Search results for: novel object recognition
2417 Usability Testing on Information Design through Single-Lens Wearable Device
Authors: Jae-Hyun Choi, Sung-Soo Bae, Sangyoung Yoon, Hong-Ku Yun, Jiyoung Kwahk
Abstract:
This study was conducted to investigate the effect of ocular dominance on recognition performance using a single-lens smart display designed for cycling. A total of 36 bicycle riders who have been cycling consistently were recruited and participated in the experiment. The participants were asked to perform tasks riding a bicycle on a stationary stand for safety reasons. Independent variables of interest include ocular dominance, bike usage, age group, and information layout. Recognition time (i.e., the time required to identify specific information measured with an eye-tracker), error rate (i.e. false answer or failure to identify the information in 5 seconds), and user preference scores were measured and statistical tests were conducted to identify significant results. Recognition time and error ratio showed significant difference by ocular dominance factor, while the preference score did not. Recognition time was faster when the single-lens see-through display on the dominant eye (average 1.12sec) than on the non-dominant eye (average 1.38sec). Error ratio of the information recognition task was significantly lower when the see-through display was worn on the dominant eye (average 4.86%) than on the non-dominant eye (average 14.04%). The interaction effect of ocular dominance and age group was significant with respect to recognition time and error ratio. The recognition time of the users in their 40s was significantly longer than the other age groups when the display was placed on the non-dominant eye, while no difference was observed on the dominant eye. Error ratio also showed the same pattern. Although no difference was observed for the main effect of ocular dominance and bike usage, the interaction effect between the two variables was significant with respect to preference score. Preference score of daily bike users was higher when the display was placed on the dominant eye, whereas participants who use bikes for leisure purposes showed the opposite preference patterns. It was found more effective and efficient to wear a see-through display on the dominant eye than on the non-dominant eye, although user preference was not affected by ocular dominance. It is recommended to wear a see-through display on the dominant eye since it is safer by helping the user recognize the presented information faster and more accurately, even if the user may not notice the difference.Keywords: eye tracking, information recognition, ocular dominance, smart headware, wearable device
Procedia PDF Downloads 2722416 Spatio-Temporal Assessment of Urban Growth and Land Use Change in Islamabad Using Object-Based Classification Method
Authors: Rabia Shabbir, Sheikh Saeed Ahmad, Amna Butt
Abstract:
Rapid land use changes have taken place in Islamabad, the capital city of Pakistan, over the past decades due to accelerated urbanization and industrialization. In this study, land use changes in the metropolitan area of Islamabad was observed by the combined use of GIS and satellite remote sensing for a time period of 15 years. High-resolution Google Earth images were downloaded from 2000-2015, and object-based classification method was used for accurate classification using eCognition software. The information regarding urban settlements, industrial area, barren land, agricultural area, vegetation, water, and transportation infrastructure was extracted. The results showed that the city experienced a spatial expansion, rapid urban growth, land use change and expanding transportation infrastructure. The study concluded the integration of GIS and remote sensing as an effective approach for analyzing the spatial pattern of urban growth and land use change.Keywords: land use change, urban growth, Islamabad, object-based classification, Google Earth, remote sensing, GIS
Procedia PDF Downloads 1512415 Robust Recognition of Locomotion Patterns via Data-Driven Machine Learning in the Cloud Environment
Authors: Shinoy Vengaramkode Bhaskaran, Kaushik Sathupadi, Sandesh Achar
Abstract:
Human locomotion recognition is important in a variety of sectors, such as robotics, security, healthcare, fitness tracking and cloud computing. With the increasing pervasiveness of peripheral devices, particularly Inertial Measurement Units (IMUs) sensors, researchers have attempted to exploit these advancements in order to precisely and efficiently identify and categorize human activities. This research paper introduces a state-of-the-art methodology for the recognition of human locomotion patterns in a cloud environment. The methodology is based on a publicly available benchmark dataset. The investigation implements a denoising and windowing strategy to deal with the unprocessed data. Next, feature extraction is adopted to abstract the main cues from the data. The SelectKBest strategy is used to abstract optimal features from the data. Furthermore, state-of-the-art ML classifiers are used to evaluate the performance of the system, including logistic regression, random forest, gradient boosting and SVM have been investigated to accomplish precise locomotion classification. Finally, a detailed comparative analysis of results is presented to reveal the performance of recognition models.Keywords: artificial intelligence, cloud computing, IoT, human locomotion, gradient boosting, random forest, neural networks, body-worn sensors
Procedia PDF Downloads 112414 Effects of Oxytocin on Neural Response to Facial Emotion Recognition in Schizophrenia
Authors: Avyarthana Dey, Naren P. Rao, Arpitha Jacob, Chaitra V. Hiremath, Shivarama Varambally, Ganesan Venkatasubramanian, Rose Dawn Bharath, Bangalore N. Gangadhar
Abstract:
Objective: Impaired facial emotion recognition is widely reported in schizophrenia. Neuropeptide oxytocin is known to modulate brain regions involved in facial emotion recognition, namely amygdala, in healthy volunteers. However, its effect on facial emotion recognition deficits seen in schizophrenia is not well explored. In this study, we examined the effect of intranasal OXT on processing facial emotions and its neural correlates in patients with schizophrenia. Method: 12 male patients (age= 31.08±7.61 years, education= 14.50±2.20 years) participated in this single-blind, counterbalanced functional magnetic resonance imaging (fMRI) study. All participants underwent three fMRI scans; one at baseline, one each after single dose 24IU intranasal OXT and intranasal placebo. The order of administration of OXT and placebo were counterbalanced and subject was blind to the drug administered. Participants performed a facial emotion recognition task presented in a block design with six alternating blocks of faces and shapes. The faces depicted happy, angry or fearful emotions. The images were preprocessed and