5 mg/dm³, total phosphorus < 0,05 mg/dm³. Last stage of RO might be replaced by ion exchange process. The negative aspect of membrane filtration systems is the fact that the permeate is about 50% of the introduced volume, the remainder is the retentate. The management of a retentate might involve recirculation to a biogas plant.Keywords: digestate, membrane filtration, microalgae cultivation, Chlorella sp.
Procedia PDF Downloads 3533995 Structure-Based Virtual Screening and in Silico Toxicity Test of Compounds against Mycobacterium tuberculosis 7,8-Diaminopelargonic Acid Aminotransferase (MtbBioA)
Authors: Junie B. Billones, Maria Constancia O. Carrillo, Voltaire G. Organo, Stephani Joy Y. Macalino, Inno A. Emnacen, Jamie Bernadette A. Sy
Abstract:
One of the major interferences in the Philippines’ tuberculosis control program is the widespread prevalence of Mtb strains that are resistant to known drugs, such as the MDR-TB (Multi Drug Resistant Tuberculosis) and XDR-TB (Extensively Drug Resistant Tuberculosis). Therefore, there is a pressing need to search for novel Mtb drug targets in order to be able to combat these drug resistant strains. The enzyme 7,8-diaminopelargonic acid aminotransferase enzyme, or more commonly known as BioA, is one such ideal target, as it is known that humans do not possess this enzyme. BioA primarily plays a key role in Mtb’s lipid biosynthesis pathway; more specifically in the synthesis of the enzyme cofactor biotin. In this study, structure-based pharmacophore screening, docking, and ADMET evaluation of compounds obtained from the DrugBank chemical database were performed against the MtbBioA enzyme. Results of the screening, docking, ADMET, and TOPKAT calculations revealed that out of the 6,516 compounds in the library, only 7 compounds indicated more favorable binding energies as compared to the enzyme’s known inhibitor, amiclenomycin (ACM), as well as good solubility and toxicity properties. Moreover, out of these 7 compounds, Molecule 6 exhibited the best solubility and toxicity properties. In the future, these lead compounds may then be subjected to bioactivity assays in vitro or in vivo for further evaluation of its therapeutic efficacy.Keywords: 7, 8-diaminopelargonic acid aminotransferase, BioA, pharmacophore, molecular docking, ADMET, TOPKAT
Procedia PDF Downloads 4603994 The Influence of Concreteness on English Compound Noun Processing: Modulation of Constituent Transparency
Authors: Turgut Coskun
Abstract:
'Concreteness effect' refers to faster processing of concrete words and 'compound facilitation' refers to faster response to compounds. In this study, our main goal was to investigate the interaction between compound facilitation and concreteness effect. The latter might modulate compound processing basing on constituents’ transparency patterns. To evaluate these, we created lists for compound and monomorphemic words, sub-categorized them into concrete and abstract words, and further sub-categorized them basing on their transparency. The transparency conditions were opaque-opaque (OO), transparent-opaque (TO), and transparent-transparent (TT). We used RT data from English Lexicon Project (ELP) for our comparisons. The results showed the importance of concreteness factor (facilitation) in both compound and monomorphemic processing. Important for our present concern, separate concrete and abstract compound analyses revealed different patterns for OO, TO, and TT compounds. Concrete TT and TO conditions were processed faster than Concrete OO, Abstract OO and Abstract TT compounds, however, they weren’t processed faster than Abstract TO compounds. These results may reflect on different representation patterns of concrete and abstract compounds.Keywords: abstract word, compound representation, concrete word, constituent transparency, processing speed
Procedia PDF Downloads 2073993 Metal Ions Cross-Linking of Epoxidized Natural Rubber
Authors: Kriengsak Damampai, Skulrat Pichaiyut, Amit Das, Charoen Nacason
Abstract:
The curing of epoxidized natural rubber (ENR) was performed by using metal ions (Ferric chloride, FeCl₃). Two different mole% of epoxide were used there are 25 mole% (ENR-25) and 50 mole% (ENR-50) epoxizied natural rubber. The main aim of this work was investigated the influence of metal ions on the coordination reaction of epoxidized natural rubber. Also, cure characteristics and mechanical properties of the rubber compounds were investigated. It was found that the ENR-50 compounds indicated superior modulus and tensile strength than the ENR-25 compounds. This was attributed to higher the cross-linking in the rubber via coordination linkages between the oxidation groups in ENR molecule and FeCl₃of metal ions. Various quantities of FeCl3 were also investigated. It is seen that the ENR-25 and 50 mole% compounds with FeCl₃ of more than 3 mmol exhibited higher modulus and tensile strength compare to the pure ENR. Furthermore, the FTIR spectra was used to confirm the cross-linked of ENR with FeCl₃.Keywords: Epoxidized natural rubber, Ferric chloride, cross-linking, Coordination
Procedia PDF Downloads 853992 Magnetic Silica Nanoparticles as Viable Support for the Immobilization of Oxidative Enzymes
Authors: Y. Moldes-Diz, M. Gamallo, G. Eibes, C. Vazquez-Vazquez, G. Feijoo, J. M. Lema, M. T. Moreira
Abstract:
Laccases (benzenediol oxygen oxidoreductases, EC 1.10.3.2) are excellent biocatalysts for biotechnological and environmental applications because of their high activity, selectivity, and specificity. Specifically, these characteristics allow them to perform the oxidation of recalcitrant compounds with simple requirements for the catalysis (presence of molecular oxygen). Nevertheless, the low stability under unfavorable conditions (pH, inactivating agents or temperature) and high production costs still limits their use for practical applications. Immobilization of enzymes has proven particularly valuable to avoid some of the aforementioned drawbacks. Magnetic nanoparticles (MNPs) have received increasing attention as carriers for enzyme immobilization since they can potentially provide an easy recovery of the biocatalyst from the reaction medium under an external magnetic field. In the present work, silica-coated magnetic nanoparticles (Fe3O4@SiO2) were prepared, characterized and used for laccase immobilization by covalent binding. The synthesis of Fe3O4@SiO2 was performed in a two-step procedure: co-precipitation and reverse microemulsion. The influence of immobilization conditions: concentrations of the functionalization agent (3-aminopropyl-triethoxy-silane) and the cross-linker (glutaraldehyde) as well as the influence of pH, T or inactivating agents were evaluated. In general, immobilized laccase showed superior stability compared to that of free enzyme. The reusability of the biocatalyst was demonstrated in successive batch reactions, where enzyme activity was maintained above 65% after 8 cycles of oxidation of the substrate 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate).Keywords: silica-coated magnetic nanoparticles, laccase, immobilization, regeneration
