Search results for: mechanical weed control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13806

Search results for: mechanical weed control

13446 Effect of Molybdenum Addition to Aluminum Grain Refined by Titanium Plus Boron on Its Grain Size and Mechanical Characteristics in the Cast and After Pressing by the Equal Channel Angular Pressing Conditions

Authors: A. I. O. Zaid, A. M. Attieh, S. M. A. Al Qawabah

Abstract:

Aluminum and its alloys solidify in columnar structure with large grain size which tends to reduce their mechanical strength and surface quality. They are, therefore, grain refined by addition of either titanium or titanium plus boron to their melt before solidification. Equal channel angular pressing, ECAP, process is a recent forming method for producing heavy plastic deformation in materials. In this paper, the effect of molybdenum addition to aluminum grain refined by Ti+B on its metallurgical and mechanical characteristics are investigated in the as cast condition and after pressing by the ECAP process. It was found that addition of Mo or Ti+B alone or together to aluminum resulted in grain refining of its microstructure in the as cast condition, as the average grain size was reduced from 139 micron to 46 micron when Mo and Ti+B are added together. Pressing by the ECAP process resulted in further refinement of the microstructure where 32 micron of average grain size was achieved in Al and the Al-Mo microalloy. Regarding the mechanical strength, addition of Mo or Ti+B alone to Al resulted in deterioration of its mechanical behavior but resulted in enhancement of its mechanical behavior when added together, increase of 10% in flow stress was achieved at 20% strain. However, pressing by ECAP addition of Mo or Ti+B alone to Al resulted in enhancement of its mechanical strength but reduced its strength when added together.

Keywords: ECAP, aluminum, cast, mechanical characteristics, Mo grain refiner

Procedia PDF Downloads 455
13445 Sampled-Data Control for Fuel Cell Systems

Authors: H. Y. Jung, Ju H. Park, S. M. Lee

Abstract:

A sampled-data controller is presented for solid oxide fuel cell systems which is expressed by a sector bounded nonlinear model. The sector bounded nonlinear systems, which have a feedback connection with a linear dynamical system and nonlinearity satisfying certain sector type constraints. Also, the sampled-data control scheme is very useful since it is possible to handle digital controller and increasing research efforts have been devoted to sampled-data control systems with the development of modern high-speed computers. The proposed control law is obtained by solving a convex problem satisfying several linear matrix inequalities. Simulation results are given to show the effectiveness of the proposed design method.

Keywords: sampled-data control, fuel cell, linear matrix inequalities, nonlinear control

Procedia PDF Downloads 551
13444 Exploring Mechanical Properties of Additive Manufacturing Ceramic Components Across Techniques and Materials

Authors: Venkatesan Sundaramoorthy

Abstract:

The field of ceramics has undergone a remarkable transformation with the advent of additive manufacturing technologies. This comprehensive review explores the mechanical properties of additively manufactured ceramic components, focusing on key materials such as Alumina, Zirconia, and Silicon Carbide. The study delves into various authors' review technology into the various additive manufacturing techniques, including Stereolithography, Powder Bed Fusion, and Binder Jetting, highlighting their advantages and challenges. It provides a detailed analysis of the mechanical properties of these ceramics, offering insights into their hardness, strength, fracture toughness, and thermal conductivity. Factors affecting mechanical properties, such as microstructure and post-processing, are thoroughly examined. Recent advancements and future directions in 3D-printed ceramics are discussed, showcasing the potential for further optimization and innovation. This review underscores the profound implications of additive manufacturing for ceramics in industries such as aerospace, healthcare, and electronics, ushering in a new era of engineering and design possibilities for ceramic components.

Keywords: mechanical properties, additive manufacturing, ceramic materials, PBF

Procedia PDF Downloads 45
13443 Robust Control of Cyber-Physical System under Cyber Attacks Based on Invariant Tubes

Authors: Bruno Vilić Belina, Jadranko Matuško

Abstract:

The rapid development of cyber-physical systems significantly influences modern control systems introducing a whole new range of applications of control systems but also putting them under new challenges to ensure their resiliency to possible cyber attacks, either in the form of data integrity attacks or deception attacks. This paper presents a model predictive approach to the control of cyber-physical systems robust to cyber attacks. We assume that a cyber attack can be modelled as an additive disturbance that acts in the measuring channel. For such a system, we designed a tube-based predictive controller based. The performance of the designed controller has been verified in Matlab/Simulink environment.