analyzed using SPM 12. First level contrasts comparing recognition of emotions and shapes were modelled at individual subject level. A group level analysis was performed using the contrasts generated at the first level to compare the effects of intranasal OXT and placebo. The results were thresholded at uncorrected p < 0.001 with a cluster size of 6 voxels. Neuropeptide oxytocin is known to modulate brain regions involved in facial emotion recognition, namely amygdala, in healthy volunteers. Results: Compared to placebo, intranasal OXT attenuated activity in inferior temporal, fusiform and parahippocampal gyri (BA 20), premotor cortex (BA 6), middle frontal gyrus (BA 10) and anterior cingulate gyrus (BA 24) and enhanced activity in the middle occipital gyrus (BA 18), inferior occipital gyrus (BA 19), and superior temporal gyrus (BA 22). There were no significant differences between the conditions on the accuracy scores of emotion recognition between baseline (77.3±18.38), oxytocin (82.63 ± 10.92) or Placebo (76.62 ± 22.67). Conclusion: Our results provide further evidence to the modulatory effect of oxytocin in patients with schizophrenia. Single dose oxytocin resulted in significant changes in activity of brain regions involved in emotion processing. Future studies need to examine the effectiveness of long-term treatment with OXT for emotion recognition deficits in patients with schizophrenia.Keywords: recognition, functional connectivity, oxytocin, schizophrenia, social cognition
Procedia PDF Downloads 2202413 A Smart Visitors’ Notification System with Automatic Secure Door Lock Using Mobile Communication Technology
Authors: Rabail Shafique Satti, Sidra Ejaz, Madiha Arshad, Marwa Khalid, Sadia Majeed
Abstract:
The paper presents the development of an automated security system to automate the entry of visitors, providing more flexibility of managing their record and securing homes or workplaces. Face recognition is part of this system to authenticate the visitors. A cost effective and SMS based door security module has been developed and integrated with the GSM network and made part of this system to allow communication between system and owner. This system functions in real time as when the visitor’s arrived it will detect and recognizes his face and on the result of face recognition process it will open the door for authorized visitors or notifies and allows the owner’s to take further action in case of unauthorized visitor. The proposed system is developed and it is successfully ensuring security, managing records and operating gate without physical interaction of owner.Keywords: SMS, e-mail, GSM modem, authenticate, face recognition, authorized
Procedia PDF Downloads 7882412 Using Optical Character Recognition to Manage the Unstructured Disaster Data into Smart Disaster Management System
Authors: Dong Seop Lee, Byung Sik Kim
Abstract:
In the 4th Industrial Revolution, various intelligent technologies have been developed in many fields. These artificial intelligence technologies are applied in various services, including disaster management. Disaster information management does not just support disaster work, but it is also the foundation of smart disaster management. Furthermore, it gets historical disaster information using artificial intelligence technology. Disaster information is one of important elements of entire disaster cycle. Disaster information management refers to the act of managing and processing electronic data about disaster cycle from its’ occurrence to progress, response, and plan. However, information about status control, response, recovery from natural and social disaster events, etc. is mainly managed in the structured and unstructured form of reports. Those exist as handouts or hard-copies of reports. Such unstructured form of data is often lost or destroyed due to inefficient management. It is necessary to manage unstructured data for disaster information. In this paper, the Optical Character Recognition approach is used to convert handout, hard-copies, images or reports, which is printed or generated by scanners, etc. into electronic documents. Following that, the converted disaster data is organized into the disaster code system as disaster information. Those data are stored in the disaster database system. Gathering and creating disaster information based on Optical Character Recognition for unstructured data is important element as realm of the smart disaster management. In this paper, Korean characters were improved to over 90% character recognition rate by using upgraded OCR. In the case of character recognition, the recognition rate depends on the fonts, size, and special symbols of character. We improved it through the machine learning algorithm. These converted structured data is managed in a standardized disaster information form connected with the disaster code system. The disaster code system is covered that the structured information is stored and retrieve on entire disaster cycle such as historical disaster progress, damages, response, and recovery. The expected effect of this research will be able to apply it to smart disaster management and decision making by combining artificial intelligence technologies and historical big data.Keywords: disaster information management, unstructured data, optical character recognition, machine learning
Procedia PDF Downloads 1292411 Perinatal Ethanol Exposure Modifies CART System in Rat Brain Anticipated for Development of Anxiety, Depression and Memory Deficits
Authors: M. P. Dandekar, A. P. Bharne, P. T. Borkar, D. M. Kokare, N. K. Subhedar
Abstract:
Ethanol ingestion by the mother ensue adverse consequences for her offspring. Herein, we examine the behavioral phenotype and neural substrate of the offspring of the mother on ethanol. Female rats were fed with ethanol-containing liquid diet from 8 days prior of conception and continued till 25 days post-parturition to coincide with weaning. Behavioral changes associated with anxiety, depression and learning and memory were assessed in the offspring, after they attained adulthood (day 85), using elevated plus maze (EPM), forced swim (FST) and novel object recognition tests (NORT), respectively. The offspring of the alcoholic mother, compared to those of the pair-fed mother, spent significantly more time in closed arms of EPM and showed more immobility time in FST. Offspring at the age of 25 and 85 days failed to discriminate between novel versus familiar object in NORT, thus reflecting anxiogenic, depressive and amnesic phenotypes. Neuropeptide cocaine- and amphetamine-regulated transcript peptide (CART) is known to be involved in central effects of ethanol and hence selected for the current study. Twenty-five days old pups of the alcoholic mother showed significant augmentation in CART-immunoreactivity in the cells of Edinger-Westphal (EW) nucleus and lateral hypothalamus. However, a significant decrease in CART-immunoreactivity was seen in nucleus accumbens shell (AcbSh), lateral part of bed nucleus of the stria terminalis (BNSTl), locus coeruleus (LC), hippocampus (CA1, CA2 and CA3), and arcuate nucleus (ARC) of the pups and/or adults offspring. While no change in the CART-immunoreactive fibers of AcbSh and BNSTl, CA2 and CA3 was noticed in the 25 days old pups, the CART-immunoreactive cells in EW and paraventricular nucleus (PVN), and fibers in the central nucleus of amygdala of 85 days old offspring remained unaffected. We suggest that the endogenous CART system in these discrete areas, among other factors, may be a causal to the abnormalities in the next generation of an alcoholic mother.Keywords: anxiety, depression, CART, ethanol, immunocytochemistry
