Search results for: predicting model
17016 Predicting the Relationship Between the Corona Virus Anxiety and Psychological Hardiness in Staff Working at Hospital in Shiraz Iran
Authors: Gholam Reza Mirzaei, Mehran Roost
Abstract:
This research was conducted with the aim of predicting the relationship between coronavirus anxiety and psychological hardiness in employees working at Shahid Beheshti Hospital in Shiraz. The current research design was descriptive and correlational. The statistical population of the research consisted of all the employees of Shahid Beheshti Hospital in Shiraz in 2021. From among the statistical population, 220 individuals were selected and studied based on available sampling. To collect data, Kobasa's psychological hardiness questionnaire and coronavirus anxiety questionnaire were used. After collecting the data, the scores of the participants were analyzed using Pearson's correlation coefficient multiple regression analysis and SPSS-24 statistical software. The results of Pearson's correlation coefficient showed that there is a significant negative correlation between psychological hardiness and its components (challenge, commitment, and control) with coronavirus anxiety; also, psychological hardiness with a beta coefficient of 0.20 could predict coronavirus anxiety in hospital employees. Based on the results, plans can be made to enhance psychological hardiness through educational workshops to relieve the anxiety of the healthcare staff.Keywords: the corona virus, commitment, hospital employees, psychological hardiness
Procedia PDF Downloads 6217015 Predicting Expectations of Non-Monogamy in Long-Term Romantic Relationships
Authors: Michelle R. Sullivan
Abstract:
Positive romantic relationships and marriages offer a buffer against a host of physical and emotional difficulties. Conversely, poor relationship quality and marital discord can have deleterious consequences for individuals and families. Research has described non-monogamy, infidelity, and consensual non-monogamy, as both consequential and causal of relationship difficulty, or as a unique way a couple strives to make a relationship work. Much research on consensual non-monogamy has built on feminist theory and critique. To the author’s best knowledge, to date, no studies have examined the predictive relationship between individual and relationship characteristics and expectations of non-monogamy. The current longitudinal study: 1) estimated the prevalence of expectations of partner non-monogamy and 2) evaluated whether gender, sexual identity, age, education, how a couple met, and relationship quality were predictive expectations of partner non-monogamy. This study utilized the publically available longitudinal dataset, How Couples Meet and Stay Together. Adults aged 18- to 98-years old (n=4002) were surveyed by phone over 5 waves from 2009-2014. Demographics and how a couple met were gathered through self-report in Wave 1, and relationship quality and expectations of partner non-monogamy were gathered through self-report in Waves 4 and 5 (n=1047). The prevalence of expectations of partner non-monogamy (encompassing both infidelity and consensual non-monogamy) was 4.8%. Logistic regression models indicated that sexual identity, gender, education, and relationship quality were significantly predictive of expectations of partner non-monogamy. Specifically, male gender, lower education, identifying as lesbian, gay, or bisexual, and a lower relationship quality scores were predictive of expectations of partner non-monogamy. Male gender was not predictive of expectations of partner non-monogamy in the follow up logistic regression model. Age and whether a couple met online were not associated with expectations of partner non-monogamy. Clinical implications include awareness of the increased likelihood of lesbian, gay, and bisexual individuals to have an expectation of non-monogamy and the sequelae of relationship dissatisfaction that may be related. Future research directions could differentiate between non-monogamy subtypes and the person and relationship variables that lead to the likelihood of consensual non-monogamy and infidelity as separate constructs, as well as explore the relationship between predicting partner behavior and actual partner behavioral outcomes.Keywords: open relationship, polyamory, infidelity, relationship satisfaction
Procedia PDF Downloads 16017014 Permeability Prediction Based on Hydraulic Flow Unit Identification and Artificial Neural Networks
Authors: Emad A. Mohammed
Abstract:
The concept of hydraulic flow units (HFU) has been used for decades in the petroleum industry to improve the prediction of permeability. This concept is strongly related to the flow zone indicator (FZI) which is a function of the reservoir rock quality index (RQI). Both indices are based on reservoir porosity and permeability of core samples. It is assumed that core samples with similar FZI values belong to the same HFU. Thus, after dividing the porosity-permeability data based on the HFU, transformations can be done in order to estimate the permeability from the porosity. The conventional practice is to use the power law transformation using conventional HFU where percentage of error is considerably high. In this paper, neural network technique is employed as a soft computing transformation method to predict permeability instead of power law method to avoid higher percentage of error. This technique is based on HFU identification where Amaefule et al. (1993) method is utilized. In this regard, Kozeny and Carman (K–C) model, and modified K–C model by Hasan and Hossain (2011) are employed. A comparison is made between the two transformation techniques for the two porosity-permeability models. Results show that the modified K-C model helps in getting better results with lower percentage of error in predicting permeability. The results also show that the use of artificial intelligence techniques give more accurate prediction than power law method. This study was conducted on a heterogeneous complex carbonate reservoir in Oman. Data were collected from seven wells to obtain the permeability correlations for the whole field. The findings of this study will help in getting better estimation of permeability of a complex reservoir.Keywords: permeability, hydraulic flow units, artificial intelligence, correlation
Procedia PDF Downloads 13817013 Clinical Prediction Score for Ruptured Appendicitis In ED
Authors: Thidathit Prachanukool, Chaiyaporn Yuksen, Welawat Tienpratarn, Sorravit Savatmongkorngul, Panvilai Tangkulpanich, Chetsadakon Jenpanitpong, Yuranan Phootothum, Malivan Phontabtim, Promphet Nuanprom
Abstract:
Background: Ruptured appendicitis has a high morbidity and mortality and requires immediate surgery. The Alvarado Score is used as a tool to predict the risk of acute appendicitis, but there is no such score for predicting rupture. This study aimed to developed the prediction score to determine the likelihood of ruptured appendicitis in an Asian population. Methods: This study was diagnostic, retrospectively cross-sectional and exploratory model at the Emergency Medicine Department in Ramathibodi Hospital between March 2016 and March 2018. The inclusion criteria were age >15 years and an available pathology report after appendectomy. Clinical factors included gender, age>60 years, right lower quadrant pain, migratory pain, nausea and/or vomiting, diarrhea, anorexia, fever>37.3°C, rebound tenderness, guarding, white blood cell count, polymorphonuclear white blood cells (PMN)>75%, and the pain duration before presentation. The predictive model and prediction score for ruptured appendicitis was developed by multivariable logistic regression analysis. Result: During the study period, 480 patients met the inclusion criteria; of these, 77 (16%) had ruptured appendicitis. Five independent factors were predictive of rupture, age>60 years, fever>37.3°C, guarding, PMN>75%, and duration of pain>24 hours to presentation. A score > 6 increased the likelihood ratio of ruptured appendicitis by 3.88 times. Conclusion: Using the Ramathibodi Welawat Ruptured Appendicitis Score. (RAMA WeRA Score) developed in this study, a score of > 6 was associated with ruptured appendicitis.Keywords: predictive model, risk score, ruptured appendicitis, emergency room
Procedia PDF Downloads 16617012 Hydroinformatics of Smart Cities: Real-Time Water Quality Prediction Model Using a Hybrid Approach
Authors: Elisa Coraggio, Dawei Han, Weiru Liu, Theo Tryfonas
Abstract:
Water is one of the most important resources for human society. The world is currently undergoing a wave of urban growth, and pollution problems are of a great impact. Monitoring water quality is a key task for the future of the environment and human species. In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for environmental monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the artificial intelligence algorithm. This study derives the methodology and demonstrates its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for the environment monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a new methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the Artificial Intelligence algorithm. This study derives the methodology and demonstrate its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.Keywords: artificial intelligence, hydroinformatics, numerical modelling, smart cities, water quality
Procedia PDF Downloads 18917011 Predictors of Rumination and Co-Rumination: The Role of Attachment Dimensions, Self-Compassion and Self-Esteem
Authors: Asli Bugay Sökmez, Elif Manuoglu, Muhammet Coskun, Nebi̇ Sümer
Abstract:
Decades of research have searched out the relationships between self-esteem, self-compassion, attachment, and rumination. Yet, unique mediated and moderated predictor power of these correlates of rumination has not been discovered yet. Moreover, no study examined whether these critical correlates of rumination specifically predict sub-dimensions of rumination that are reflection and brooding. Despite the broad range of study regarding predictors of rumination, a huge gap exists for the possible predictors of co-rumination. To address these issues, the present study mainly investigates the predictor roles of self-esteem, self-compassion, and attachment on dimensions of rumination (brooding and reflection) and co-rumination, especially the mediating and moderating roles of these predictor variables. 510 undergraduate and graduate students from different departments of a major state university in Turkey participated in the current study. The mean age of the participants was 21.8 (SD = 2.29) and 57.3% of them were female. Overall analyses revealed that self-compassion and attachment anxiety was negatively correlated with both co-rumination and brooding. Surprisingly, while attachment anxiety significantly and positively predicted reflection, attachment avoidance predicted reflection negatively. Moreover, anxiety, avoidance and self-compassion all were found to be significant predictor variables of co-rumination. Finally, as expected, a moderating effect of self-compassion revealed in predicting reflection and showed as a mediator in predicting brooding and co-rumination. All findings were discussed in light of the related literature.Keywords: rumination, co-rumination, attachment, self-compassion, self-esteem
Procedia PDF Downloads 14917010 Bioclimatic Niches of Endangered Garcinia indica Species on the Western Ghats: Predicting Habitat Suitability under Current and Future Climate
Authors: Malay K. Pramanik
Abstract:
In recent years, climate change has become a major threat and has been widely documented in the geographic distribution of many plant species. However, the impacts of climate change on the distribution of ecologically vulnerable medicinal species remain largely unknown. The identification of a suitable habitat for a species under climate change scenario is a significant step towards the mitigation of biodiversity decline. The study, therefore, aims to predict the impact of current, and future climatic scenarios on the distribution of the threatened Garcinia indica across the northern Western Ghats using Maximum Entropy (MaxEnt) modelling. The future projections were made for the year 2050 and 2070 with all Representative Concentration Pathways (RCPs) scenario (2.6, 4.5, 6.0, and 8.5) using 56 species occurrence data, and 19 bioclimatic predictors from the BCC-CSM1.1 model of the Intergovernmental Panel for Climate Change’s (IPCC) 5th assessment. The bioclimatic variables were minimised to a smaller number of variables after a multicollinearity test, and their contributions were assessed using jackknife test. The AUC value of 0.956 ± 0.023 indicates that the model performs with excellent accuracy. The study identified that temperature seasonality (39.5 ± 3.1%), isothermality (19.2 ± 1.6%), and annual precipitation (12.7 ± 1.7%) would be the major influencing variables in the current and future distribution. The model predicted 10.5% (19318.7 sq. km) of the study area as moderately to very highly suitable, while 82.60% (151904 sq. km) of the study area was identified as ‘unsuitable’ or ‘very low suitable’. Our predictions of climate change impact on habitat suitability suggest that there will be a drastic reduction in the suitability by 5.29% and 5.69% under RCP 8.5 for 2050 and 2070, respectively. Finally, the results signify that the model might be an effective tool for biodiversity protection, ecosystem management, and species re-habitation planning under future climate change scenarios.Keywords: Garcinia Indica, maximum entropy modelling, climate change, MaxEnt, Western Ghats, medicinal plants
Procedia PDF Downloads 15817009 Real Time Detection, Prediction and Reconstitution of Rain Drops
Authors: R. Burahee, B. Chassinat, T. de Laclos, A. Dépée, A. Sastim
Abstract:
The purpose of this paper is to propose a solution to detect, predict and reconstitute rain drops in real time – during the night – using an embedded material with an infrared camera. To prevent the system from needing too high hardware resources, simple models are considered in a powerful image treatment algorithm reducing considerably calculation time in OpenCV software. Using a smart model – drops will be matched thanks to a process running through two consecutive pictures for implementing a sophisticated tracking system. With this system drops computed trajectory gives information for predicting their future location. Thanks to this technique, treatment part can be reduced. The hardware system composed by a Raspberry Pi is optimized to host efficiently this code for real time execution.Keywords: reconstitution, prediction, detection, rain drop, real time, raspberry, infrared
Procedia PDF Downloads 42017008 Anxiety and Self-Perceived L2 Proficiency: A Comparison of Which Can Better Predict L2 Pronunciation Performance
