Search results for: named entity recognition (NER)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2600

Search results for: named entity recognition (NER)

2240 Intelligent Recognition Tools for Industrial Automation

Authors: Amin Nazerzadeh, Afsaneh Nouri Houshyar , Azadeh Noori Hoshyar

Abstract:

With the rapid growing of information technology, the industry and manufacturing systems are becoming more automated. Therefore, achieving the highly accurate automatic systems with reliable security is becoming more critical. Biometrics that refers to identifying individual based on physiological or behavioral traits are unique identifiers provide high reliability and security in different industrial systems. As biometric cannot easily be transferred between individuals or copied, it has been receiving extensive attention. Due to the importance of security applications, this paper provides an overview on biometrics and discuss about background, types and applications of biometric as an effective tool for the industrial applications.

Keywords: Industial and manufacturing applications, intelligence and security, information technology, recognition; security technology; biometrics

Procedia PDF Downloads 156
2239 Selecting Answers for Questions with Multiple Answer Choices in Arabic Question Answering Based on Textual Entailment Recognition

Authors: Anes Enakoa, Yawei Liang

Abstract:

Question Answering (QA) system is one of the most important and demanding tasks in the field of Natural Language Processing (NLP). In QA systems, the answer generation task generates a list of candidate answers to the user's question, in which only one answer is correct. Answer selection is one of the main components of the QA, which is concerned with selecting the best answer choice from the candidate answers suggested by the system. However, the selection process can be very challenging especially in Arabic due to its particularities. To address this challenge, an approach is proposed to answer questions with multiple answer choices for Arabic QA systems based on Textual Entailment (TE) recognition. The developed approach employs a Support Vector Machine that considers lexical, semantic and syntactic features in order to recognize the entailment between the generated hypotheses (H) and the text (T). A set of experiments has been conducted for performance evaluation and the overall performance of the proposed method reached an accuracy of 67.5% with C@1 score of 80.46%. The obtained results are promising and demonstrate that the proposed method is effective for TE recognition task.

Keywords: information retrieval, machine learning, natural language processing, question answering, textual entailment

Procedia PDF Downloads 145
2238 International Financial Reporting Standards and the Quality of Banks Financial Statement Information: Evidence from an Emerging Market-Nigeria

Authors: Ugbede Onalo, Mohd Lizam, Ahmad Kaseri, Otache Innocent

Abstract:

Giving the paucity of studies on IFRS adoption and quality of banks accounting quality, particularly in emerging economies, this study is motivated to investigate whether the Nigeria decision to adopt IFRS beginning from 1 January 2012 is associated with high quality accounting measures. Consistent with prior literatures, this study measure quality of financial statement information using earnings measurement, timeliness of loss recognition and value relevance. A total of twenty Nigeria banks covering a period of six years (2008-2013) divided equally into three years each (2008, 2009, 2010) pre adoption period and (2011, 2012, 2013) post adoption period were investigated. Following prior studies eight models were in all employed to investigate earnings management, timeliness of loss recognition and value relevance of Nigeria bank accounting quality for the different reporting regimes. Results suggest that IFRS adoption is associated with minimal earnings management, timely recognition of losses and high value relevance of accounting information. Summarily, IFRS adoption engenders higher quality of banks financial statement information compared to local GAAP. Hence, this study recommends the global adoption of IFRS and that Nigeria banks should embrace good corporate governance practices.

Keywords: IFRS, SAS, quality of accounting information, earnings measurement, discretionary accruals, non-discretionary accruals, total accruals, Jones model, timeliness of loss recognition, value relevance

Procedia PDF Downloads 466
2237 The Theory of the Mystery: Unifying the Quantum and Cosmic Worlds

Authors: Md. Najiur Rahman

Abstract:

This hypothesis reveals a profound and symmetrical connection that goes beyond the boundaries of quantum physics and cosmology, revolutionizing our understanding of the fundamental building blocks of the cosmos, given its name ‘The Theory of the Mystery’. This theory has an elegantly simple equation, “R = ∆r / √∆m” which establishes a beautiful and well-crafted relationship between the radius (R) of an elementary particle or galaxy, the relative change in radius (∆r), and the mass difference (∆m) between related entities. It is fascinating to note that this formula presents a super synchronization, one which involves the convergence of every basic particle and any single celestial entity into perfect alignment with its respective mass and radius. In addition, we have a Supporting equation that defines the mass-radius connection of an entity by the equation: R=√m/N, where N is an empirically established constant, determined to be approximately 42.86 kg/m, representing the proportionality between mass and radius. It provides precise predictions, collects empirical evidence, and explores the far-reaching consequences of theories such as General Relativity. This elegant symmetry reveals a fundamental principle that underpins the cosmos: each component, whether small or large, follows a precise mass-radius relationship to exert gravity by a universal law. This hypothesis represents a transformative process towards a unified theory of physics, and the pursuit of experimental verification will show that each particle and galaxy is bound by gravity and plays a unique but harmonious role in shaping the universe. It promises to reveal the great symphony of the mighty cosmos. The predictive power of our hypothesis invites the exploration of entities at the farthest reaches of the cosmos, providing a bridge between the known and the unknown.