Procedia PDF Downloads 3952410 Slave Museums and a Site of Democratic Pedagogy: Engagement, Healing and Tolerance
Authors: Elaine Stavro
Abstract:
In our present world where acts of incivility, intolerance and anger towards minority communities is on the rise, the ways museum practices cultivate ethical generosity is of interest. Democratic theorists differ as to how they believe respect can be generated through active participation. Allowing minority communities a role in determining what artifacts will be displayed and how they will be displayed has been an important step in generating respect. In addition, the rise of indigenous museums, slave museums and curators who represent these communities, contribute to the communication of their history of oppression. These institutional practices have been supplemented by the handling of objects, recognition stories and multisensory exhibitions. Psychoanalysis, object relations theorists believe that the handling of objects: amenable objects and responsive listeners will trigger the expression of anomie, alienation and traumatizing experiences. Not only memorializing but engaging with one’s lose in a very personal way can facilitate the process of mourning. Manchester Museum (UK) gathered together Somalian refugees, who in the process of handling their own objects and those offered at the museum, began to tell their stories. Democratic theorists (especially affect theorists or vital materialists or Actor Network theorists) believe that things can be social actants- material objects have agentic capacities that humans should align with. In doing so, they challenge social constructivism that attributes power to interpreted things, but like them they assume an openness or responsiveness to Otherness can be cultivated. Rich sensory experiences, corporeal engagement (devices that involve bodily movement or objects that involve handling) auditory experiences (songs) all contribute to improve one’s responsiveness and openness to Others. This paper will focus specifically on slave museums/ and exhibits in the U.K, the USA., South Africa to explore and evaluate their democratic strategies in cultivating tolerant practices via the various democratic avenues outlined above.Keywords: democratic pedagogy, slave exhibitions, affect/emotion, object handling
Procedia PDF Downloads 4602409 Digital Phase Shifting Holography in a Non-Linear Interferometer using Undetected Photons
Authors: Sebastian Töpfer, Marta Gilaberte Basset, Jorge Fuenzalida, Fabian Steinlechner, Juan P. Torres, Markus Gräfe
Abstract:
This work introduces a combination of digital phase-shifting holography with a non-linear interferometer using undetected photons. Non-linear interferometers can be used in combination with a measurement scheme called quantum imaging with undetected photons, which allows for the separation of the wavelengths used for sampling an object and detecting it in the imaging sensor. This method recently faced increasing attention, as it allows to use of exotic wavelengths (e.g., mid-infrared, ultraviolet) for object interaction while at the same time keeping the detection in spectral areas with highly developed, comparable low-cost imaging sensors. The object information, including its transmission and phase influence, is recorded in the form of an interferometric pattern. To collect these, this work combines the method of quantum imaging with undetected photons with digital phase-shifting holography with a minimal sampling of the interference. With this, the quantum imaging scheme gets extended in its measurement capabilities and brings it one step closer to application. Quantum imaging with undetected photons uses correlated photons generated by spontaneous parametric down-conversion in a non-linear interferometer to create indistinguishable photon pairs, which leads to an effect called induced coherence without induced emission. Placing an object inside changes the interferometric pattern depending on the object’s properties. Digital phase-shifting holography records multiple images of the interference with determined phase shifts to reconstruct the complete interference shape, which can afterward be used to analyze the changes introduced by the object and conclude its properties. An extensive characterization of this method was done using a proof-of-principle setup. The measured spatial resolution, phase accuracy, and transmission accuracy are compared for different combinations of camera exposure times and the number of interference sampling steps. The current limits of this method are shown to allow further improvements. To summarize, this work presents an alternative holographic measurement method using non-linear interferometers in combination with quantum imaging to enable new ways of measuring and motivating continuing research.Keywords: digital holography, quantum imaging, quantum holography, quantum metrology
Procedia PDF Downloads 922408 The Influence of Job Recognition and Job Motivation on Organizational Commitment in Public Sector: The Mediation Role of Employee Engagement
Authors: Muhammad Tayyab, Saba Saira
Abstract:
It is an established fact that organizations across the globe consider employees as their assets and try to advance their well-being. However, the local firms of developing countries are mostly profit oriented and do not have much concern about their employees’ engagement or commitment. Like other developing countries, the local organizations of Pakistan are also less concerned about the well-being of their employees. Especially public sector organizations lack concern regarding engagement, satisfaction or commitment of the employees. Therefore, this study aimed at investigating the impact of job recognition and job motivation on organizational commitment in the mediation role of employee engagement. The data were collected from land record officers of board of revenue, Punjab, Pakistan. Structured questionnaire was used to collect data through physically visiting land record officers and also through the internet. A total of 318 land record officers’ responses were finalized to perform data analysis. The data were analyzed through confirmatory factor analysis and structural equation modeling technique. The findings revealed that job recognition and job motivation have direct as well as indirect positive and significant impact on organizational commitment. The limitations, practical implications and future research indications are also explained.Keywords: job motivation, job recognition, employee engagement, employee commitment, public sector, land record officers