Authors: Jiexuan Lin, Huiyi Chen
Abstract:
The development of L2 pronunciation competence remains understudied in the literature and it is not clear what may influence learners’ development of L2 pronunciation. The present study was an attempt to find out which of the two common factors in L2 acquisition, i.e., foreign language anxiety or self-perceived L2 proficiency, can better predict Chinese EFL learners’ pronunciation performance. 78 first-year English majors, who had received a three-month pronunciation training course, were asked to 1) fill out a questionnaire on foreign language classroom anxiety, 2) self-report their L2 proficiency in general, in speaking and in pronunciation, and 3) complete an oral and a written test on their L2 pronunciation (the score of the oral part indicates participants’ pronunciation proficiency in oral production, and the score of the written part indexes participants’ ability in applying pronunciation knowledge in comprehension.) Results showed that the pronunciation scores were negatively correlated with the anxiety scores, and were positively correlated with the self-perceived pronunciation proficiency. But only the written scores in the L2 pronunciation test, not the oral scores, were positively correlated with the L2 self-perceived general proficiency. Neither the oral nor the written scores in the L2 pronunciation test had a significant correlation with the self-perceived speaking proficiency. Given the fairly strong correlations, the anxiety scores and the self-perceived pronunciation proficiency were put in regression models to predict L2 pronunciation performance. The anxiety factor alone accounted for 13.9% of the variance and the self-perceived pronunciation proficiency alone explained 12.1% of the variance. But when both anxiety scores and self-perceived pronunciation proficiency were put in a stepwise regression model, only the anxiety scores had a significant and unique contribution to the L2 pronunciation performance (4.8%). Taken together, the results suggested that the learners’ anxiety level could better predict their L2 pronunciation performance, compared with the self-perceived proficiency levels. The obtained data have the following pedagogical implications. 1) Given the fairly strong correlation between anxiety and L2 pronunciation performance, the instructors who are interested in predicting learners’ L2 pronunciation proficiency may measure their anxiety level, instead of their proficiency, as the predicting variable. 2) The correlation of oral scores (in the pronunciation test) with pronunciation proficiency, rather than with speaking proficiency, indicates that a) learners after receiving some amounts of training are to some extent able to evaluate their own pronunciation ability, implying the feasibility of incorporating self-evaluation and peer comments in course instruction; b) the ‘proficiency’ measure used to predict pronunciation performance should be used with caution. The proficiency of specific skills seemingly highly related to pronunciation (i.e., speaking in this case) may not be taken for granted as an effective predictor for pronunciation performance. 3) The correlation between the written scores with general L2 proficiency is interesting.Keywords: anxiety, Chinese EFL learners, L2 pronunciation, self-perceived L2 proficiency
Procedia PDF Downloads 36217007 Data-Driven Surrogate Models for Damage Prediction of Steel Liquid Storage Tanks under Seismic Hazard
Authors: Laura Micheli, Majd Hijazi, Mahmoud Faytarouni
Abstract:
The damage reported by oil and gas industrial facilities revealed the utmost vulnerability of steel liquid storage tanks to seismic events. The failure of steel storage tanks may yield devastating and long-lasting consequences on built and natural environments, including the release of hazardous substances, uncontrolled fires, and soil contamination with hazardous materials. It is, therefore, fundamental to reliably predict the damage that steel liquid storage tanks will likely experience under future seismic hazard events. The seismic performance of steel liquid storage tanks is usually assessed using vulnerability curves obtained from the numerical simulation of a tank under different hazard scenarios. However, the computational demand of high-fidelity numerical simulation models, such as finite element models, makes the vulnerability assessment of liquid storage tanks time-consuming and often impractical. As a solution, this paper presents a surrogate model-based strategy for predicting seismic-induced damage in steel liquid storage tanks. In the proposed strategy, the surrogate model is leveraged to reduce the computational demand of time-consuming numerical simulations. To create the data set for training the surrogate model, field damage data from past earthquakes reconnaissance surveys and reports are collected. Features representative of steel liquid storage tank characteristics (e.g., diameter, height, liquid level, yielding stress) and seismic excitation parameters (e.g., peak ground acceleration, magnitude) are extracted from the field damage data. The collected data are then utilized to train a surrogate model that maps the relationship between tank characteristics, seismic hazard parameters, and seismic-induced damage via a data-driven surrogate model. Different types of surrogate algorithms, including naïve Bayes, k-nearest neighbors, decision tree, and random forest, are investigated, and results in terms of accuracy are reported. The model that yields the most accurate predictions is employed to predict future damage as a function of tank characteristics and seismic hazard intensity level. Results show that the proposed approach can be used to estimate the extent of damage in steel liquid storage tanks, where the use of data-driven surrogates represents a viable alternative to computationally expensive numerical simulation models.Keywords: damage prediction , data-driven model, seismic performance, steel liquid storage tanks, surrogate model
Procedia PDF Downloads 14317006 Alloy Design of Single Crystal Ni-base Superalloys by Combined Method of Neural Network and CALPHAD
Authors: Mehdi Montakhabrazlighi, Ercan Balikci
Abstract:
The neural network (NN) method is applied to alloy development of single crystal Ni-base Superalloys with low density and improved mechanical strength. A set of 1200 dataset which includes chemical composition of the alloys, applied stress and temperature as inputs and density and time to rupture as outputs is used for training and testing the network. Thermodynamic phase diagram modeling of the screened alloys is performed with Thermocalc software to model the equilibrium phases and also microsegregation in solidification processing. The model is first trained by 80% of the data and the 20% rest is used to test it. Comparing the predicted values and the experimental ones showed that a well-trained network is capable of accurately predicting the density and time to rupture strength of the Ni-base superalloys. Modeling results is used to determine the effect of alloying elements, stress, temperature and gamma-prime phase volume fraction on rupture strength of the Ni-base superalloys. This approach is in line with the materials genome initiative and integrated computed materials engineering approaches promoted recently with the aim of reducing the cost and time for development of new alloys for critical aerospace components. This work has been funded by TUBITAK under grant number 112M783.Keywords: neural network, rupture strength, superalloy, thermocalc