Keywords: unified theory, quantum gravity, mass-radius relationship, dark matter, uniform gravity

Procedia PDF Downloads 107
2236 Design of Speed Bump Recognition System Integrated with Adjustable Shock Absorber Control

Authors: Ming-Yen Chang, Sheng-Hung Ke

Abstract:

This research focuses on the development of a speed bump identification system for real-time control of adjustable shock absorbers in vehicular suspension systems. The study initially involved the collection of images of various speed bumps, and rubber speed bump profiles found on roadways. These images were utilized for training and recognition purposes through the deep learning object detection algorithm YOLOv5. Subsequently, the trained speed bump identification program was integrated with an in-vehicle camera system for live image capture during driving. These images were instantly transmitted to a computer for processing. Using the principles of monocular vision ranging, the distance between the vehicle and an approaching speed bump was determined. The appropriate control distance was established through both practical vehicle measurements and theoretical calculations. Collaboratively, with the electronically adjustable shock absorbers equipped in the vehicle, a shock absorber control system was devised to dynamically adapt the damping force just prior to encountering a speed bump. This system effectively mitigates passenger discomfort and enhances ride quality.

Keywords: adjustable shock absorbers, image recognition, monocular vision ranging, ride

Procedia PDF Downloads 67
2235 Violence Detection and Tracking on Moving Surveillance Video Using Machine Learning Approach

Authors: Abe Degale D., Cheng Jian

Abstract:

When creating automated video surveillance systems, violent action recognition is crucial. In recent years, hand-crafted feature detectors have been the primary method for achieving violence detection, such as the recognition of fighting activity. Researchers have also looked into learning-based representational models. On benchmark datasets created especially for the detection of violent sequences in sports and movies, these methods produced good accuracy results. The Hockey dataset's videos with surveillance camera motion present challenges for these algorithms for learning discriminating features. Image recognition and human activity detection challenges have shown success with deep representation-based methods. For the purpose of detecting violent images and identifying aggressive human behaviours, this research suggested a deep representation-based model using the transfer learning idea. The results show that the suggested approach outperforms state-of-the-art accuracy levels by learning the most discriminating features, attaining 99.34% and 99.98% accuracy levels on the Hockey and Movies datasets, respectively.

Keywords: violence detection, faster RCNN, transfer learning and, surveillance video

Procedia PDF Downloads 109
2234 Facial Expression Recognition Using Sparse Gaussian Conditional Random Field

Authors: Mohammadamin Abbasnejad

Abstract:

The analysis of expression and facial Action Units (AUs) detection are very important tasks in fields of computer vision and Human Computer Interaction (HCI) due to the wide range of applications in human life. Many works have been done during the past few years which has their own advantages and disadvantages. In this work, we present a new model based on Gaussian Conditional Random Field. We solve our objective problem using ADMM and we show how well the proposed model works. We train and test our work on two facial expression datasets, CK+, and RU-FACS. Experimental evaluation shows that our proposed approach outperform state of the art expression recognition.

Keywords: Gaussian Conditional Random Field, ADMM, convergence, gradient descent

Procedia PDF Downloads 357
2233 Multichannel Surface Electromyography Trajectories for Hand Movement Recognition Using Intrasubject and Intersubject Evaluations

Authors: Christina Adly, Meena Abdelmeseeh, Tamer Basha

Abstract:

This paper proposes a system for hand movement recognition using multichannel surface EMG(sEMG) signals obtained from 40 subjects using 40 different exercises, which are available on the Ninapro(Non-Invasive Adaptive Prosthetics) database. First, we applied processing methods to the raw sEMG signals to convert them to their amplitudes. Second, we used deep learning methods to solve our problem by passing the preprocessed signals to Fully connected neural networks(FCNN) and recurrent neural networks(RNN) with Long Short Term Memory(LSTM). Using intrasubject evaluation, The accuracy using the FCNN is 72%, with a processing time for training around 76 minutes, and for RNN's accuracy is 79.9%, with 8 minutes and 22 seconds processing time. Third, we applied some postprocessing methods to improve the accuracy, like majority voting(MV) and Movement Error Rate(MER). The accuracy after applying MV is 75% and 86% for FCNN and RNN, respectively. The MER value has an inverse relationship with the prediction delay while varying the window length for measuring the MV. The different part uses the RNN with the intersubject evaluation. The experimental results showed that to get a good accuracy for testing with reasonable processing time, we should use around 20 subjects.