Procedia PDF Downloads 1322407 An Automatic Speech Recognition of Conversational Telephone Speech in Malay Language
Authors: M. Draman, S. Z. Muhamad Yassin, M. S. Alias, Z. Lambak, M. I. Zulkifli, S. N. Padhi, K. N. Baharim, F. Maskuriy, A. I. A. Rahim
Abstract:
The performance of Malay automatic speech recognition (ASR) system for the call centre environment is presented. The system utilizes Kaldi toolkit as the platform to the entire library and algorithm used in performing the ASR task. The acoustic model implemented in this system uses a deep neural network (DNN) method to model the acoustic signal and the standard (n-gram) model for language modelling. With 80 hours of training data from the call centre recordings, the ASR system can achieve 72% of accuracy that corresponds to 28% of word error rate (WER). The testing was done using 20 hours of audio data. Despite the implementation of DNN, the system shows a low accuracy owing to the varieties of noises, accent and dialect that typically occurs in Malaysian call centre environment. This significant variation of speakers is reflected by the large standard deviation of the average word error rate (WERav) (i.e., ~ 10%). It is observed that the lowest WER (13.8%) was obtained from recording sample with a standard Malay dialect (central Malaysia) of native speaker as compared to 49% of the sample with the highest WER that contains conversation of the speaker that uses non-standard Malay dialect.Keywords: conversational speech recognition, deep neural network, Malay language, speech recognition
Procedia PDF Downloads 3222406 Petra: Simplified, Scalable Verification Using an Object-Oriented, Compositional Process Calculus
Authors: Aran Hakki, Corina Cirstea, Julian Rathke
Abstract:
Formal methods are yet to be utilized in mainstream software development due to issues in scaling and implementation costs. This work is about developing a scalable, simplified, pragmatic, formal software development method with strong correctness properties and guarantees that are easy prove. The method aims to be easy to learn, use and apply without extensive training and experience in formal methods. Petra is proposed as an object-oriented, process calculus with composable data types and sequential/parallel processes. Petra has a simple denotational semantics, which includes a definition of Correct by Construction. The aim is for Petra is to be standard which can be implemented to execute on various mainstream programming platforms such as Java. Work towards an implementation of Petra as a Java EDSL (Embedded Domain Specific Language) is also discussed.Keywords: compositionality, formal method, software verification, Java, denotational semantics, rewriting systems, rewriting semantics, parallel processing, object-oriented programming, OOP, programming language, correct by construction
Procedia PDF Downloads 1442405 Mourning through Poetry: Discovering the Lost Love object and Symbolization of Desire
Authors: Galit Harel
Abstract:
Deborah was referred for psychoanalytic psychotherapy following a suicide attempt and depression. She began a fascinating journey spanning more than 10 years. During therapy, many questions arose concerning the suicidal episode, which she could not register consciously. The author tried to understand the reasons for her depression and the attempted suicide through the unconscious process in the therapeutic relationship and through the music and poetry that she brought to sessions. In this paper, the author describes the process of listening for the signifiers of semiotic and symbolic language, both metaphoric and metonymic, as revealed in poetry and music according to the theories of Kristeva and Lacan. The poetry enabled the patient to retrieve childhood memories, experience the movement from unconscious to conscious, and mourn through the experience of transference and countertransference in the therapeutic relationship. Also illustrated is the transition from singing the music to more symbolic language, turning the patient’s sensory experience into language, and connecting her personal experience with the culture of her past. The patient’s mourning and the lost love objects are discussed through the prism of classical and object relations theories.Keywords: depression, lost love object, psychoanalytic psychotherapy, suicide attempt, symbolization of desire
Procedia PDF Downloads 922404 Development of a Sequential Multimodal Biometric System for Web-Based Physical Access Control into a Security Safe
Authors: Babatunde Olumide Olawale, Oyebode Olumide Oyediran
Abstract:
The security safe is a place or building where classified document and precious items are kept. To prevent unauthorised persons from gaining access to this safe a lot of technologies had been used. But frequent reports of an unauthorised person gaining access into security safes with the aim of removing document and items from the safes are pointers to the fact that there is still security gap in the recent technologies used as access control for the security safe. In this paper we try to solve this problem by developing a multimodal biometric system for physical access control into a security safe using face and voice recognition. The safe is accessed by the combination of face and speech pattern recognition and also in that sequential order. User authentication is achieved through the use of camera/sensor unit and a microphone unit both attached to the door of the safe. The user face was captured by the camera/sensor while the speech was captured by the use of the microphone unit. The Scale Invariance Feature Transform (SIFT) algorithm was used to train images to form templates for the face recognition system while the Mel-Frequency Cepitral Coefficients (MFCC) algorithm was used to train the speech recognition system to recognise authorise user’s speech. Both algorithms were hosted in two separate web based servers and for automatic analysis of our work; our developed system was simulated in a MATLAB environment. The results obtained shows that the developed system was able to give access to authorise users while declining unauthorised person access to the security safe.Keywords: access control, multimodal biometrics, pattern recognition, security safe
Procedia PDF Downloads 3342403 Humeral Head and Scapula Detection in Proton Density Weighted Magnetic Resonance Images Using YOLOv8
Authors: Aysun Sezer
Abstract:
Magnetic Resonance Imaging (MRI) is one of the advanced diagnostic tools for evaluating shoulder pathologies. Proton Density (PD)-weighted MRI sequences prove highly effective in detecting edema. However, they are deficient in the anatomical identification of bones due to a trauma-induced decrease in signal-to-noise ratio and blur in the traumatized cortices. Computer-based diagnostic systems require precise segmentation, identification, and localization of anatomical regions in medical imagery. Deep learning-based object detection algorithms exhibit remarkable proficiency in real-time object identification and localization. In this study, the YOLOv8 model was employed to detect humeral head and scapular regions in 665 axial PD-weighted MR images. The YOLOv8 configuration achieved an overall success rate of 99.60% and 89.90% for detecting the humeral head and scapula, respectively, with an intersection over union (IoU) of 0.5. Our findings indicate a significant promise of employing YOLOv8-based detection for the humerus and scapula regions, particularly in the context of PD-weighted images affected by both noise and intensity inhomogeneity.Keywords: YOLOv8, object detection, humerus, scapula, IRM
Procedia PDF Downloads 662402 The Combination of the Mel Frequency Cepstral Coefficients (MFCC), Perceptual Linear Prediction (PLP), JITTER and SHIMMER Coefficients for the Improvement of Automatic Recognition System for Dysarthric Speech
Authors: Brahim-Fares Zaidi, Malika Boudraa, Sid-Ahmed Selouani
Abstract:
Our work aims to improve our Automatic Recognition System for Dysarthria Speech (ARSDS) based on the Hidden Models of Markov (HMM) and the Hidden Markov Model Toolkit (HTK) to help people who are sick. With pronunciation problems, we applied two techniques of speech parameterization based on Mel Frequency Cepstral Coefficients (MFCC's) and Perceptual Linear Prediction (PLP's) and concatenated them with JITTER and SHIMMER coefficients in order to increase the recognition rate of a dysarthria speech. For our tests, we used the NEMOURS database that represents speakers with dysarthria and normal speakers.Keywords: hidden Markov model toolkit (HTK), hidden models of Markov (HMM), Mel-frequency cepstral coefficients (MFCC), perceptual linear prediction (PLP’s)
Procedia PDF Downloads 1612401 A Two-Stage Adaptation towards Automatic Speech Recognition System for Malay-Speaking Children
Authors: Mumtaz Begum Mustafa, Siti Salwah Salim, Feizal Dani Rahman
Abstract:
Recently, Automatic Speech Recognition (ASR) systems were used to assist children in language acquisition as it has the ability to detect human speech signal. Despite the benefits offered by the ASR system, there is a lack of ASR systems for Malay-speaking children. One of the contributing factors for this is the lack of continuous speech database for the target users. Though cross-lingual adaptation is a common solution for developing ASR systems for under-resourced language, it is not viable for children as there are very limited speech databases as a source model. In this research, we propose a two-stage adaptation for the development of ASR system for Malay-speaking children using a very limited database. The two stage adaptation comprises the cross-lingual adaptation (first stage) and cross-age adaptation. For the first stage, a well-known speech database that is phonetically rich and balanced, is adapted to the medium-sized Malay adults using supervised MLLR. The second stage adaptation uses the speech acoustic model generated from the first adaptation, and the target database is a small-sized database of the target users. We have measured the performance of the proposed technique using word error rate, and then compare them with the conventional benchmark adaptation. The two stage adaptation proposed in this research has better recognition accuracy as compared to the benchmark adaptation in recognizing children’s speech.Keywords: Automatic Speech Recognition System, children speech, adaptation, Malay
Procedia PDF Downloads 3972400 Facial Expression Phoenix (FePh): An Annotated Sequenced Dataset for Facial and Emotion-Specified Expressions in Sign Language
Authors: Marie Alaghband, Niloofar Yousefi, Ivan Garibay
Abstract:
Facial expressions are important parts of both gesture and sign language recognition systems. Despite the recent advances in both fields, annotated facial expression datasets in the context of sign language are still scarce resources. In this manuscript, we introduce an annotated sequenced facial expression dataset in the context of sign language, comprising over 3000 facial images extracted from the daily news and weather forecast of the public tv-station PHOENIX. Unlike the majority of currently existing facial expression datasets, FePh provides sequenced semi-blurry facial images with different head poses, orientations, and movements. In addition, in the majority of images, identities are mouthing the words, which makes the data more challenging. To annotate this dataset we consider primary, secondary, and tertiary dyads of seven basic emotions of "sad", "surprise", "fear", "angry", "neutral", "disgust", and "happy". We also considered the "None" class if the image’s facial expression could not be described by any of the aforementioned emotions. Although we provide FePh as a facial expression dataset of signers in sign language, it has a wider application in gesture recognition and Human Computer Interaction (HCI) systems.Keywords: annotated facial expression dataset, gesture recognition, sequenced facial expression dataset, sign language recognition
Procedia PDF Downloads 1592399 Lip Localization Technique for Myanmar Consonants Recognition Based on Lip Movements
Authors: Thein Thein, Kalyar Myo San
Abstract:
Lip reading system is one of the different supportive technologies for hearing impaired, or elderly people or non-native speakers. For normal hearing persons in noisy environments or in conditions where the audio signal is not available, lip reading techniques can be used to increase their understanding of spoken language. Hearing impaired persons have used lip reading techniques as important tools to find out what was said by other people without hearing voice. Thus, visual speech information is important and become active research area. Using visual information from lip movements can improve the accuracy and robustness of a speech recognition system and the need for lip reading system is ever increasing for every language. However, the recognition of lip movement is a difficult task because of the region of interest (ROI) is nonlinear and noisy. Therefore, this paper proposes method to detect the accurate lips shape and to localize lip movement towards automatic lip tracking by using the combination of Otsu global thresholding technique and Moore Neighborhood Tracing Algorithm. Proposed method shows how accurate lip localization and tracking which is useful for speech recognition. In this work of study and experiments will be carried out the automatic lip localizing the lip shape for Myanmar consonants using the only visual information from lip movements which is useful for visual speech of Myanmar languages.Keywords: lip reading, lip localization, lip tracking, Moore neighborhood tracing algorithm