Procedia PDF Downloads 2213991 Cellulose Containing Metal Organic Frameworks in Environmental Applications
Authors: Hossam El-Sayed Emam
Abstract:
As an essential issue for life, water while it’s important for all living organisms. However, the world is dangerously facing the serious problem for the deficiency of the sources of drinking water. Within the aquatic systems, there are various gases, microbes, and other toxic ingredients (chemical compounds and heavy metals) occurred owing to the draining of agricultural and industrial wastewater, resulting in water pollution. On the other hand, fuel (gaseous, liquid, or in solid phase) is one of the extensively consumable energy sources, and owing to its origin from fossil, it contains some sulfur-, nitrogen- and oxygen-based compounds that cause serious problems (toxicity, catalyst poisoning, corrosion, and gum formation andcarcinogenic effects), to be ascribed as undesirable pollutants.MOFs as porous coordinating polymers are superiorly exploited in the adsorption and separationof contaminants for wastewater treatment and fuel purification. The inclusion of highly adsorbent materials like MOFs to be immobilized within cellulosic materialscould be investigated as a new challenge for the separation of contaminants with high efficiency and opportunity for recyclability. Therefore, the current approach ascribes the exploitation of different MOFsimmobilized within cellulose (powder, films, and fabrics)for applications in environmental. Herein, using cellulose containing MOFs in dye removal (degradation and adsorption), pharmaceutical intermediates removal, and fuel purification were summarized.Keywords: cellulose, MOFs, dye removal, pharmaceutical intermediates, fuel purification
Procedia PDF Downloads 1573990 Synthesis and Cytotoxic Activity of New Quinazolinone-Based Compounds against Human Breast Cancer Cell Line MCF-7
Authors: Maryam Zahedifard, Fadhil Lafta Faraj, Maryam Hajrezaie, Nazia Abdul Majid, Mahmood Ameen Abdulla, Hapipah Mohd Ali
Abstract:
In the current study, we prepared two new quinazoline schiff bases through condensation reaction of 2-aminobenzhydrazide with 5-bromosalicylaldehyde and 3-methoxy-5-bromosalicylaldehyde. The chemical structures of both newly synthesized compounds (1 and 2) were confirmed by FT-IR and X-ray crystallography studies. The cytotoxic effect of compounds was investigated against MCF-7 human breast cancer cells. MTT results showed that (1) and (2) decreased the viability of MCF-7 cells in a time-dependent manner, exhibiting an IC50 value of 3.23 ± 0.28 µg/mL and 3.41 ± 0.34 µg/mL, respectively, after a 72-hours treatment period. In contrast, they did not show significant anti-proliferative effect towards MCF-10A normal breast cells and WRL-68 normal liver cells. We found a perturbation in mitochondrial membrane potential and increased cytochrome c release from the mitochondria to the cytosol, suggesting an activation of apoptosis by compounds, which was confirmed by activation of the initiator caspase-9 and the executioner caspases-3/7. (1) was also able to trigger extrinsic pathway via activation of caspase-8 and inhibition of NF-κB translocation. The acute toxicity test showed no toxicity effect of the compounds in rats. Our results showed that the selected synthesized compounds are highly potent to induce apoptosis in MCF-7 cells via either intrinsic or extrinsic mitochondrial pathway.Keywords: Quinazoline Schiff base, apoptosis, MCF-7 human breast cancer cell line, caspase, NF-κB translocation
Procedia PDF Downloads 4943989 Synthesis and Pharmacological Evaluation of Substituted Pyrimidine Derivative Containing Thiol Group
Authors: Shradha S. Binani, Pravin S. Bodke, Ravi V. Joat
Abstract:
An efficient method has been described for the synthesis of 6-(substituted aryl)-4-(2'- hydroxy-5'-chlorophenyl)-1, 6-dihydropyrimidine-2-thiol, as a beneficial antibacterial and antifungal agents. The diketones of title compounds were synthesized in four steps and subsequently these diketones were further reacted with thiourea in the presence of DMF, which led to the formation of dihydropyrimidine derivatives 5 (a-f). Compounds 5 (a-f) were screened for their in vitro antibacterial and antifungal activity by agar well method. Compounds 5b, 5c, 5e, and 5f were exhibited significant antimicrobial potential against tested strains at 50ug/ml and 100ug/ml concentrations. Six novel dihydropyrimidine analogues have been synthesized, characterized and found to be promising antibacterial and antifungal agents.Keywords: diketones, dihyropyrimidine, antimicrobial activity, thiol group
Procedia PDF Downloads 4393988 Fundamentals and Techniques of Organic Agriculture in Egypt
Authors: Moustafa Odah
Abstract:
Organic Agriculture is a new and sustainable agricultural system that depends on the use of organic materials from within the farm resulting from crop residues and animal husbandry and the cultivation of leguminous crops, away from the use of chemicals in fertilization or pest resistance, which leads to the production of safe, clean and healthy food products with nutritional value high and free of chemicals enhance food security; it is also an agricultural model preserve natural resources by improving the fertility and soil characteristics, and enhance biodiversity and biological cycles; additionally, they preserve the environment from pollution, which makes it play an important role in providing food needs of the present generations and the preservation of the rights of the coming generations to achieve sustainable development.Keywords: organic agriculture, food security and achieving sustainable development, fertilization or pest resistance, crop residues and animal husbandry and the cultivation of leguminous crops
Procedia PDF Downloads 893987 Permeable Reactive Pavement for Controlling the Transport of Benzene, Toluene, Ethyl-Benzene, and Xylene (BTEX) Contaminants
Authors: Shengyi Huang, Chenju Liang
Abstract:
Volatile organic compounds such as benzene, toluene, ethyl-benzene, and xylene (BTEX) are common contaminants in environment, which could come from asphalt concrete or exhaust emissions of vehicles. The BTEX may invade to the subsurface environment via wet and dry atmospheric depositions. If there aren’t available ways for controlling contaminants’ fate and transport, they would extensively harm natural environment. In the 1st phase of this study, various adsorbents were screened for a suitable one to be an additive in the porous asphalt mixture. In the 2nd phase, addition of the selected adsorbent was incorporated with the design of porous asphalt concrete (PAC) to produce the permeable reactive pavement (PRP), which was subsequently tested for the potential of adsorbing aqueous BTEX as compared to the PAC, in the 3rd phase. The PRP was prepared according to the following steps: firstly, the suitable adsorbent was chosen based on the analytical results of specific surface area analysis, thermal-gravimetric analysis, adsorption kinetics and isotherms, and thermal dynamics analysis; secondly, the materials of coarse aggregate, fine aggregate, filler, asphalt, and fiber were tested in order to meet regulated specifications (e.g., water adsorption, soundness, viscosity etc.) for preparing the PRP; thirdly, the amount of adsorbent additive was determined in the PRP; fourthly, the prepared PAC and PRP were examined for their physical properties (e.g., abrasion loss, drain-down loss, Marshall stability, Marshall flow, dynamic stability etc.). As a result of comparison between PRP and PAC, the PRP showed better physical performance than the traditional PAC. At last, the Marshall Specimen column tests were conducted to explore the adsorption capacities of PAC and PRPs. The BTEX adsorption capacities of PRPs are higher than those obtained from traditional PAC. In summary, PRPs showed superior physical performance and adsorption capacities, which exhibit the potential of PRP to be applied as a replacement of PAC for better controlling the transport of non-point source pollutants.Keywords: porous asphalt concrete, volatile organic compounds, permeable reactive pavement, non-point source pollution
Procedia PDF Downloads 2163986 Effect of a new Released Bio Organic-Fertilizer in Improving Tomato Growth in Hydroponic System and Under Greenhouse
Authors: Zayneb Kthiri, Walid Hamada
Abstract:
The application of organic fertilizers is generally known to be useful to sustain soil fertility and plant growth, especially in poor soils, with less than 1% of organic matter, as it is very common in our Tunisian fields. Therefore, we focused on evaluating the effect of a new released liquid organic fertilizer named Solorga (with 5% of organic matter) compared to a reference product (Espartan: Kimitec, Spain) on tomato plant growth and physiology. Both fertilizers, derived from plant decomposition, were applied at an early stage in hydroponic system and under greenhouse. In hydroponic system, after 14 days of their application by root feeding, a significant difference was observed between treatments. Indeed, Solorga improved shoots and roots length, as well as the biomass respectively, by 45%, 27%, and 27.8% increase rate, while compared to control plants. However, Espartan induced less the measured parameters while compared to untreated control. Moreover, Solorga significantly increased the chlorophyll content by 42% compared to control and by 32% compared to Espartan. In the greenhouse, after 20 days of treatments, the results showed a significant effect of both fertilizers on SPAD index and the number of flowers blossom. Solorga increased the amount of chlorophyll present in the leaf by 7% compared to Espartan as well as the plant height under greenhouse. Moreover, the number of flowers blossom increased by 15% in plants treated with Solorga while compared to Espartan. Whereas, there is no notable difference between both organic fertilizers on the fruits blossom and the number of fruits per blossom. In conclusion, even though there is a difference in the organic matter between both fertilizers, Solorga improved better the plant growth in controlled conditions in hydroponic system while compared to Espartan. Altogether the obtained results are encouraging for the use of Solorga as a soil enriching source of organic matter to help plants to boost their growth and help them to overcome abiotic stresses linked to soil fertility.Keywords: tomato, plant growth, organic fertilizer, hydroponic system, greenhouse
Procedia PDF Downloads 1423985 Modeling and Performance Evaluation of Three Power Generation and Refrigeration Energy Recovery Systems from Thermal Loss of a Diesel Engine in Different Driving Conditions
Authors: H. Golchoobian, M. H. Taheri, S. Saedodin, A. Sarafraz
Abstract:
This paper investigates the possibility of using three systems of organic Rankine auxiliary power generation, ejector refrigeration and absorption to recover energy from a diesel car. The analysis is done for both urban and suburban driving modes that vary from 60 to 120 km/h. Various refrigerants have also been used for organic Rankine and Ejector refrigeration cycles. The capacity was evaluated by Organic Rankine Cycle (ORC) system in both urban and suburban conditions for cyclopentane and ammonia as refrigerants. Also, for these two driving plans, produced cooling by absorption refrigeration system under variable ambient temperature conditions and in ejector refrigeration system for R123, R134a and R141b refrigerants were investigated.Keywords: absorption system, diesel engine, ejector refrigeration, energy recovery, organic Rankine cycle
Procedia PDF Downloads 2403984 A Review on Assessment on the Level of Development of Macedonia and Iran Organic Agriculture as Compared to Nigeria
Authors: Yusuf Ahmad Sani, Adamu Alhaji Yakubu, Alhaji Abdullahi Jamilu, Joel Omeke, Ibrahim Jumare Sambo
Abstract:
With the rising global threat of food security, cancer, and related diseases (carcinogenic) because of increased usage of inorganic substances in agricultural food production, the Ministry of Food Agriculture and Livestock of the Republic of Turkey organized an International Workshop on Organic Agriculture between 8 – 12th December 2014 at the International Agricultural Research and Training Center, Izmir. About 21 countries, including Nigeria, were invited to attend the training workshop. Several topics on organic agriculture were presented by renowned scholars, ranging from regulation, certification, crop, animal, seed production, pest and disease management, soil composting, and marketing of organic agricultural products, among others. This paper purposely selected two countries (Macedonia and Iran) out of the 21 countries to assess their level of development in terms of organic agriculture as compared to Nigeria. Macedonia, with a population of only 2.1 million people as of 2014, started organic agriculture in 2005 with only 266ha of land and has grown significantly to over 5,000ha in 2010, covering such crops as cereals (62%), forage (20%) fruit orchard (7%), vineyards (5%), vegetables (4%), oil seed and industrial crops (1%) each. Others are organic beekeeping from 110 hives to over 15,000 certified colonies. As part of government commitment, the level of government subsidy for organic products was 30% compared to the direct support for conventional agricultural products. About 19 by-laws were introduced on organic agricultural production that was fully consistent with European Union regulations. The republic of Iran, on the other hand, embarked on organic agriculture for the fact, that the country recorded the highest rate of cancer disease in the world, with over 30,000 people dying every year and 297 people diagnosed every day. However, the host country, Turkey, is well advanced in organic agricultural production and now being the largest exporter of organic products to Europe and other parts of the globe. A technical trip to one of the villages that are under the government scheme on organic agriculture reveals that organic agriculture was based on market-demand-driven and the support of the government was very visible, linking the farmers with private companies that provide inputs to them while the companies purchase the products at harvest with high premium price. However, in Nigeria, research on organic agriculture was very recent, and there was very scanty information on organic agriculture due to poor documentation and very low awareness, even among the elites. The paper, therefore, recommends that the government should provide funds to NARIs to conduct research on organic agriculture and to establish clear government policy and good pre-conditions for sustainable organic agricultural production in the country.Keywords: organic agriculture, food security, food safety, food nutrition
Procedia PDF Downloads 553983 Optimization and Coordination of Organic Product Supply Chains under Competition: An Analytical Modeling Perspective
Authors: Mohammadreza Nematollahi, Bahareh Mosadegh Sedghy, Alireza Tajbakhsh
Abstract:
The last two decades have witnessed substantial attention to organic and sustainable agricultural supply chains. Motivated by real-world practices, this paper aims to address two main challenges observed in organic product supply chains: decentralized decision-making process between farmers and their retailers, and competition between organic products and their conventional counterparts. To this aim, an agricultural supply chain consisting of two farmers, a conventional farmer and an organic farmer who offers an organic version of the same product, is considered. Both farmers distribute their products through a single retailer, where there exists competition between the organic and the conventional product. The retailer, as the market leader, sets the wholesale price, and afterward, the farmers set their production quantity decisions. This paper first models the demand functions of the conventional and organic products by incorporating the effect of asymmetric brand equity, which captures the fact that consumers usually pay a premium for organic due to positive perceptions regarding their health and environmental benefits. Then, profit functions with consideration of some characteristics of organic farming, including crop yield gap and organic cost factor, are modeled. Our research also considers both economies and diseconomies of scale in farming production as well as the effects of organic subsidy paid by the government to support organic farming. This paper explores the investigated supply chain in three scenarios: decentralized, centralized, and coordinated decision-making structures. In the decentralized scenario, the conventional and organic farmers and the retailer maximize their own profits individually. In this case, the interaction between the farmers is modeled under the Bertrand competition, while analyzing the interaction between the retailer and farmers under the Stackelberg game structure. In the centralized model, the optimal production strategies are obtained from the entire supply chain perspective. Analytical models are developed to derive closed-form optimal solutions. Moreover, analytical sensitivity analyses are conducted to explore the effects of main parameters like the crop yield gap, organic cost factor, organic subsidy, and percent price premium of the organic product on the farmers’ and retailer’s optimal strategies. Afterward, a coordination scenario is proposed to convince the three supply chain members to shift from the decentralized to centralized decision-making structure. The results indicate that the proposed coordination scenario provides a win-win-win situation for all three members compared to the decentralized model. Moreover, our paper demonstrates that the coordinated model respectively increases and decreases the production and price of organic produce, which in turn motivates the consumption of organic products in the market. Moreover, the proposed coordination model helps the organic farmer better handle the challenges of organic farming, including the additional cost and crop yield gap. Last but not least, our results highlight the active role of the organic subsidy paid by the government as a means of promoting sustainable organic product supply chains. Our paper shows that although the amount of organic subsidy plays a significant role in the production and sales price of organic products, the allocation method of subsidy between the organic farmer and retailer is not of that importance.Keywords: analytical game-theoretic model, product competition, supply chain coordination, sustainable organic supply chain
Procedia PDF Downloads 1163982 Evaluation of the Shelf Life of Horsetail Stems Stored in Ecological Packaging
Authors: Rosana Goncalves Das Dores, Maira Fonseca, Fernando Finger, Vicente Casali
Abstract:
Equisetum hyemale L. (horsetail, Equisetaceae) is a medicinal plant used and commercialized in simple paper bags or non-ecological packaging in Brazil. The aim of this work was to evaluate the relation between the bioactive compounds of horsetail stems stored in ecological packages (multi-ply paper sacks) at room temperature. Stems in primary and secondary stage were harvested from an organic estate, on December 2016, selected, measured (length from the soil to the apex (cm), stem diameter at ground level (DGL mm) and breast height (DBH mm) and cut into 10 cm. For the post-harvest evaluations, stems were stored in multi-ply paper sacks and evaluated daily to the respiratory rate, fresh weight loss, pH, presence of fungi / mold, phenolic compounds and antioxidant activity. The analyses were done with four replicates, over time (regression) and compared at 1% significance (Tukey test). The measured heights were 103.7 cm and 143.5 cm, DGL was 2.5mm and 8.4 mm and DBH of 2.59 and 6.15 mm, respectively for primary and secondary stems stage. At both stages of development, in storage in multi-ply paper sacks, the greatest mass loss occurred at 48 h, decaying up to 120 hours, stabilizing at 192 hours. The peak respiratory rate increase occurred in 24 hours, coinciding with a change in pH (temperature and mean humidity was 23.5°C and 55%). No fungi or mold were detected, however, there was loss of color of the stems. The average yields of ethanolic extracts were equivalent (approximately 30%). Phenolic compounds and antioxidant activity were higher in secondary stems stage in up to 120 hours (AATt0 = 20%, AATt30 = 45%), decreasing at the end of the experiment (240 hours). The packaging used allows the commercialization of fresh stems of Equisetum for up to five days.Keywords: paper sacks, phenolic content, antioxidant activity, medicinal plants, post-harvest, ecological packages, Equisetum
Procedia PDF Downloads 1703981 Mixed Alumina-Silicate Materials for Groundwater Remediation
Authors: Ziyad Abunada, Abir Al-tabbaa
Abstract:
The current work is investigating the effectiveness of combined mixed materials mainly modified bentonites and organoclay in treating contaminated groundwater. Sodium bentonite was manufactured with a quaternary amine surfactant, dimethyl ammonium chloride to produce organoclay (OC). Inorgano-organo bentonite (IOB) was produced by intercalating alkylbenzyd-methyl-ammonium chloride surfactant into sodium bentonite and pillared with chlorohydrol pillaring agent. The materials efficiency was tested for both TEX compounds from model-contaminated water and a mixture of organic contaminants found in groundwater samples collected from a contaminated site in the United Kingdom. The sorption data was fitted well to both Langmuir and Freundlich adsorption models reflecting the double sorption model where the correlation coefficient was greater than 0.89 for all materials. The mixed materials showed higher sorptive capacity than individual material with a preference order of X> E> T and a maximum sorptive capacity of 21.8 mg/g was reported for IOB-OC materials for o-xylene. The mixed materials showed at least two times higher affinity towards a mixture of organic contaminants in groundwater samples. Other experimental parameters such as pH and contact time were also investigated. The pseudo-second-order rate equation was able to provide the best description of adsorption kinetics.Keywords: modified bentobite, groundwater, adsorption, contaminats
Procedia PDF Downloads 2263980 Management Prospects of Winery By-Products Based on Phenolic Compounds and Antioxidant Activity of Grape Skins: The Case of Greek Ionian Islands
Authors: Marinos Xagoraris, Iliada K. Lappa, Charalambos Kanakis, Dimitra Daferera, Christina Papadopoulou, Georgios Sourounis, Charilaos Giotis, Pavlos Bouchagier, Christos S. Pappas, Petros A. Tarantilis, Efstathia Skotti
Abstract:
The aim of this work was to recover phenolic compounds from grape skins produced in Greek varieties of the Ionian Islands in order to form the basis of calculations for their further utilization in the context of the circular economy. Isolation and further utilization of phenolic compounds is an important issue in winery by-products. For this purpose, 37 samples were collected, extracted, and analyzed in an attempt to provide the appropriate basis for their sustainable exploitation. Extraction of the bioactive compounds was held using an eco-friendly, non-toxic, and highly effective water-glycerol solvent system. Then, extracts were analyzed using UV-Vis, liquid chromatography-mass spectrometry (LC-MS), FTIR, and Raman spectroscopy. Also, total phenolic content and antioxidant activity were measured. LC-MS chromatography showed qualitative differences between different varieties. Peaks were attributed to monomeric 3-flavanols as well as monomeric, dimeric, and trimeric proanthocyanidins. The FT-IR and Raman spectra agreed with the chromatographic data and contributed to identifying phenolic compounds. Grape skins exhibited high total phenolic content (TPC), and it was proved that during vinification, a large number of polyphenols remained in the pomace. This study confirmed that grape skins from Ionian Islands are a promising source of bioactive compounds, suggesting their utilization under a bio-economic and environmental strategic framework.Keywords: antioxidant activity, grape skin, phenolic compounds, waste recovery
Procedia PDF Downloads 1513979 Optimization of Fermentation Parameters for Bioethanol Production from Waste Glycerol by Microwave Induced Mutant Escherichia coli EC-MW (ATCC 11105)
Authors: Refal Hussain, Saifuddin M. Nomanbhay
Abstract:
Glycerol is a valuable raw material for the production of industrially useful metabolites. Among many promising applications for the use of glycerol is its bioconversion to high value-added compounds, such as bioethanol through microbial fermentation. Bioethanol is an important industrial chemical with emerging potential as a biofuel to replace vanishing fossil fuels. The yield of liquid fuel in this process was greatly influenced by various parameters viz, temperature, pH, glycerol concentration, organic concentration, and agitation speed were considered. The present study was undertaken to investigate optimum parameters for bioethanol production from raw glycerol by immobilized mutant Escherichia coli (E.coli) (ATCC11505) strain on chitosan cross linked glutaraldehyde optimized by Taguchi statistical method in shake flasks. The initial parameters were set each at four levels and the orthogonal array layout of L16 (45) conducted. The important controlling parameters for optimized the operational fermentation was temperature 38 °C, medium pH 6.5, initial glycerol concentration (250 g/l), and organic source concentration (5 g/l). Fermentation with optimized parameters was carried out in a custom fabricated shake flask. The predicted value of bioethanol production under optimized conditions was (118.13 g/l). Immobilized cells are mainly used for economic benefits of continuous production or repeated use in continuous as well as in batch mode.Keywords: bioethanol, Escherichia coli, immobilization, optimization