Keywords: hand movement recognition, recurrent neural network, movement error rate, intrasubject evaluation, intersubject evaluation

Procedia PDF Downloads 145
2232 An Assessment of Impact of Financial Statement Fraud on Profit Performance of Manufacturing Firms in Nigeria: A Study of Food and Beverage Firms in Nigeria

Authors: Wale Agbaje

Abstract:

The aim of this research study is to assess the impact of financial statement fraud on profitability of some selected Nigerian manufacturing firms covering (2002-2016). The specific objectives focused on to ascertain the effect of incorrect asset valuation on return on assets (ROA) and to ascertain the relationship between improper expense recognition and return on assets (ROA). To achieve these objectives, descriptive research design was used for the study while secondary data were collected from the financial reports of the selected firms and website of security and exchange commission. The analysis of covariance (ANCOVA) was used and STATA II econometric method was used in the analysis of the data. Altman model and operating expenses ratio was adopted in the analysis of the financial reports to create a dummy variable for the selected firms from 2002-2016 and validation of the parameters were ascertained using various statistical techniques such as t-test, co-efficient of determination (R2), F-statistics and Wald chi-square. Two hypotheses were formulated and tested using the t-statistics at 5% level of significance. The findings of the analysis revealed that there is a significant relationship between financial statement fraud and profitability in Nigerian manufacturing industry. It was revealed that incorrect assets valuation has a significant positive relationship and so also is the improper expense recognition on return on assets (ROA) which serves as a proxy for profitability. The implication of this is that distortion of asset valuation and expense recognition leads to decreasing profit in the long run in the manufacturing industry. The study therefore recommended that pragmatic policy options need to be taken in the manufacturing industry to effectively manage incorrect asset valuation and improper expense recognition in order to enhance manufacturing industry performance in the country and also stemming of financial statement fraud should be adequately inculcated into the internal control system of manufacturing firms for the effective running of the manufacturing industry in Nigeria.

Keywords: Althman's Model, improper expense recognition, incorrect asset valuation, return on assets

Procedia PDF Downloads 161
2231 High Speed Image Rotation Algorithm

Authors: Hee-Choul Kwon, Hyungjin Cho, Heeyong Kwon

Abstract:

Image rotation is one of main pre-processing step in image processing or image pattern recognition. It is implemented with rotation matrix multiplication. However it requires lots of floating point arithmetic operations and trigonometric function calculations, so it takes long execution time. We propose a new high speed image rotation algorithm without two major time-consuming operations. We compare the proposed algorithm with the conventional rotation one with various size images. Experimental results show that the proposed algorithm is superior to the conventional rotation ones.

Keywords: high speed rotation operation, image processing, image rotation, pattern recognition, transformation matrix

Procedia PDF Downloads 507
2230 DCDNet: Lightweight Document Corner Detection Network Based on Attention Mechanism

Authors: Kun Xu, Yuan Xu, Jia Qiao

Abstract:

The document detection plays an important role in optical character recognition and text analysis. Because the traditional detection methods have weak generalization ability, and deep neural network has complex structure and large number of parameters, which cannot be well applied in mobile devices, this paper proposes a lightweight Document Corner Detection Network (DCDNet). DCDNet is a two-stage architecture. The first stage with Encoder-Decoder structure adopts depthwise separable convolution to greatly reduce the network parameters. After introducing the Feature Attention Union (FAU) module, the second stage enhances the feature information of spatial and channel dim and adaptively adjusts the size of receptive field to enhance the feature expression ability of the model. Aiming at solving the problem of the large difference in the number of pixel distribution between corner and non-corner, Weighted Binary Cross Entropy Loss (WBCE Loss) is proposed to define corner detection problem as a classification problem to make the training process more efficient. In order to make up for the lack of Dataset of document corner detection, a Dataset containing 6620 images named Document Corner Detection Dataset (DCDD) is made. Experimental results show that the proposed method can obtain fast, stable and accurate detection results on DCDD.