Procedia PDF Downloads 31617005 Molecular Topology and TLC Retention Behaviour of s-Triazines: QSRR Study
Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević
Abstract:
Quantitative structure-retention relationship (QSRR) analysis was used to predict the chromatographic behavior of s-triazine derivatives by using theoretical descriptors computed from the chemical structure. Fundamental basis of the reported investigation is to relate molecular topological descriptors with chromatographic behavior of s-triazine derivatives obtained by reversed-phase (RP) thin layer chromatography (TLC) on silica gel impregnated with paraffin oil and applied ethanol-water (φ = 0.5-0.8; v/v). Retention parameter (RM0) of 14 investigated s-triazine derivatives was used as dependent variable while simple connectivity index different orders were used as independent variables. The best QSRR model for predicting RM0 value was obtained with simple third order connectivity index (3χ) in the second-degree polynomial equation. Numerical values of the correlation coefficient (r=0.915), Fisher's value (F=28.34) and root mean square error (RMSE = 0.36) indicate that model is statistically significant. In order to test the predictive power of the QSRR model leave-one-out cross-validation technique has been applied. The parameters of the internal cross-validation analysis (r2CV=0.79, r2adj=0.81, PRESS=1.89) reflect the high predictive ability of the generated model and it confirms that can be used to predict RM0 value. Multivariate classification technique, hierarchical cluster analysis (HCA), has been applied in order to group molecules according to their molecular connectivity indices. HCA is a descriptive statistical method and it is the most frequently used for important area of data processing such is classification. The HCA performed on simple molecular connectivity indices obtained from the 2D structure of investigated s-triazine compounds resulted in two main clusters in which compounds molecules were grouped according to the number of atoms in the molecule. This is in agreement with the fact that these descriptors were calculated on the basis of the number of atoms in the molecule of the investigated s-triazine derivatives.Keywords: s-triazines, QSRR, chemometrics, chromatography, molecular descriptors
Procedia PDF Downloads 39417004 Modeling Factors Influencing Online Shopping Intention among Consumers in Nigeria: A Proposed Framework
Authors: Abubakar Mukhtar Yakasai, Muhammad Tahir Jan
Abstract:
Purpose: This paper is aimed at exploring factors influencing online shopping intention among the young consumers in Nigeria. Design/Methodology/approach: The paper adopted and extended Technology Acceptance Model (TAM) as the basis for literature review. Additionally, the paper proposed a framework with the inclusion of culture as a moderating factor of consumer online shopping intention among consumers in Nigeria. Findings: Despite high rate of internet penetration in Nigerian, as well as the rapid advancement of online shopping in the world, little attention was paid to this important revolution specifically among Nigeria’s consumers. Based on the review of extant literature, the TAM extended to include perceived risk and enjoyment (PR and PE) was discovered to be a better alternative framework for predicting Nigeria’s young consumers’ online shopping intention. The moderating effect of culture in the proposed model is shown to help immensely in ascertaining differences, if any, between various cultural groups among online shoppers in Nigeria. Originality/ value: The critical analysis of different factors will assist practitioners (like online retailers, e-marketing managers, website developers, etc.) by signifying which combinations of factors can best predict consumer online shopping behaviour in particular instances, thereby resulting in effective value delivery. Online shopping is a newly adopted technology in Nigeria, hence the paper will give a clear focus for effective e-marketing strategy. In addition, the proposed framework in this paper will guide future researchers by providing a tool for systematic evaluation and testing of real empirical situation of online shopping in Nigeria.Keywords: online shopping, perceived ease of use, perceived usefulness, perceived enjoyment, technology acceptance model, Nigeria
Procedia PDF Downloads 28117003 Innovations in the Implementation of Preventive Strategies and Measuring Their Effectiveness Towards the Prevention of Harmful Incidents to People with Mental Disabilities who Receive Home and Community Based Services
Authors: Carlos V. Gonzalez
Abstract:
Background: Providers of in-home and community based services strive for the elimination of preventable harm to the people under their care as well as to the employees who support them. Traditional models of safety and protection from harm have assumed that the absence of incidents of harm is a good indicator of safe practices. However, this model creates an illusion of safety that is easily shaken by sudden and inadvertent harmful events. As an alternative, we have developed and implemented an evidence-based resilient model of safety known as C.O.P.E. (Caring, Observing, Predicting and Evaluating). Within this model, safety is not defined by the absence of harmful incidents, but by the presence of continuous monitoring, anticipation, learning, and rapid response to events that may lead to harm. Objective: The objective was to evaluate the effectiveness of the C.O.P.E. model for the reduction of harm to individuals with mental disabilities who receive home and community based services. Methods: Over the course of 2 years we counted the number of incidents of harm and near misses. We trained employees on strategies to eliminate incidents before they fully escalated. We trained employees to track different levels of patient status within a scale from 0 to 10. Additionally, we provided direct support professionals and supervisors with customized smart phone applications to track and notify the team of changes in that status every 30 minutes. Finally, the information that we collected was saved in a private computer network that analyzes and graphs the outcome of each incident. Result and conclusions: The use of the COPE model resulted in: A reduction in incidents of harm. A reduction the use of restraints and other physical interventions. An increase in Direct Support Professional’s ability to detect and respond to health problems. Improvement in employee alertness by decreasing sleeping on duty. Improvement in caring and positive interaction between Direct Support Professionals and the person who is supported. Developing a method to globally measure and assess the effectiveness of prevention from harm plans. Future applications of the COPE model for the reduction of harm to people who receive home and community based services are discussed.Keywords: harm, patients, resilience, safety, mental illness, disability
Procedia PDF Downloads 44917002 Predicting Wearable Technology Readiness in a South African Government Department: Exploring the Influence of Wearable Technology Acceptance and Positive Attitude
Authors: Henda J Thomas, Cornelia PJ Harmse, Cecile Schultz
Abstract:
Wearables are one of the technologies that will flourish within the fourth industrial revolution and digital transformation arenas, allowing employers to integrate collected data into organisational information systems. The study aimed to investigate whether wearable technology readiness can predict employees’ acceptance to wear wearables in the workplace. The factors of technology readiness predisposition that predict acceptance and positive attitudes towards wearable use in the workplace were examined. A quantitative research approach was used. The population consisted of 8 081 South African Department of Employment and Labour employees (DEL). Census sampling was used, and questionnaires to collect data were sent electronically to all 8 081 employees, 351 questionnaires were received back. The measuring instrument called the Technology Readiness and Acceptance Model (TRAM) was used in this study. Four hypotheses were formulated to investigate the relationship between readiness and acceptance of wearables in the workplace. The results found consistent predictions of technology acceptance (TA) by eagerness, optimism, and discomfort in the technology readiness (TR) scales. The TR scales of optimism and eagerness were consistent positive predictors of the TA scales, while discomfort proved to be a negative predictor for two of the three TA scales. Insecurity was found not to be a predictor of TA. It was recommended that the digital transformation policy of the DEL should be revised. Wearables in the workplace should be embraced from the viewpoint of convenience, automation, and seamless integration with the DEL information systems. The empirical contribution of this study can be seen in the fact that positive attitude emerged as a factor that extends the TRAM. In this study, positive attitude is identified as a new dimension to the TRAM not found in the original TA model and subsequent studies of the TRAM. Furthermore, this study found that Perceived Usefulness (PU) and Behavioural Intention to Use and (BIU) could not be separated but formed one factor. The methodological contribution of this study can lead to the development of a Wearable Readiness and Acceptance Model (WRAM). To the best of our knowledge, no author has yet introduced the WRAM into the body of knowledge.Keywords: technology acceptance model, technology readiness index, technology readiness and acceptance model, wearable devices, wearable technology, fourth industrial revolution
Procedia PDF Downloads 8917001 Development of a Novel Clinical Screening Tool, Using the BSGE Pain Questionnaire, Clinical Examination and Ultrasound to Predict the Severity of Endometriosis Prior to Laparoscopic Surgery
Authors: Marlin Mubarak
Abstract:
Background: Endometriosis is a complex disabling disease affecting young females in the reproductive period mainly. The aim of this project is to generate a diagnostic model to predict severity and stage of endometriosis prior to Laparoscopic surgery. This will help to improve the pre-operative diagnostic accuracy of stage 3 & 4 endometriosis and as a result, refer relevant women to a specialist centre for complex Laparoscopic surgery. The model is based on the British Society of Gynaecological Endoscopy (BSGE) pain questionnaire, clinical examination and ultrasound scan. Design: This is a prospective, observational, study, in which women completed the BSGE pain questionnaire, a BSGE requirement. Also, as part of the routine preoperative assessment patient had a routine ultrasound scan and when recto-vaginal and deep infiltrating endometriosis was suspected an MRI was performed. Setting: Luton & Dunstable University Hospital. Patients: Symptomatic women (n = 56) scheduled for laparoscopy due to pelvic pain. The age ranged between 17 – 52 years of age (mean 33.8 years, SD 8.7 years). Interventions: None outside the recognised and established endometriosis centre protocol set up by BSGE. Main Outcome Measure(s): Sensitivity and specificity of endometriosis diagnosis predicted by symptoms based on BSGE pain questionnaire, clinical examinations and imaging. Findings: The prevalence of diagnosed endometriosis was calculated to be 76.8% and the prevalence of advanced stage was 55.4%. Deep infiltrating endometriosis in various locations was diagnosed in 32/56 women (57.1%) and some had DIE involving several locations. Logistic regression analysis was performed on 36 clinical variables to create a simple clinical prediction model. After creating the scoring system using variables with P < 0.05, the model was applied to the whole dataset. The sensitivity was 83.87% and specificity 96%. The positive likelihood ratio was 20.97 and the negative likelihood ratio was 0.17, indicating that the model has a good predictive value and could be useful in predicting advanced stage endometriosis. Conclusions: This is a hypothesis-generating project with one operator, but future proposed research would provide validation of the model and establish its usefulness in the general setting. Predictive tools based on such model could help organise the appropriate investigation in clinical practice, reduce risks associated with surgery and improve outcome. It could be of value for future research to standardise the assessment of women presenting with pelvic pain. The model needs further testing in a general setting to assess if the initial results are reproducible.Keywords: deep endometriosis, endometriosis, minimally invasive, MRI, ultrasound.
Procedia PDF Downloads 35517000 Performance Prediction Methodology of Slow Aging Assets
Authors: M. Ben Slimene, M.-S. Ouali
Abstract:
Asset management of urban infrastructures faces a multitude of challenges that need to be overcome to obtain a reliable measurement of performances. Predicting the performance of slowly aging systems is one of those challenges, which helps the asset manager to investigate specific failure modes and to undertake the appropriate maintenance and rehabilitation interventions to avoid catastrophic failures as well as to optimize the maintenance costs. This article presents a methodology for modeling the deterioration of slowly degrading assets based on an operating history. It consists of extracting degradation profiles by grouping together assets that exhibit similar degradation sequences using an unsupervised classification technique derived from artificial intelligence. The obtained clusters are used to build the performance prediction models. This methodology is applied to a sample of a stormwater drainage culvert dataset.Keywords: artificial Intelligence, clustering, culvert, regression model, slow degradation
Procedia PDF Downloads 11216999 Hard Disk Failure Predictions in Supercomputing System Based on CNN-LSTM and Oversampling Technique
Authors: Yingkun Huang, Li Guo, Zekang Lan, Kai Tian
Abstract:
Hard disk drives (HDD) failure of the exascale supercomputing system may lead to service interruption and invalidate previous calculations, and it will cause permanent data loss. Therefore, initiating corrective actions before hard drive failures materialize is critical to the continued operation of jobs. In this paper, a highly accurate analysis model based on CNN-LSTM and oversampling technique was proposed, which can correctly predict the necessity of a disk replacement even ten days in advance. Generally, the learning-based method performs poorly on a training dataset with long-tail distribution, especially fault prediction is a very classic situation as the scarcity of failure data. To overcome the puzzle, a new oversampling was employed to augment the data, and then, an improved CNN-LSTM with the shortcut was built to learn more effective features. The shortcut transmits the results of the previous layer of CNN and is used as the input of the LSTM model after weighted fusion with the output of the next layer. Finally, a detailed, empirical comparison of 6 prediction methods is presented and discussed on a public dataset for evaluation. The experiments indicate that the proposed method predicts disk failure with 0.91 Precision, 0.91 Recall, 0.91 F-measure, and 0.90 MCC for 10 days prediction horizon. Thus, the proposed algorithm is an efficient algorithm for predicting HDD failure in supercomputing.Keywords: HDD replacement, failure, CNN-LSTM, oversampling, prediction
Procedia PDF Downloads 8116998 Consolidated Predictive Model of the Natural History of Breast Cancer Considering Primary Tumor and Secondary Distant Metastases Growth
Authors: Ella Tyuryumina, Alexey Neznanov
Abstract:
This study is an attempt to obtain reliable data on the natural history of breast cancer growth. We analyze the opportunities for using classical mathematical models (exponential and logistic tumor growth models, Gompertz and von Bertalanffy tumor growth models) to try to describe growth of the primary tumor and the secondary distant metastases of human breast cancer. The research aim is to improve predicting accuracy of breast cancer progression using an original mathematical model referred to CoMPaS and corresponding software. We are interested in: 1) modelling the whole natural history of the primary tumor and the secondary distant metastases; 2) developing adequate and precise CoMPaS which reflects relations between the primary tumor and the secondary distant metastases; 3) analyzing the CoMPaS scope of application; 4) implementing the model as a software tool. The foundation of the CoMPaS is the exponential tumor growth model, which is described by determinate nonlinear and linear equations. The CoMPaS corresponds to TNM classification. It allows to calculate different growth periods of the primary tumor and the secondary distant metastases: 1) ‘non-visible period’ for the primary tumor; 2) ‘non-visible period’ for the secondary distant metastases; 3) ‘visible period’ for the secondary distant metastases. The CoMPaS is validated on clinical data of 10-years and 15-years survival depending on the tumor stage and diameter of the primary tumor. The new predictive tool: 1) is a solid foundation to develop future studies of breast cancer growth models; 2) does not require any expensive diagnostic tests; 3) is the first predictor which makes forecast using only current patient data, the others are based on the additional statistical data. The CoMPaS model and predictive software: a) fit to clinical trials data; b) detect different growth periods of the primary tumor and the secondary distant metastases; c) make forecast of the period of the secondary distant metastases appearance; d) have higher average prediction accuracy than the other tools; e) can improve forecasts on survival of breast cancer and facilitate optimization of diagnostic tests. The following are calculated by CoMPaS: the number of doublings for ‘non-visible’ and ‘visible’ growth period of the secondary distant metastases; tumor volume doubling time (days) for ‘non-visible’ and ‘visible’ growth period of the secondary distant metastases. The CoMPaS enables, for the first time, to predict ‘whole natural history’ of the primary tumor and the secondary distant metastases growth on each stage (pT1, pT2, pT3, pT4) relying only on the primary tumor sizes. Summarizing: a) CoMPaS describes correctly the primary tumor growth of IA, IIA, IIB, IIIB (T1-4N0M0) stages without metastases in lymph nodes (N0); b) facilitates the understanding of the appearance period and inception of the secondary distant metastases.Keywords: breast cancer, exponential growth model, mathematical model, metastases in lymph nodes, primary tumor, survival
Procedia PDF Downloads 34116997 Numerical Simulation of Axially Loaded to Failure Large Diameter Bored Pile
Authors: M. Ezzat, Y. Zaghloul, T. Sorour, A. Hefny, M. Eid
Abstract:
Ultimate capacity of large diameter bored piles is usually determined from pile loading tests as recommended by several international codes and foundation design standards. However, loading of this type of piles till achieving apparent failure is practically seldom. In this paper, numerical analyses are carried out to simulate load test of a large diameter bored pile performed at the location of Alzey highway bridge project (Germany). Test results of pile load settlement relationship till failure as well as results of the base and shaft resistances are available. Apparent failure was indicated in this test by the significant increase of the induced settlement during the last load increment applied on the pile head. Measurements of this pile load test are used to assess the quality of the numerical models investigated. Three different material soil models are implemented in the analyses: Mohr coulomb (MC), Soft soil (SS), and Modified Mohr coulomb (MMC). Very good agreement is obtained between the field measured settlement and the calculated settlement using the MMC model. Results of analysis showed also that the MMC constitutive model is superior to MC, and SS models in predicting the ultimate base and shaft resistances of the large diameter bored pile. After calibrating the numerical model, behavior of large diameter bored piles under axial loads is discussed and the formation of the plastic zone around the pile is explored. Results obtained showed that the plastic zone below the base of the pile at failure extended laterally to about four times the pile diameter and vertically to about three times the pile diameter.Keywords: ultimate capacity, large diameter bored piles, plastic zone, failure, pile load test
Procedia PDF Downloads 14316996 Mechanistic Understanding of the Difference in two Strains Cholerae Causing Pathogens and Predicting Therapeutic Strategies for Cholera Patients Affected with new Strain Vibrio Cholerae El.tor. Using Constrain-based Modelling
Authors: Faiz Khan Mohammad, Saumya Ray Chaudhari, Raghunathan Rengaswamy, Swagatika Sahoo
Abstract:
Cholera caused by pathogenic gut bacteria Vibrio Cholerae (VC), is a major health problem in developing countries. Different strains of VC exhibit variable responses subject to different extracellular medium (Nag et al, Infect Immun, 2018). In this study, we present a new approach to model the variable VC responses in mono- and co-cultures, subject to continuously changing growth medium, which is otherwise difficult via simple FBA model. Nine VC strain and seven E. coli (EC) models were assembled and considered. A continuously changing medium is modelled using a new iterative-based controlled medium technique (ITC). The medium is appropriately prefixed with the VC model secretome. As the flux through the bacteria biomass increases secretes certain by-products. These products shall add-on to the medium, either deviating the nutrient potential or block certain metabolic components of the model, effectively forming a controlled feed-back loop. Different VC models were setup as monoculture of VC in glucose enriched medium, and in co-culture with VC strains and EC. Constrained to glucose enriched medium, (i) VC_Classical model resulted in higher flux through acidic secretome suggesting a pH change of the medium, leading to lowering of its biomass. This is in consonance with the literature reports. (ii) When compared for neutral secretome, flux through acetoin exchange was higher in VC_El tor than the classical models, suggesting El tor requires an acidic partner to lower its biomass. (iii) Seven of nine VC models predicted 3-methyl-2-Oxovaleric acid, mysirtic acid, folic acid, and acetate significantly affect corresponding biomass reactions. (iv) V. parhemolyticus and vulnificus were found to be phenotypically similar to VC Classical strain, across the nine VC strains. The work addresses the advantage of the ITC over regular flux balance analysis for modelling varying growth medium. Future expansion to co-cultures, potentiates the identification of novel interacting partners as effective cholera therapeutics.Keywords: cholera, vibrio cholera El. tor, vibrio cholera classical, acetate