Procedia PDF Downloads 6563978 Chemical Constituents of Silene Arenarioides Desf
Authors: Haba Hamada, Lavaud Cathrine, Benkhaled Mohammed
Abstract:
The Silene genus is the most representative of the caryophyllaceae family for their rich content in secondary metabolites; saponins, flavonoids and flavonoids glycosides, phytoecdysones, oligosaccharides have been isolated and identified. The Silene genus represented by about 700 species in the temrerate region of the word, the main concentration of spcies is Europe, Asia and North Africa. Three known compounds 1-3 were isolated from the aerial parts of Silene arenarioides Desf. by using different chromatographic methods. The structures of the isolated compounds were determined as stigmasterolglycoside, Soyacerebroside, maltol glycoside. The structures of the isolated compounds were determined by using the NMR (1H-NMR, 13C-NMR, COSY, HSQC, and HMBC) techniques and mass spectroscopy. The antimicrobial and antioxydant activities of the different extracts and compound have been reported.Keywords: caryophyllaceae, flavonoids, saponosids, flavonoids glycosides
Procedia PDF Downloads 4073977 Analysis of Pharmaceuticals in Influents of Municipal Wastewater Treatment Plants in Jordan
Authors: O. A. Al-Mashaqbeh, A. M. Ghrair, D. Alsafadi, S. S. Dalahmeh, S. L. Bartelt-Hunt, D. D. Snow
Abstract:
Grab samples were collected in the summer to characterize selected pharmaceuticals and personal care products (PPCPs) in the influent of two wastewater treatment plants (WWTPs) in Jordan. Liquid chromatography tandem mass spectrometry (LC–MS/MS) was utilized to determine the concentrations of 18 compounds of PPCPs. Among all of the PPCPs analyzed, eight compounds were detected in the influent samples (1,7-dimethylxanthine, acetaminophen, caffeine, carbamazepine, cotinine, morphine, sulfamethoxazole and trimethoprim). However, five compounds (amphetamine, cimetidine, diphenhydramine, methylenedioxyamphetamine (MDA) and sulfachloropyridazine) were not detected in collected samples (below the detection limits <0.005 µg/l). Moreover, the results indicated that the highest concentration levels detected in collected samples were caffeine, acetaminophen, 1,7-dimethylxanthine, cotinine and carbamazepine at concentration of 182.5 µg/L, 28.7 µg/l, 7.47 µg/l, 4.67 µg/l and 1.54 µg/L, respectively. In general, most of compounds concentrations measured in wastewater in Jordan are within the range for wastewater previously reported in India wastewater except caffeine.Keywords: pharmaceuticals, personal care products, wastewater, Jordan
Procedia PDF Downloads 3353976 Quality of So-Called Organic Fertilizers in Vietnam's Market
Authors: Hoang Thi Quynh, Shima Kazuto
Abstract:
Organic farming is gaining interest in Vietnam. However, organic fertilizer production is not sufficiently regulated, resulting in unknown quality. This study investigated characteristics of so-called organic fertilizers in the Vietnam’s market and their mineralization in soil-plant system. We collected 15 commercial products (11 domestic and 4 imported) which labelled 'organic fertilizer' in the market to analyze nutrients composition. A 20 day-incubation experiment was carried on with 80 g sandy-textured soil, amended with the fertilizer at a rate of 109.4 mgN.kg⁻¹soil in 150 mL glass bottle at 25℃. We categorized them according to nutrients content and mineralization rate, and then selected 8 samples for cultivation experiment. The experiment was conducted by growing Komatsuna (Brassica campestris) in sandy-textured soil using an automatic watering apparatus in a greenhouse. The fertilizers were applied to the top one-third of the soil stratum at a rate of 200 mgN.kg⁻¹ soil. Our study also analyzed material flow of coffee husk compost in Central Highland of Vietnam. Total N, P, K, Ca, Mg and C: N ratio varied greatly cross the domestic products, whereas they were quite similar among the imported materials. The proportion of inorganic-N to T-N of domestic products was higher than 25% in 8 of 11 samples. These indicate that N concentration increased dramatically in most domestic products compared with their raw materials. Additionally, most domestic products contained less P, and their proportions of Truog-P to T-P were greatly different. These imply that some manufactures were interested in adjusting P concentration, but some ones were not. Furthermore, the compost was made by mixing with chemical substances to increase nutrients content (N, P), and also added construction surplus soil to gain weight before packing product to sell in the market as 'organic fertilizer'. There was a negative correlation between C:N ratio and mineralization rate of the fertilizers. There was a significant difference in N efficiency among the fertilizer treatments. N efficiency of most domestic products was higher than chemical fertilizer and imported organic fertilizers. These results suggest regulations on organic fertilizers production needed to support organic farming that is based on internationally accepted standards in Vietnam.Keywords: inorganic N, mineralization, N efficiency, so-called organic fertilizers, Vietnam’s market
Procedia PDF Downloads 1853975 Physicochemical Characteristics and Evaluation of Main Volatile Compounds of Fresh and Dehydrated Mango
Authors: Maria Terezinha Santos Leite Neta, Mônica Silva de Jesus, Hannah Caroline Santos Araujo, Rafael Donizete Dutra Sandes, Raquel Anne Ribeiro Dos Santos, Narendra Narain
Abstract:
Mango is one of the most consumed and appreciated fruits in the world, mainly due to its peculiar and characteristic aroma. Since the fruit is perishable, it requires conservation methods to prolong its shelf life. Mango cubes were dehydrated at 40°C, 50°C and 60°C and by lyophilization, and the effect of these processes was investigated on the physicochemical characteristics (color and texture) of the products and monitoring of the main volatile compounds for the mango aroma. Volatile compounds were extracted by the SPME technique and analyzed in GC-MS system. Drying temperature at 60°C and lyophilization showed higher efficiency in retention of main volatile compounds, being 63.93% and 60.32% of the total concentration present in the fresh pulp, respectively. The freeze-drying process also presented features closer to the fresh mango in relation to color and texture, which contributes to greater acceptability.Keywords: mango, freeze drying, convection drying, aroma, GC-MS