Keywords: document detection, corner detection, attention mechanism, lightweight

Procedia PDF Downloads 354
2229 Multivariate Output-Associative RVM for Multi-Dimensional Affect Predictions

Authors: Achut Manandhar, Kenneth D. Morton, Peter A. Torrione, Leslie M. Collins

Abstract:

The current trends in affect recognition research are to consider continuous observations from spontaneous natural interactions in people using multiple feature modalities, and to represent affect in terms of continuous dimensions, incorporate spatio-temporal correlation among affect dimensions, and provide fast affect predictions. These research efforts have been propelled by a growing effort to develop affect recognition system that can be implemented to enable seamless real-time human-computer interaction in a wide variety of applications. Motivated by these desired attributes of an affect recognition system, in this work a multi-dimensional affect prediction approach is proposed by integrating multivariate Relevance Vector Machine (MVRVM) with a recently developed Output-associative Relevance Vector Machine (OARVM) approach. The resulting approach can provide fast continuous affect predictions by jointly modeling the multiple affect dimensions and their correlations. Experiments on the RECOLA database show that the proposed approach performs competitively with the OARVM while providing faster predictions during testing.

Keywords: dimensional affect prediction, output-associative RVM, multivariate regression, fast testing

Procedia PDF Downloads 286
2228 ECG Based Reliable User Identification Using Deep Learning

Authors: R. N. Begum, Ambalika Sharma, G. K. Singh

Abstract:

Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and ECG-based systems are unquestionably the best choice due to their appealing inherent characteristics. The CNNs are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the calibre of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest FAR of 0.04 percent and the highest FRR of 5%, the best performing network achieved an identification accuracy of 99.94 percent. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.

Keywords: Biometrics, Dense Networks, Identification Rate, Train/Test split ratio

Procedia PDF Downloads 164
2227 Application of Pattern Recognition Technique to the Quality Characterization of Superficial Microstructures in Steel Coatings

Authors: H. Gonzalez-Rivera, J. L. Palmeros-Torres

Abstract:

This paper describes the application of traditional computer vision techniques as a procedure for automatic measurement of the secondary dendrite arm spacing (SDAS) from microscopic images. The algorithm is capable of finding the lineal or curve-shaped secondary column of the main microstructure, measuring its length size in a micro-meter and counting the number of spaces between dendrites. The automatic characterization was compared with a set of 1728 manually characterized images, leading to an accuracy of −0.27 µm for the length size determination and a precision of ± 2.78 counts for dendrite spacing counting, also reducing the characterization time from 7 hours to 2 minutes.

Keywords: dendrite arm spacing, microstructure inspection, pattern recognition, polynomial regression

Procedia PDF Downloads 47
2226 Recognition of Early Enterococcus Faecalis through Image Treatment by Using Octave

Authors: Laura Victoria Vigoya Morales, David Rolando Suarez Mora

Abstract:

The problem of detecting enterococcus faecalis is receiving considerable attention with the new cases of beachgoers infected with the bacteria, which can be found in fecal matter. The process detection of this kind of bacteria would be taking a long time, which waste time and money as a result of closing recreation place, like beach or pools. Hence, new methods for automating the process of detecting and recognition of this bacteria has become in a challenge. This article describes a novel approach to detect the enterococcus faecalis bacteria in water by using an octave algorithm, which embody a network neural. This document shows result of performance, quality and integrity of the algorithm.

Keywords: Enterococcus faecalis, image treatment, octave and network neuronal

Procedia PDF Downloads 230
2225 Understanding Profit Shifting by Multinationals in the Context of Cross-Border M&A: A Methodological Exploration

Authors: Michal Friedrich

Abstract:

Cross-border investment has never been easier than in today’s global economy. Despite recent initiatives tightening the international tax landscape, profit shifting and tax optimization by multinational entities (MNEs) in the context of cross-border M&A remain persistent and complex phenomena that warrant in-depth exploration. By synthesizing the outcomes of existing research, this study aims to first provide a methodological framework for identifying MNEs’ profit-shifting behavior and quantifying its fiscal impacts via various macroeconomic and microeconomic approaches. The study also proposes additional methods and qualitative/quantitative measures for extracting insight into the profit shifting behavior of MNEs in the context of their M&A activities at industry and entity levels. To develop the proposed methods, this study applies the knowledge of international tax laws and known profit shifting conduits (incl. dividends, interest, and royalties) on several model cases/types of cross-border acquisitions and post-acquisition integration activities by MNEs and highlights important factors that encourage or discourage tax optimization. Follow-up research is envisaged to apply the methods outlined in this study on published data on real-world M&A transactions to gain practical country-by-country, industry and entity-level insights. In conclusion, this study seeks to contribute to the ongoing discourse on profit shifting by providing a methodological toolkit for exploring profit shifting tendencies MNEs in connection with their M&A activities and to serve as a backbone for further research. The study is expected to provide valuable insight to policymakers, tax authorities, and tax professionals alike.