Procedia PDF Downloads 3522398 Fusion of Finger Inner Knuckle Print and Hand Geometry Features to Enhance the Performance of Biometric Verification System
Authors: M. L. Anitha, K. A. Radhakrishna Rao
Abstract:
With the advent of modern computing technology, there is an increased demand for developing recognition systems that have the capability of verifying the identity of individuals. Recognition systems are required by several civilian and commercial applications for providing access to secured resources. Traditional recognition systems which are based on physical identities are not sufficiently reliable to satisfy the security requirements due to the use of several advances of forgery and identity impersonation methods. Recognizing individuals based on his/her unique physiological characteristics known as biometric traits is a reliable technique, since these traits are not transferable and they cannot be stolen or lost. Since the performance of biometric based recognition system depends on the particular trait that is utilized, the present work proposes a fusion approach which combines Inner knuckle print (IKP) trait of the middle, ring and index fingers with the geometrical features of hand. The hand image captured from a digital camera is preprocessed to find finger IKP as region of interest (ROI) and hand geometry features. Geometrical features are represented as the distances between different key points and IKP features are extracted by applying local binary pattern descriptor on the IKP ROI. The decision level AND fusion was adopted, which has shown improvement in performance of the combined scheme. The proposed approach is tested on the database collected at our institute. Proposed approach is of significance since both hand geometry and IKP features can be extracted from the palm region of the hand. The fusion of these features yields a false acceptance rate of 0.75%, false rejection rate of 0.86% for verification tests conducted, which is less when compared to the results obtained using individual traits. The results obtained confirm the usefulness of proposed approach and suitability of the selected features for developing biometric based recognition system based on features from palmar region of hand.Keywords: biometrics, hand geometry features, inner knuckle print, recognition
Procedia PDF Downloads 2202397 Using Electrical Impedance Tomography to Control a Robot
Authors: Shayan Rezvanigilkolaei, Shayesteh Vefaghnematollahi
Abstract:
Electrical impedance tomography is a non-invasive medical imaging technique suitable for medical applications. This paper describes an electrical impedance tomography device with the ability to navigate a robotic arm to manipulate a target object. The design of the device includes various hardware and software sections to perform medical imaging and control the robotic arm. In its hardware section an image is formed by 16 electrodes which are located around a container. This image is used to navigate a 3DOF robotic arm to reach the exact location of the target object. The data set to form the impedance imaging is obtained by having repeated current injections and voltage measurements between all electrode pairs. After performing the necessary calculations to obtain the impedance, information is transmitted to the computer. This data is fed and then executed in MATLAB which is interfaced with EIDORS (Electrical Impedance Tomography Reconstruction Software) to reconstruct the image based on the acquired data. In the next step, the coordinates of the center of the target object are calculated by image processing toolbox of MATLAB (IPT). Finally, these coordinates are used to calculate the angles of each joint of the robotic arm. The robotic arm moves to the desired tissue with the user command.Keywords: electrical impedance tomography, EIT, surgeon robot, image processing of electrical impedance tomography
Procedia PDF Downloads 2722396 Humanitarian Emergency of the Refugee Condition for Central American Immigrants in Irregular Situation
Authors: María de los Ángeles Cerda González, Itzel Arriaga Hurtado, Pascacio José Martínez Pichardo
Abstract:
In México, the recognition of refugee condition is a fundamental right which, as host State, has the obligation of respect, protect, and fulfill to the foreigners – where we can find the figure of immigrants in irregular situation-, that cannot return to their country of origin for humanitarian reasons. The recognition of the refugee condition as a fundamental right in the Mexican law system proceeds under these situations: 1. The immigrant applies for the refugee condition, even without the necessary proving elements to accredit the humanitarian character of his departure from his country of origin. 2. The immigrant does not apply for the recognition of refugee because he does not know he has the right to, even if he has the profile to apply for. 3. The immigrant who applies fulfills the requirements of the administrative procedure and has access to the refugee recognition. Of the three situations above, only the last one is contemplated for the national indexes of the status refugee; and the first two prove the inefficiency of the governmental system viewed from its lack of sensibility consequence of the no education in human rights matter and which results in the legal vulnerability of the immigrants in irregular situation because they do not have access to the procuration and administration of justice. In the aim of determining the causes and consequences of the no recognition of the refugee status, this investigation was structured from a systemic analysis which objective is to show the advances in Central American humanitarian emergency investigation, the Mexican States actions to protect, respect and fulfil the fundamental right of refugee of immigrants in irregular situation and the social and legal vulnerabilities suffered by Central Americans in Mexico. Therefore, to achieve the deduction of the legal nature of the humanitarian emergency from the Human Rights as a branch of the International Public Law, a conceptual framework is structured using the inductive deductive method. The problem statement is made from a legal framework to approach a theoretical scheme under the theory of social systems, from the analysis of the lack of communication of the governmental and normative subsystems of the Mexican legal system relative to the process undertaken by the Central American immigrants to achieve the recognition of the refugee status as a human right. Accordingly, is determined that fulfilling the obligations of the State referent to grant the right of the recognition of the refugee condition, would mean a guideline for a new stage in Mexican Law, because it would enlarge the constitutional benefits to everyone whose right to the recognition of refugee has been denied an as consequence, a great advance in human rights matter would be achieved.Keywords: central American immigrants in irregular situation, humanitarian emergency, human rights, refugee