Procedia PDF Downloads 703974 Chemical Constituents of Matthiola Longipetala Extracts: In Vivo Antioxidant and Antidiabetic Effects in Alloxan Induced Diabetes Rats
Authors: Mona Marzouk, Nesrine Hegazi, Aliaa Ragheb, Mona El Shabrawy, Salwa Kawashty
Abstract:
The whole plant of Matthiola longipetala (Brassicaceae) was extracted by 70% methanol to give the total aqueous methanol extract (AME), which was defatted by hexane yielded hexane extract (HE) and defatted AME (DAME). HE was analyzed through GC/MS assay and revealed the detection of 28 non-polar compounds. In addition, the chemical investigation of DAME led to the isolation and purification of twelve flavonoids and three chlorogenic acids. Their structures were interpreted through chemical (complete and partial acid hydrolysis) and spectroscopic analysis (MS, UV, 1D and 2D NMR). Among them, nine compounds have been isolated for the first time from M. longipetala. Moreover, LC-ESI-MS analysis of DAME was achieved to detect additional 46 metabolites, including phospholipids, organic acids, phenolic acids and flavonoids. The biological activity of AME, HE and DAME against alloxan inducing oxidative stress and diabetes in male rats was investigated. Diabetes was induced using a single dose of Alloxan (150 mg/kg b.wt.). HE and DAME significantly increased serum GSH content in rats (37.3±0.7 and 35.9±0.6 mmol/l) compared to diabetic rats (21.8±0.3) and vitamin E (36.2±1.1) at P<0.01. Also, HE, DAME and AME revealed a significant acute anti-hyperglycemic effect potentiated after four weeks of treatment with blood glucose levels of 96.2±5.4, 98.7±6.1 and 98.9±8.6 mg/dl, respectively, compared to diabetic rats (263.4±7.8) and metaformin group (81.9±2.4) at P<0.01.Keywords: Brassicaceae, Flavonoid, LCMS/MS, Matthiola
Procedia PDF Downloads 1863973 Synthesis and Anti-Inflammatory Activity of Pyrazol-3-yl Thiazole 4-Carboxylic Acid Derivatives Targeting Enzyme in the Leukotriene Pathway
Authors: Shweta Sinha, Mukesh Doble, Manju S. L.
Abstract:
Pyrazole scaffold is an important group of compound in heterocyclic chemistry and is found to possess numerous uses in chemistry. Pyrazole derivatives are also known to possess important biological activities including antitumor, antimicrobial, antiviral, antifungal, anticancer and anti-inflammatory. Inflammation is associated with pain, allergy and asthma. Leukotrienes are mediators of various inflammatory and allergic disorders. 5-Lipoxygenase (5-LOX) is an important enzyme involved in the biosynthesis of leukotrienes and metabolism of arachidonic acid (AA) and thus targeted for anti-inflammation. In vitro inhibitory activity of pyrazol-3-yl thiazole 4-carboxylic acid derivatives is tested against enzyme 5-LOX. Most of these compounds exhibit good inhibitory activity against this enzyme. Binding mode study of these compounds is determined by computational tool. Further experiments are being done to understand the mechanism of action of these compounds in inhibiting this enzyme. To conclude, these compounds appear to be a promising target in drug design against 5-LOX.Keywords: inflammation, inhibition, 5-lipoxygenase, pyrazole
Procedia PDF Downloads 2483972 Design and Synthesis of Gradient Nanocomposite Materials
Authors: Pu Ying-Chih, Yang Yin-Ju, Hang Jian-Yi, Jang Guang-Way
Abstract:
Organic-Inorganic hybrid materials consisting of graded distributions of inorganic nano particles in organic polymer matrices were successfully prepared by the sol-gel process. Optical and surface properties of the resulting nano composites can be manipulated by changing their compositions and nano particle distribution gradients. Applications of gradient nano composite materials include sealants for LED packaging and screen lenses for smartphones. Optical transparency, prism coupler, TEM, SEM, Energy Dispersive X-ray Spectrometer (EDX), Izod impact strength, conductivity, pencil hardness, and thermogravimetric characterizations of the nano composites were performed and the results will be presented.Keywords: Gradient, Hybrid, Nanocomposite, Organic-Inorganic
Procedia PDF Downloads 5083971 Study of the Kinetics of Formation of Carboxylic Acids Using Ion Chromatography during Oxidation Induced by Rancimat of the Oleic Acid, Linoleic Acid, Linolenic Acid, and Biodiesel
Authors: Patrícia T. Souza, Marina Ansolin, Eduardo A. C. Batista, Antonio J. A. Meirelles, Matthieu Tubino
Abstract:
Lipid oxidation is a major cause of the deterioration of the quality of the biodiesel, because the waste generated damages the engines. Among the main undesirable effects are the increase of viscosity and acidity, leading to the formation of insoluble gums and sediments which cause the blockage of fuel filters. The auto-oxidation is defined as the spontaneous reaction of atmospheric oxygen with lipids. Unsaturated fatty acids are usually the components affected by such reactions. They are present as free fatty acids, fatty esters and glycerides. To determine the oxidative stability of biodiesels, through the induction period, IP, the Rancimat method is used, which allows continuous monitoring of the induced oxidation process of the samples. During the oxidation of the lipids, volatile organic acids are produced as byproducts, in addition, other byproducts, including alcohols and carbonyl compounds, may be further oxidized to carboxylic acids. By the methodology developed in this work using ion chromatography, IC, analyzing the water contained in the conductimetric vessel, were quantified organic anions of carboxylic acids in samples subjected to oxidation induced by Rancimat. The optimized chromatographic conditions were: eluent water:acetone (80:20 v/v) with 0.5 mM sulfuric acid; flow rate 0.4 mL min-1; injection volume 20 µL; eluent suppressor 20 mM LiCl; analytical curve from 1 to 400 ppm. The samples studied were methyl biodiesel from soybean oil and unsaturated fatty acids standards: oleic, linoleic and linolenic. The induced oxidation kinetics curves were constructed by analyzing the water contained in the conductimetric vessels which were removed, each one, from the Rancimat apparatus at prefixed intervals of time. About 3 g of sample were used under