Keywords: BEPS, cross-border M&A, international taxation, profit shifting, tax optimization

Procedia PDF Downloads 70
2224 To Study the New Invocation of Biometric Authentication Technique

Authors: Aparna Gulhane

Abstract:

Biometrics is the science and technology of measuring and analyzing biological data form the basis of research in biological measuring techniques for the purpose of people identification and recognition. In information technology, biometrics refers to technologies that measure and analyze human body characteristics, such as DNA, fingerprints, eye retinas and irises, voice patterns, facial patterns and hand measurements. Biometric systems are used to authenticate the person's identity. The idea is to use the special characteristics of a person to identify him. These papers present a biometric authentication techniques and actual deployment of potential by overall invocation of biometrics recognition, with an independent testing of various biometric authentication products and technology.

Keywords: types of biometrics, importance of biometric, review for biometrics and getting a new implementation, biometric authentication technique

Procedia PDF Downloads 322
2223 Exploring Pre-Trained Automatic Speech Recognition Model HuBERT for Early Alzheimer’s Disease and Mild Cognitive Impairment Detection in Speech

Authors: Monica Gonzalez Machorro

Abstract:

Dementia is hard to diagnose because of the lack of early physical symptoms. Early dementia recognition is key to improving the living condition of patients. Speech technology is considered a valuable biomarker for this challenge. Recent works have utilized conventional acoustic features and machine learning methods to detect dementia in speech. BERT-like classifiers have reported the most promising performance. One constraint, nonetheless, is that these studies are either based on human transcripts or on transcripts produced by automatic speech recognition (ASR) systems. This research contribution is to explore a method that does not require transcriptions to detect early Alzheimer’s disease (AD) and mild cognitive impairment (MCI). This is achieved by fine-tuning a pre-trained ASR model for the downstream early AD and MCI tasks. To do so, a subset of the thoroughly studied Pitt Corpus is customized. The subset is balanced for class, age, and gender. Data processing also involves cropping the samples into 10-second segments. For comparison purposes, a baseline model is defined by training and testing a Random Forest with 20 extracted acoustic features using the librosa library implemented in Python. These are: zero-crossing rate, MFCCs, spectral bandwidth, spectral centroid, root mean square, and short-time Fourier transform. The baseline model achieved a 58% accuracy. To fine-tune HuBERT as a classifier, an average pooling strategy is employed to merge the 3D representations from audio into 2D representations, and a linear layer is added. The pre-trained model used is ‘hubert-large-ls960-ft’. Empirically, the number of epochs selected is 5, and the batch size defined is 1. Experiments show that our proposed method reaches a 69% balanced accuracy. This suggests that the linguistic and speech information encoded in the self-supervised ASR-based model is able to learn acoustic cues of AD and MCI.

Keywords: automatic speech recognition, early Alzheimer’s recognition, mild cognitive impairment, speech impairment

Procedia PDF Downloads 127
2222 Visualization-Based Feature Extraction for Classification in Real-Time Interaction

Authors: Ágoston Nagy

Abstract:

This paper introduces a method of using unsupervised machine learning to visualize the feature space of a dataset in 2D, in order to find most characteristic segments in the set. After dimension reduction, users can select clusters by manual drawing. Selected clusters are recorded into a data model that is used for later predictions, based on realtime data. Predictions are made with supervised learning, using Gesture Recognition Toolkit. The paper introduces two example applications: a semantic audio organizer for analyzing incoming sounds, and a gesture database organizer where gestural data (recorded by a Leap motion) is visualized for further manipulation.

Keywords: gesture recognition, machine learning, real-time interaction, visualization

Procedia PDF Downloads 354
2221 Intracranial Hypertension without CVST in Apla Syndrome: An Unique Association

Authors: Camelia Porey, Binaya Kumar Jaiswal

Abstract:

BACKGROUND: Antiphospholipid antibody (APLA) syndrome is an autoimmune disorder predisposing to thrombotic complications affecting CNS either by arterial vasooclusion or venous thrombosis. Cerebral venous sinus thrombosis (CVST) secondarily causes raised intracranial pressure (ICP). However, intracranial hypertension without evidence of CVST is a rare entity. Here we present two cases of elevated ICP with absence of identifiable CVST. CASE SUMMARY: Case 1, 28-year female had a 2 months history of holocranial headache followed by bilateral painless vision loss reaching lack of light perception over 20 days. CSF opening pressure was elevated. Fundoscopy showed bilateral grade 4 papilledema. MRI revealed a partially empty sella with bilateral optic nerve tortuosity. Idiopathic intracranial hypertension (IIH) was diagnosed. With acetazolamide, there was complete resolution of the clinical and radiological abnormalities. 5 months later she presented with acute onset right-sided hemiparesis. MRI was suggestive of acute left MCA infarct.MR venogram was normal. APLA came positive with high titres of Anticardiolipin and Beta 2 glycoprotein both IgG and IgM. Case 2, 23-year female, presented with headache and diplopia of 2 months duration. CSF pressure was elevated and Grade 3 papilledema was seen. MRI showed bilateral optic nerve hyperintensities with nerve head protrusion with normal MRV. APLA profile showed elevated beta 2 glycoprotein IgG and IgA. CONCLUSION: This is an important non thrombotic complication of APLA syndrome and requires further large-scale study for insight into the pathogenesis and early recognition to avoid future complications.

Keywords: APLA syndrome, idiopathic intracranial hypertension, MR venogram, papilledema

Procedia PDF Downloads 180
2220 Three Visions of a Conflict: The Case of La Araucania, Chile

Authors: Maria Barriga

Abstract:

The article focuses on the analysis of three images of the last five years that represent different visions of social groups in the context of the so call “Conflicto Mapuche” in la Araucanía, Chile. Using a multimodal social semiotic approach, we analyze the meaning making of these images and the social groups strategies to achieve visibility and recognition in political contexts. We explore the making and appropriation of symbols and concepts and analyze the different strategies that groups use to built hegemonic views. Among these strategies, we compare the use of digital technologies in design these images and the influence of Chilean Estate's vision on the Mapuche political conflict. Finally, we propose visual strategies to improve basic conditions for dialogue and recognition among these groups.

Keywords: visual culture, power, conflict, indigenous people

Procedia PDF Downloads 286
2219 Developmental Psycholinguistic Approach to Conversational Skills - A Continuum of the Sensitivity to Gricean Maxims

Authors: Zsuzsanna Schnell, Francesca Ervas

Abstract:

Background: the experimental pragmatic study confirms a basic tenet in the Relevance theoretical views in language philosophy. It draws up a developmental trajectory of the maxims, revealing the cognitive difficulty of their interpretation, their relative place to each other, and the order they may follow in development. A central claim of the present research is that social-cognitive skills play a significant role in inferential meaning construction. Children passing the False Belief Test are significantly more successful in tasks measuring the recognition of the infringement of conversational maxims. Aims and method: Preschoolers’ conversational skills and pragmatic competence is examined in view of their mentalization skills. In doing so it use a measure of linguistic tasks, containing 5 short scenarios for each Gricean maxim. it measure preschoolers’ ToM performance with a first- and a second order ToM task and compare participants’ ability to recognize the infringement of the Gricean maxims in view of their social cognitive skills. Results: Findings suggest that Theory of Mind has a predictive force of 75% concerning the ability to follow Gricean maxims efficiently. ToM proved to be a significant factor in predicting the group’s performance and success rates in 3 out of 4 maxim infringement recognition tasks: in the Quantity, Relevance and Manner conditions, but not in the Quality trial. Conclusions: the results confirm that children’s communicative competence in social contexts requires the development of higher-order social-cognitive reasoning, and reveal the cognitive effort needed for the recognition of the infringement of each maxim, yielding a continuum of their cognitive difficulty and trajectory of development.

Keywords: maxim infringement recognition, social cognition, Gricean maxims, developmental pragmatics

Procedia PDF Downloads 12
2218 Becoming a Warrior: Conspiracy, Dramaturgy, and Follower Charisma on the Far Right

Authors: Anthony Albanese

Abstract:

While much of the literature concerning Max Weber’s concept of charisma has addressed the importance of the follower’s recognition of and devotion to the charismatic leader, very little has been said about the processes that lead to the development of follower charisma. This article examines this largely overlooked aspect of the concept, as doing so (1) exacts the dynamics behind charisma’s transferability by moving beyond follower-centric models that focus on the recognition of the leader and toward one that emphasizes the follower’s generation and exhibition of charisma, (2) bridges a crucial gap between the rather wanting “losers of modernization” thesis and the social actor’s proclivity to produce stories and self-cast in said stories, (3) presents authoritarian dispositions as a reaction to the weakening effects everydayness have on charisma, and (4) complicates Weber’s formulation by reassessing the role of continually demonstrable mastery. To illustrate these dynamics, one should turn to the January 6th Capitol attack in the United States.