Procedia PDF Downloads 16416995 Traffic Forecasting for Open Radio Access Networks Virtualized Network Functions in 5G Networks
Authors: Khalid Ali, Manar Jammal
Abstract:
In order to meet the stringent latency and reliability requirements of the upcoming 5G networks, Open Radio Access Networks (O-RAN) have been proposed. The virtualization of O-RAN has allowed it to be treated as a Network Function Virtualization (NFV) architecture, while its components are considered Virtualized Network Functions (VNFs). Hence, intelligent Machine Learning (ML) based solutions can be utilized to apply different resource management and allocation techniques on O-RAN. However, intelligently allocating resources for O-RAN VNFs can prove challenging due to the dynamicity of traffic in mobile networks. Network providers need to dynamically scale the allocated resources in response to the incoming traffic. Elastically allocating resources can provide a higher level of flexibility in the network in addition to reducing the OPerational EXpenditure (OPEX) and increasing the resources utilization. Most of the existing elastic solutions are reactive in nature, despite the fact that proactive approaches are more agile since they scale instances ahead of time by predicting the incoming traffic. In this work, we propose and evaluate traffic forecasting models based on the ML algorithm. The algorithms aim at predicting future O-RAN traffic by using previous traffic data. Detailed analysis of the traffic data was carried out to validate the quality and applicability of the traffic dataset. Hence, two ML models were proposed and evaluated based on their prediction capabilities.Keywords: O-RAN, traffic forecasting, NFV, ARIMA, LSTM, elasticity
Procedia PDF Downloads 22816994 Equivalent Circuit Model for the Eddy Current Damping with Frequency-Dependence
Authors: Zhiguo Shi, Cheng Ning Loong, Jiazeng Shan, Weichao Wu
Abstract:
This study proposes an equivalent circuit model to simulate the eddy current damping force with shaking table tests and finite element modeling. The model is firstly proposed and applied to a simple eddy current damper, which is modelled in ANSYS, indicating that the proposed model can simulate the eddy current damping force under different types of excitations. Then, a non-contact and friction-free eddy current damper is designed and tested, and the proposed model can reproduce the experimental observations. The excellent agreement between the simulated results and the experimental data validates the accuracy and reliability of the equivalent circuit model. Furthermore, a more complicated model is performed in ANSYS to verify the feasibility of the equivalent circuit model in complex eddy current damper, and the higher-order fractional model and viscous model are adopted for comparison.Keywords: equivalent circuit model, eddy current damping, finite element model, shake table test
Procedia PDF Downloads 19316993 The Extended Skew Gaussian Process for Regression
Authors: M. T. Alodat
Abstract:
In this paper, we propose a generalization to the Gaussian process regression(GPR) model called the extended skew Gaussian process for regression(ESGPr) model. The ESGPR model works better than the GPR model when the errors are skewed. We derive the predictive distribution for the ESGPR model at a new input. Also we apply the ESGPR model to FOREX data and we find that it fits the Forex data better than the GPR model.Keywords: extended skew normal distribution, Gaussian process for regression, predictive distribution, ESGPr model
Procedia PDF Downloads 55416992 Camera Model Identification for Mi Pad 4, Oppo A37f, Samsung M20, and Oppo f9
Authors: Ulrich Wake, Eniman Syamsuddin
Abstract:
The model for camera model identificaiton is trained using pretrained model ResNet43 and ResNet50. The dataset consists of 500 photos of each phone. Dataset is divided into 1280 photos for training, 320 photos for validation and 400 photos for testing. The model is trained using One Cycle Policy Method and tested using Test-Time Augmentation. Furthermore, the model is trained for 50 epoch using regularization such as drop out and early stopping. The result is 90% accuracy for validation set and above 85% for Test-Time Augmentation using ResNet50. Every model is also trained by slightly updating the pretrained model’s weightsKeywords: One Cycle Policy, ResNet34, ResNet50, Test-Time Agumentation
Procedia PDF Downloads 20916991 A Machine Learning-Based Model to Screen Antituberculosis Compound Targeted against LprG Lipoprotein of Mycobacterium tuberculosis
Authors: Syed Asif Hassan, Syed Atif Hassan
Abstract:
Multidrug-resistant Tuberculosis (MDR-TB) is an infection caused by the resistant strains of Mycobacterium tuberculosis that do not respond either to isoniazid or rifampicin, which are the most important anti-TB drugs. The increase in the occurrence of a drug-resistance strain of MTB calls for an intensive search of novel target-based therapeutics. In this context LprG (Rv1411c) a lipoprotein from MTB plays a pivotal role in the immune evasion of Mtb leading to survival and propagation of the bacterium within the host cell. Therefore, a machine learning method will be developed for generating a computational model that could predict for a potential anti LprG activity of the novel antituberculosis compound. The present study will utilize dataset from PubChem database maintained by National Center for Biotechnology Information (NCBI). The dataset involves compounds screened against MTB were categorized as active and inactive based upon PubChem activity score. PowerMV, a molecular descriptor generator, and visualization tool will be used to generate the 2D molecular descriptors for the actives and inactive compounds present in the dataset. The 2D molecular descriptors generated from PowerMV will be used as features. We feed these features into three different classifiers, namely, random forest, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model based on the accuracy of predicting novel antituberculosis compound with an anti LprG activity. Additionally, the efficacy of predicted active compounds will be screened using SMARTS filter to choose molecule with drug-like features.Keywords: antituberculosis drug, classifier, machine learning, molecular descriptors, prediction
Procedia PDF Downloads 39216990 Machine Learning in Gravity Models: An Application to International Recycling Trade Flow
Authors: Shan Zhang, Peter Suechting
Abstract:
Predicting trade patterns is critical to decision-making in public and private domains, especially in the current context of trade disputes among major economies. In the past, U.S. recycling has relied heavily on strong demand for recyclable materials overseas. However, starting in 2017, a series of new recycling policies (bans and higher inspection standards) was enacted by multiple countries that were the primary importers of recyclables from the U.S. prior to that point. As the global trade flow of recycling shifts, some new importers, mostly developing countries in South and Southeast Asia, have been overwhelmed by the sheer quantities of scrap materials they have received. As the leading exporter of recyclable materials, the U.S. now has a pressing need to build its recycling industry domestically. With respect to the global trade in scrap materials used for recycling, the interest in this paper is (1) predicting how the export of recyclable materials from the U.S. might vary over time, and (2) predicting how international trade flows for recyclables might change in the future. Focusing on three major recyclable materials with a history of trade, this study uses data-driven and machine learning (ML) algorithms---supervised (shrinkage and tree methods) and unsupervised (neural network method)---to decipher the international trade pattern of recycling. Forecasting the potential trade values of recyclables in the future could help importing countries, to which those materials will shift next, to prepare related trade policies. Such policies can assist policymakers in minimizing negative environmental externalities and in finding the optimal amount of recyclables needed by each country. Such forecasts can also help exporting countries, like the U.S understand the importance of healthy domestic recycling industry. The preliminary result suggests that gravity models---in addition to particular selection macroeconomic predictor variables--are appropriate predictors of the total export value of recyclables. With the inclusion of variables measuring aspects of the political conditions (trade tariffs and bans), predictions show that recyclable materials are shifting from more policy-restricted countries to less policy-restricted countries in international recycling trade. Those countries also tend to have high manufacturing activities as a percentage of their GDP.Keywords: environmental economics, machine learning, recycling, international trade
Procedia PDF Downloads 17016989 Assessment of Pre-Processing Influence on Near-Infrared Spectra for Predicting the Mechanical Properties of Wood
Authors: Aasheesh Raturi, Vimal Kothiyal, P. D. Semalty
Abstract:
We studied mechanical properties of Eucalyptus tereticornis using FT-NIR spectroscopy. Firstly, spectra were pre-processed to eliminate useless information. Then, prediction model was constructed by partial least squares regression. To study the influence of pre-processing on prediction of mechanical properties for NIR analysis of wood samples, we applied various pretreatment methods like straight line subtraction, constant offset elimination, vector-normalization, min-max normalization, multiple scattering. Correction, first derivative, second derivatives and their combination with other treatment such as First derivative + straight line subtraction, First derivative+ vector normalization and First derivative+ multiplicative scattering correction. The data processing methods in combination of preprocessing with different NIR regions, RMSECV, RMSEP and optimum factors/rank were obtained by optimization process of model development. More than 350 combinations were obtained during optimization process. More than one pre-processing method gave good calibration/cross-validation and prediction/test models, but only the best calibration/cross-validation and prediction/test models are reported here. The results show that one can safely use NIR region between 4000 to 7500 cm-1 with straight line subtraction, constant offset elimination, first derivative and second derivative preprocessing method which were found to be most appropriate for models development.Keywords: FT-NIR, mechanical properties, pre-processing, PLS
Procedia PDF Downloads 36216988 Energy Conservation in Heat Exchangers
Authors: Nadia Allouache
Abstract:
Energy conservation is one of the major concerns in the modern high tech era due to the limited amount of energy resources and the increasing cost of energy. Predicting an efficient use of energy in thermal systems like heat exchangers can only be achieved if the second law of thermodynamics is accounted for. The performance of heat exchangers can be substantially improved by many passive heat transfer augmentation techniques. These letters permit to improve heat transfer rate and to increase exchange surface, but on the other side, they also increase the friction factor associated with the flow. This raises the question of how to employ these passive techniques in order to minimize the useful energy. The objective of this present study is to use a porous substrate attached to the walls as a passive enhancement technique in heat exchangers and to find the compromise between the hydrodynamic and thermal performances under turbulent flow conditions, by using a second law approach. A modified k- ε model is used to simulating the turbulent flow in the porous medium and the turbulent shear flow is accounted for in the entropy generation equation. A numerical modeling, based on the finite volume method is employed for discretizing the governing equations. Effects of several parameters are investigated such as the porous substrate properties and the flow conditions. Results show that under certain conditions of the porous layer thickness, its permeability, and its effective thermal conductivity the minimum rate of entropy production is obtained.Keywords: second law approach, annular heat exchanger, turbulent flow, porous medium, modified model, numerical analysis
Procedia PDF Downloads 28816987 Understanding Cognitive Fatigue From FMRI Scans With Self-supervised Learning
Authors: Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Fillia Makedon, Glenn Wylie
Abstract:
Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that records neural activations in the brain by capturing the blood oxygen level in different regions based on the task performed by a subject. Given fMRI data, the problem of predicting the state of cognitive fatigue in a person has not been investigated to its full extent. This paper proposes tackling this issue as a multi-class classification problem by dividing the state of cognitive fatigue into six different levels, ranging from no-fatigue to extreme fatigue conditions. We built a spatio-temporal model that uses convolutional neural networks (CNN) for spatial feature extraction and a long short-term memory (LSTM) network for temporal modeling of 4D fMRI scans. We also applied a self-supervised method called MoCo (Momentum Contrast) to pre-train our model on a public dataset BOLD5000 and fine-tuned it on our labeled dataset to predict cognitive fatigue. Our novel dataset contains fMRI scans from Traumatic Brain Injury (TBI) patients and healthy controls (HCs) while performing a series of N-back cognitive tasks. This method establishes a state-of-the-art technique to analyze cognitive fatigue from fMRI data and beats previous approaches to solve this problem.Keywords: fMRI, brain imaging, deep learning, self-supervised learning, contrastive learning, cognitive fatigue
Procedia PDF Downloads 191