Procedia PDF Downloads 2892395 Hand Symbol Recognition Using Canny Edge Algorithm and Convolutional Neural Network
Authors: Harshit Mittal, Neeraj Garg
Abstract:
Hand symbol recognition is a pivotal component in the domain of computer vision, with far-reaching applications spanning sign language interpretation, human-computer interaction, and accessibility. This research paper discusses the approach with the integration of the Canny Edge algorithm and convolutional neural network. The significance of this study lies in its potential to enhance communication and accessibility for individuals with hearing impairments or those engaged in gesture-based interactions with technology. In the experiment mentioned, the data is manually collected by the authors from the webcam using Python codes, to increase the dataset augmentation, is applied to original images, which makes the model more compatible and advanced. Further, the dataset of about 6000 coloured images distributed equally in 5 classes (i.e., 1, 2, 3, 4, 5) are pre-processed first to gray images and then by the Canny Edge algorithm with threshold 1 and 2 as 150 each. After successful data building, this data is trained on the Convolutional Neural Network model, giving accuracy: 0.97834, precision: 0.97841, recall: 0.9783, and F1 score: 0.97832. For user purposes, a block of codes is built in Python to enable a window for hand symbol recognition. This research, at its core, seeks to advance the field of computer vision by providing an advanced perspective on hand sign recognition. By leveraging the capabilities of the Canny Edge algorithm and convolutional neural network, this study contributes to the ongoing efforts to create more accurate, efficient, and accessible solutions for individuals with diverse communication needs.Keywords: hand symbol recognition, computer vision, Canny edge algorithm, convolutional neural network
Procedia PDF Downloads 642394 Multimodal Database of Emotional Speech, Video and Gestures
Authors: Tomasz Sapiński, Dorota Kamińska, Adam Pelikant, Egils Avots, Cagri Ozcinar, Gholamreza Anbarjafari
Abstract:
People express emotions through different modalities. Integration of verbal and non-verbal communication channels creates a system in which the message is easier to understand. Expanding the focus to several expression forms can facilitate research on emotion recognition as well as human-machine interaction. In this article, the authors present a Polish emotional database composed of three modalities: facial expressions, body movement and gestures, and speech. The corpora contains recordings registered in studio conditions, acted out by 16 professional actors (8 male and 8 female). The data is labeled with six basic emotions categories, according to Ekman’s emotion categories. To check the quality of performance, all recordings are evaluated by experts and volunteers. The database is available to academic community and might be useful in the study on audio-visual emotion recognition.Keywords: body movement, emotion recognition, emotional corpus, facial expressions, gestures, multimodal database, speech
Procedia PDF Downloads 3492393 An Approach for Vocal Register Recognition Based on Spectral Analysis of Singing
Authors: Aleksandra Zysk, Pawel Badura
Abstract:
Recognizing and controlling vocal registers during singing is a difficult task for beginner vocalist. It requires among others identifying which part of natural resonators is being used when a sound propagates through the body. Thus, an application has been designed allowing for sound recording, automatic vocal register recognition (VRR), and a graphical user interface providing real-time visualization of the signal and recognition results. Six spectral features are determined for each time frame and passed to the support vector machine classifier yielding a binary decision on the head or chest register assignment of the segment. The classification training and testing data have been recorded by ten professional female singers (soprano, aged 19-29) performing sounds for both chest and head register. The classification accuracy exceeded 93% in each of various validation schemes. Apart from a hard two-class clustering, the support vector classifier returns also information on the distance between particular feature vector and the discrimination hyperplane in a feature space. Such an information reflects the level of certainty of the vocal register classification in a fuzzy way. Thus, the designed recognition and training application is able to assess and visualize the continuous trend in singing in a user-friendly graphical mode providing an easy way to control the vocal emission.Keywords: classification, singing, spectral analysis, vocal emission, vocal register
Procedia PDF Downloads 3032392 Cross Attention Fusion for Dual-Stream Speech Emotion Recognition
Authors: Shaode Yu, Jiajian Meng, Bing Zhu, Hang Yu, Qiurui Sun
Abstract:
Speech emotion recognition (SER) is for recognizing human subjective emotions through audio data in-depth analysis. From speech audios, how to comprehensively extract emotional information and how to effectively fuse extracted features remain challenging. This paper presents a dual-stream SER framework that embraces both full training and transfer learning of different networks for thorough feature encoding. Besides, a plug-and-play cross-attention fusion (CAF) module is implemented for the valid integration of the dual-stream encoder output. The effectiveness of the proposed CAF module is compared to the other three fusion modules (feature summation, feature concatenation, and feature-wise linear modulation) on two databases (RAVDESS and IEMO-CAP) using different dual-stream encoders (full training network, DPCNN or TextRCNN; transfer learning network, HuBERT or Wav2Vec2). Experimental results suggest that the CAF module can effectively reconcile conflicts between features from different encoders and outperform the other three feature fusion modules on the SER task. In the future, the plug-and-play CAF module can be extended for multi-branch feature fusion, and the dual-stream SER framework can be widened for multi-stream data representation to improve the recognition performance and generalization capacity.Keywords: speech emotion recognition, cross-attention fusion, dual-stream, pre-trained
Procedia PDF Downloads 752391 JavaScript Object Notation Data against eXtensible Markup Language Data in Software Applications a Software Testing Approach
Authors: Theertha Chandroth
Abstract:
This paper presents a comparative study on how to check JSON (JavaScript Object Notation) data against XML (eXtensible Markup Language) data from a software testing point of view. JSON and XML are widely used data interchange formats, each with its unique syntax and structure. The objective is to explore various techniques and methodologies for validating comparison and integration between JSON data to XML and vice versa. By understanding the process of checking JSON data against XML data, testers, developers and data practitioners can ensure accurate data representation, seamless data interchange, and effective data validation.Keywords: XML, JSON, data comparison, integration testing, Python, SQL
Procedia PDF Downloads 1402390 Assessment of the Landscaped Biodiversity in the National Park of Tlemcen (Algeria) Using Per-Object Analysis of Landsat Imagery
Authors: Bencherif Kada
Abstract:
In the forest management practice, landscape and Mediterranean forest are never posed as linked objects. But sustainable forestry requires the valorization of the forest landscape, and this aim involves assessing the spatial distribution of biodiversity by mapping forest landscaped units and subunits and by monitoring the environmental trends. This contribution aims to highlight, through object-oriented classifications, the landscaped biodiversity of the National Park of Tlemcen (Algeria). The methodology used is based on ground data and on the basic processing units of object-oriented classification, that are segments, so-called image-objects, representing a relatively homogenous units on the ground. The classification of Landsat Enhanced Thematic Mapper plus (ETM+) imagery is performed on image objects and not on pixels. Advantages of object-oriented classification are to make full use of meaningful statistic and texture calculation, uncorrelated shape information (e.g., length-to-width ratio, direction, and area of an object, etc.), and topological features (neighbor, super-object, etc.), and the close relation between real-world objects and image objects. The results show that per object classification using the k-nearest neighbor’s method is more efficient than per pixel one. It permits to simplify of the content of the image while preserving spectrally and spatially homogeneous types of land covers such as Aleppo pine stands, cork oak groves, mixed groves of cork oak, holm oak, and zen oak, mixed groves of holm oak and thuja, water plan, dense and open shrub-lands of oaks, vegetable crops or orchard, herbaceous plants, and bare soils. Texture attributes seem to provide no useful information, while spatial attributes of shape and compactness seem to be performant for all the dominant features, such as pure stands of Aleppo pine and/or cork oak and bare soils. Landscaped sub-units are individualized while conserving the spatial information. Continuously dominant dense stands over a large area were formed into a single class, such as dense, fragmented stands with clear stands. Low shrublands formations and high wooded shrublands are well individualized but with some confusion with enclaves for the former. Overall, a visual evaluation of the classification shows that the classification reflects the actual spatial state of the study area at the landscape level.Keywords: forest, oaks, remote sensing, diversity, shrublands
Procedia PDF Downloads 1232389 Algorithm for Path Recognition in-between Tree Rows for Agricultural Wheeled-Mobile Robots
Authors: Anderson Rocha, Pedro Miguel de Figueiredo Dinis Oliveira Gaspar
Abstract:
Machine vision has been widely used in recent years in agriculture, as a tool to promote the automation of processes and increase the levels of productivity. The aim of this work is the development of a path recognition algorithm based on image processing to guide a terrestrial robot in-between tree rows. The proposed algorithm was developed using the software MATLAB, and it uses several image processing operations, such as threshold detection, morphological erosion, histogram equalization and the Hough transform, to find edge lines along tree rows on an image and to create a path to be followed by a mobile robot. To develop the algorithm, a set of images of different types of orchards was used, which made possible the construction of a method capable of identifying paths between trees of different heights and aspects. The algorithm was evaluated using several images with different characteristics of quality and the results showed that the proposed method can successfully detect a path in different types of environments.Keywords: agricultural mobile robot, image processing, path recognition, hough transform
Procedia PDF Downloads 1462388 'Value-Based Re-Framing' in Identity-Based Conflicts: A Skill for Mediators in Multi-Cultural Societies
Authors: Hami-Ziniman Revital, Ashwall Rachelly
Abstract:
The conflict resolution realm has developed tremendously during the last half-decade. Three main approaches should be mentioned: an Alternative Dispute Resolution (ADR) suggesting processes such as Arbitration or Interests-based Negotiation was developed as an answer to obligations and rights-based conflicts. The Pragmatic mediation approach focuses on the gap between interests and needs of disputants. The Transformative mediation approach focusses on relations and suits identity-based conflicts. In the current study, we examine the conflictual relations between religious and non-religious Jews in Israel and the impact of three transformative mechanisms: Inter-group recognition, In-group empowerment and Value-based reframing on the relations between the participants. The research was conducted during four facilitated joint mediation classes. A unique finding was found. Using both transformative mechanisms and the Contact Hypothesis criteria, we identify transformation in participants’ relations and a considerable change from anger, alienation, and suspiciousness to an increased understanding, affection and interpersonal concern towards the out-group members. Intergroup Recognition, In-group empowerment, and Values-based reframing were the skills discovered as the main enablers of the change in the relations and the research participants’ fostered mutual recognition of the out-group values and identity-based issues. We conclude this transformation was possible due to a constant intergroup contact, based on the Contact Hypothesis criteria. In addition, as Interests-based mediation uses “Reframing” as a skill to acknowledge both mutual and opposite needs of the disputants, we suggest the use of “Value-based Reframing” in intergroup identity-based conflicts, as a skill contributes to the empowerment and the recognition of both mutual and different out-group values. We offer to implement those insights and skills to assist conflict resolution facilitators in various intergroup identity-based conflicts resolution efforts and to establish further research and knowledge.Keywords: empowerment, identity-based conflict, intergroup recognition, intergroup relations, mediation skills, multi-cultural society, reframing, value-based recognition
Procedia PDF Downloads 342