Keywords: max weber, extremism, right-wing populism, charisma

Procedia PDF Downloads 93
2217 Metallacyclodimeric Array Containing Both Suprachannels and Cages: Selective Reservoir and Recognition of Diiodomethane

Authors: Daseul Lee, Jeong Jun Lee, Ok-Sang Jung

Abstract:

Self-assembly of a series of ZnX2 (X- = Cl-, Br-, and I-) with 2,3-bis(4’-nicotinamidephenoxy)naphthalene (L) as a new bidentate pyridyl-donor ligand yields systematic metallacyclodimeric unit, [ZnX2L]2. The supramolecule constitutes a characteristically stacked forming both 1D suprachannels and cages. Weak C-H⋯π and inter-digitated π⋯π interactions are main driving forces in the formation of both suprachannels and cages. The slightly different features between the suprachannel and cage have been investigated by 1H NMR and TG analysis, which solvent quantitatively exchange within only suprachannels. Photo-unstable CH2I2 molecules are stabilized via capturing within suprachannels, which is monitored by UV-Vis spectroscopy. Furthermore, the photoluminescence intensity, from the chromophore naphthyl moiety of [ZnCl2L]2, gradually decreases with the addition of CH2I2. And washing off the CH2I2 by dichloromethane returned the PL intensity back to its approximately original signal.

Keywords: metallacyclodimer, suprachannel, π⋯π interaction, molecular recognition

Procedia PDF Downloads 322
2216 Impact of Forced Displacement on Place Attachment and Home Perception of Internally Displaced Turkish Cypriots

Authors: Makbule Oktay

Abstract:

Home is a significant entity in people’s lives. It is a place that provides shelter to people and a place to which one feels a sense of attachment and belonging. It is an entity that people develop feelings and meaning to it. People – place bond, or in other words place attachment, and home perception might alter as a consequence of lifetime experiences. Thus, forced displacement appears as a dramatic experience for people who lose their homes, belongings and communities. It impacts people who involuntarily leave their homes and belongings behind, experience physical, social, cultural and economic disruption and are forced to settle in an unfamiliar environment. Place attachment and home perception of internally displaced people who involuntarily leave their homes might be different from those who haven’t experience forced displacement. Although place attachment, meaning of home and forced displacement are the subjects that have been broadly studied, there is a lack of studies which question the relation between the three subjects in general and on Turkish Cypriot case in particular. Considering this, it is the aim of this paper to investigate the impact of forced displacement to internally displaced people’s attachment to a particular place and home perception. To do so, the study focuses on internally displaced Turkish Cypriots who have been internally displaced as a result of conflict. Interview and questionnaire as two of the commonly used techniques in the place attachment and home perception studies have been used in this study too. The results of the study indicate that internal displacement has an apparent impact on place attachment of forcibly displaced people. As a consequence of longstanding displacement, forcibly displaced people developed multiple attachments. Compared to people who have not experienced displacement, forcibly displaced people have low attachments. Forced displacement does not strongly impact the home perception in terms of meaning of home in longstanding displacement situations even though displacement-related meanings of home exist.

Keywords: forcibly displaced people, home perception, internal displacement, place attachment, Turkish Cypriots

Procedia PDF Downloads 219
2215 Integrated Gesture and Voice-Activated Mouse Control System

Authors: Dev Pratap Singh, Harshika Hasija, Ashwini S.

Abstract:

The project aims to provide a touchless, intuitive interface for human-computer interaction, enabling users to control their computers using hand gestures and voice commands. The system leverages advanced computer vision techniques using the Media Pipe framework and OpenCV to detect and interpret real-time hand gestures, transforming them into mouse actions such as clicking, dragging, and scrolling. Additionally, the integration of a voice assistant powered by the speech recognition library allows for seamless execution of tasks like web searches, location navigation, and gesture control in the system through voice commands.

Keywords: gesture recognition, hand tracking, machine learning, convolutional neural networks, natural language processing, voice assistant

Procedia PDF Downloads 14
2214 GRCNN: Graph Recognition Convolutional Neural Network for Synthesizing Programs from Flow Charts

Authors: Lin Cheng, Zijiang Yang

Abstract:

Program synthesis is the task to automatically generate programs based on user specification. In this paper, we present a framework that synthesizes programs from flow charts that serve as accurate and intuitive specification. In order doing so, we propose a deep neural network called GRCNN that recognizes graph structure from its image. GRCNN is trained end-to-end, which can predict edge and node information of the flow chart simultaneously. Experiments show that the accuracy rate to synthesize a program is 66.4%, and the accuracy rates to recognize edge and node are 94.1% and 67.9%, respectively. On average, it takes about 60 milliseconds to synthesize a program.