the conditions of 110 °C and air flow rate of 10 L h-1. The water of each conductimetric Rancimat measuring vessel, where the volatile compounds were collected, was filtered through a 0.45 µm filter and analyzed by IC. Through the kinetic data of the formation of the organic anions of carboxylic acids, the formation rates of the same were calculated. The observed order of the rates of formation of the anions was: formate >>> acetate > hexanoate > valerate for the oleic acid; formate > hexanoate > acetate > valerate for the linoleic acid; formate >>> valerate > acetate > propionate > butyrate for the linolenic acid. It is possible to suppose that propionate and butyrate are obtained mainly from linolenic acid and that hexanoate is originated from oleic and linoleic acid. For the methyl biodiesel the order of formation of anions was: formate >>> acetate > valerate > hexanoate > propionate. According to the total rate of formation these anions produced during the induced degradation of the fatty acids can be assigned the order of reactivity: linolenic acid > linoleic acid >>> oleic acid.Keywords: anions of carboxylic acids, biodiesel, ion chromatography, oxidation
Procedia PDF Downloads 4783970 Cleaning of Polycyclic Aromatic Hydrocarbons (PAH) Obtained from Ferroalloys Plant
Authors: Stefan Andersson, Balram Panjwani, Bernd Wittgens, Jan Erik Olsen
Abstract:
Polycyclic Aromatic hydrocarbons are organic compounds consisting of only hydrogen and carbon aromatic rings. PAH are neutral, non-polar molecules that are produced due to incomplete combustion of organic matter. These compounds are carcinogenic and interact with biological nucleophiles to inhibit the normal metabolic functions of the cells. Norways, the most important sources of PAH pollution is considered to be aluminum plants, the metallurgical industry, offshore oil activity, transport, and wood burning. Stricter governmental regulations regarding emissions to the outer and internal environment combined with increased awareness of the potential health effects have motivated Norwegian metal industries to increase their efforts to reduce emissions considerably. One of the objective of the ongoing industry and Norwegian research council supported "SCORE" project is to reduce potential PAH emissions from an off gas stream of a ferroalloy furnace through controlled combustion. In a dedicated combustion chamber. The sizing and configuration of the combustion chamber depends on the combined properties of the bulk gas stream and the properties of the PAH itself. In order to achieve efficient and complete combustion the residence time and minimum temperature need to be optimized. For this design approach reliable kinetic data of the individual PAH-species and/or groups thereof are necessary. However, kinetic data on the combustion of PAH are difficult to obtain and there is only a limited number of studies. The paper presents an evaluation of the kinetic data for some of the PAH obtained from literature. In the present study, the oxidation is modelled for pure PAH and also for PAH mixed with process gas. Using a perfectly stirred reactor modelling approach the oxidation is modelled including advanced reaction kinetics to study influence of residence time and temperature on the conversion of PAH to CO2 and water. A Chemical Reactor Network (CRN) approach is developed to understand the oxidation of PAH inside the combustion chamber. Chemical reactor network modeling has been found to be a valuable tool in the evaluation of oxidation behavior of PAH under various conditions.Keywords: PAH, PSR, energy recovery, ferro alloy furnace
Procedia PDF Downloads 2773969 Identification of Phenolic Compounds with Antibacterial Activity in Raisin Extract
Authors: Yousef M. Abouzeed A. Elfahem, F. Zgheel, M. A. Saad, Mohamed O. Ahmed
Abstract:
The bioactive properties of phytochemicals indicate their potential as natural drug products to prevent and treat human disease; in particular, compounds with antioxidant and antimicrobial activities may represent a novel class of safe and effective drugs. Following desiccation, grapes (Vitis vinifera) become more resistant to microbial-based degradation, suggesting that raisins may be a source of antimicrobial compounds. To investigate this hypothesis, total phenolic extracts were obtained from common raisins, local market-sourced. The acetone extract was tested for antibacterial activity against four prevalent bacterial pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella spp. and Escherichia coli). Antibiotic sensitivity and the Minimum Inhibitory Concentration (MIC) were determined for each bacterium. High performance liquid chromatography was used to identify compounds in the total phenolic extract. The raisin phenolic extract inhibited growth of all the tested bacteria; the greatest inhibitive effect (normalized to cefotaxime sodium control antibiotic) occurred against P. aeruginosa, followed by S. aureus > Salmonella spp.= E. coli. The phenolic extracts contained the bioactive compounds catechin, quercetin, and rutin. Thus, phytochemicals in raisin extract have antibacterial properties; this plant-based extract, or its bioactive constituents, may represent a promising natural preservative or antimicrobial agent for the food industry or anti-infective drug.Keywords: Vitis vinifera raisin, extraction, phenolic compounds, antibacterial activity
Procedia PDF Downloads 6093968 Mechanisms of Ginger Bioactive Compounds Extract Using Soxhlet and Accelerated Water Extraction
Authors: M. N. Azian, A. N. Ilia Anisa, Y. Iwai
Abstract:
The mechanism for extraction bioactive compounds from plant matrix is essential for optimizing the extraction process. As a benchmark technique, a soxhlet extraction has been utilized for discussing the mechanism and compared with an accelerated water extraction. The trends of both techniques show that the process involves extraction and degradation. The highest yields of 6-, 8-, 10-gingerols and 6-shogaol in soxhlet extraction were 13.948, 7.12, 10.312 and 2.306 mg/g, respectively. The optimum 6-, 8-, 10-gingerols and 6-shogaol extracted by the accelerated water extraction at 140oC were 68.97±3.95 mg/g at 3min, 18.98±3.04 mg/g at 5min, 5.167±2.35 mg/g at 3min and 14.57±6.27 mg/g at 3min, respectively. The effect of temperature at 3mins shows that the concentration of 6-shogaol increased rapidly as decreasing the recovery of 6-gingerol.Keywords: mechanism, ginger bioactive compounds, soxhlet extraction, accelerated water extraction
Procedia PDF Downloads 439