Keywords: program synthesis, flow chart, specification, graph recognition, CNN

Procedia PDF Downloads 120
2213 An Approach for Reducing Morphological Operator Dataset and Recognize Optical Character Based on Significant Features

Authors: Ashis Pradhan, Mohan P. Pradhan

Abstract:

Pattern Matching is useful for recognizing character in a digital image. OCR is one such technique which reads character from a digital image and recognizes them. Line segmentation is initially used for identifying character in an image and later refined by morphological operations like binarization, erosion, thinning, etc. The work discusses a recognition technique that defines a set of morphological operators based on its orientation in a character. These operators are further categorized into groups having similar shape but different orientation for efficient utilization of memory. Finally the characters are recognized in accordance with the occurrence of frequency in hierarchy of significant pattern of those morphological operators and by comparing them with the existing database of each character.

Keywords: binary image, morphological patterns, frequency count, priority, reduction data set and recognition

Procedia PDF Downloads 415
2212 NLRP3-Inflammassome Participates in the Inflammatory Response Induced by Paracoccidioides brasiliensis

Authors: Eduardo Kanagushiku Pereira, Frank Gregory Cavalcante da Silva, Barbara Soares Gonçalves, Ana Lúcia Bergamasco Galastri, Ronei Luciano Mamoni

Abstract:

The inflammatory response initiates after the recognition of pathogens by receptors expressed by innate immune cells. Among these receptors, the NLRP3 was associated with the recognition of pathogenic fungi in experimental models. NLRP3 operates forming a multiproteic complex called inflammasome, which actives caspase-1, responsible for the production of the inflammatory cytokines IL-1beta and IL-18. In this study, we aimed to investigate the involvement of NLRP3 in the inflammatory response elicited in macrophages against Paracoccidioides brasiliensis (Pb), the etiologic agent of PCM. Macrophages were differentiated from THP-1 cells by treatment with phorbol-myristate-acetate. Following differentiation, macrophages were stimulated by Pb yeast cells for 24 hours, after previous treatment with specific NLRP3 (3,4-methylenedioxy-beta-nitrostyrene) and/or caspase-1 (VX-765) inhibitors, or specific inhibitors of pathways involved in NLRP3 activation such as: Reactive Oxigen Species (ROS) production (N-Acetyl-L-cysteine), K+ efflux (Glibenclamide) or phagossome acidification (Bafilomycin). Quantification of IL-1beta and IL-18 in supernatants was performed by ELISA. Our results showed that the production of IL-1beta and IL-18 by THP-1-derived-macrophages stimulated with Pb yeast cells was dependent on NLRP3 and caspase-1 activation, once the presence of their specific inhibitors diminished the production of these cytokines. Furthermore, we found that the major pathways involved in NLRP3 activation, after Pb recognition, were dependent on ROS production and K+ efflux. In conclusion, our results showed that NLRP3 participates in the recognition of Pb yeast cells by macrophages, leading to the activation of the NLRP3-inflammasome and production of IL-1beta and IL-18. Together, these cytokines can induce an inflammatory response against P. brasiliensis, essential for the establishment of the initial inflammatory response and for the development of the subsequent acquired immune response.

Keywords: inflammation, IL-1beta, IL-18, NLRP3, Paracoccidioidomycosis

Procedia PDF Downloads 275
2211 Patient-Friendly Hand Gesture Recognition Using AI

Authors: K. Prabhu, K. Dinesh, M. Ranjani, M. Suhitha

Abstract:

During the tough times of covid, those people who were hospitalized found it difficult to always convey what they wanted to or needed to the attendee. Sometimes the attendees might also not be there. In that case, the patients can use simple hand gestures to control electrical appliances (like its set it for a zero watts bulb)and three other gestures for voice note intimation. In this AI-based hand recognition project, NodeMCU is used for the control action of the relay, and it is connected to the firebase for storing the value in the cloud and is interfaced with the python code via raspberry pi. For three hand gestures, a voice clip is added for intimation to the attendee. This is done with the help of Google’s text to speech and the inbuilt audio file option in the raspberry pi 4. All the five gestures will be detected when shown with their hands via the webcam, which is placed for gesture detection. The personal computer is used for displaying the gestures and for running the code in the raspberry pi imager.

Keywords: nodeMCU, AI technology, gesture, patient

Procedia PDF Downloads 168