Keywords: control systems, cyber attacks, resiliency, robustness, tube based model predictive control

Procedia PDF Downloads 47
13442 Application of Fractional Model Predictive Control to Thermal System

Authors: Aymen Rhouma, Khaled Hcheichi, Sami Hafsi

Abstract:

The article presents an application of Fractional Model Predictive Control (FMPC) to a fractional order thermal system using Controlled Auto Regressive Integrated Moving Average (CARIMA) model obtained by discretization of a continuous fractional differential equation. Moreover, the output deviation approach is exploited to design the K -step ahead output predictor, and the corresponding control law is obtained by solving a quadratic cost function. Experiment results onto a thermal system are presented to emphasize the performances and the effectiveness of the proposed predictive controller.

Keywords: fractional model predictive control, fractional order systems, thermal system, predictive control

Procedia PDF Downloads 395
13441 Black-Box-Optimization Approach for High Precision Multi-Axes Forward-Feed Design

Authors: Sebastian Kehne, Alexander Epple, Werner Herfs

Abstract:

A new method for optimal selection of components for multi-axes forward-feed drive systems is proposed in which the choice of motors, gear boxes and ball screw drives is optimized. Essential is here the synchronization of electrical and mechanical frequency behavior of all axes because even advanced controls (like H∞-controls) can only control a small part of the mechanical modes – namely only those of observable and controllable states whose value can be derived from the positions of extern linear length measurement systems and/or rotary encoders on the motor or gear box shafts. Further problems are the unknown processing forces like cutting forces in machine tools during normal operation which make the estimation and control via an observer even more difficult. To start with, the open source Modelica Feed Drive Library which was developed at the Laboratory for Machine Tools, and Production Engineering (WZL) is extended from one axis design to the multi axes design. It is capable to simulate the mechanical, electrical and thermal behavior of permanent magnet synchronous machines with inverters, different gear boxes and ball screw drives in a mechanical system. To keep the calculation time down analytical equations are used for field and torque producing equivalent circuit, heat dissipation and mechanical torque at the shaft. As a first step, a small machine tool with a working area of 635 x 315 x 420 mm is taken apart, and the mechanical transfer behavior is measured with an impulse hammer and acceleration sensors. With the frequency transfer functions, a mechanical finite element model is built up which is reduced with substructure coupling to a mass-damper system which models the most important modes of the axes. The model is modelled with Modelica Feed Drive Library and validated by further relative measurements between machine table and spindle holder with a piezo actor and acceleration sensors. In a next step, the choice of possible components in motor catalogues is limited by derived analytical formulas which are based on well-known metrics to gain effective power and torque of the components. The simulation in Modelica is run with different permanent magnet synchronous motors, gear boxes and ball screw drives from different suppliers. To speed up the optimization different black-box optimization methods (Surrogate-based, gradient-based and evolutionary) are tested on the case. The objective that was chosen is to minimize the integral of the deviations if a step is given on the position controls of the different axes. Small values are good measures for a high dynamic axes. In each iteration (evaluation of one set of components) the control variables are adjusted automatically to have an overshoot less than 1%. It is obtained that the order of the components in optimization problem has a deep impact on the speed of the black-box optimization. An approach to do efficient black-box optimization for multi-axes design is presented in the last part. The authors would like to thank the German Research Foundation DFG for financial support of the project “Optimierung des mechatronischen Entwurfs von mehrachsigen Antriebssystemen (HE 5386/14-1 | 6954/4-1)” (English: Optimization of the Mechatronic Design of Multi-Axes Drive Systems).

Keywords: ball screw drive design, discrete optimization, forward feed drives, gear box design, linear drives, machine tools, motor design, multi-axes design

Procedia PDF Downloads 265
13440 Implementing Digital Control System in Robotics

Authors: Safiullah Abdullahi

Abstract:

This paper describes the design of a digital control system which controls the speed and direction of a robot. The robot is expected to follow a black thick line with the highest possible speed and lowest error around the line. The control system of the robot will correct for the angle error that is made between the frame axis of the robot and the line. The cause for error is the difference in speed of the two driving wheels of the robot which are driven by two separate DC motors, whereas the speed difference in wheels is due to the un-modeled fraction that is available in the wheels with different magnitudes in each. The control scheme is that a number of photo sensors are mounted in the front of the robot and report their position in reference to the black line to the digital controller. The controller then, evaluates the position error and generates the needed duty cycle for the related wheel motor to drive it faster or slower.

Keywords: digital control, robot, controller, control system

Procedia PDF Downloads 533
13439 Pick and Place System for Dip Glaze Using PID Controller

Authors: Benchalak Muangmeesri

Abstract:

Glazes ceramics are ceramic materials produced through controlled crystallization of a parent glass. The great variety of compositions and the possibility of developing special micro structures with specific technological properties have allowed glass ceramic materials to be used in a wide range of applications. At the same time, glazes ceramics need to improvement in the mechanical and chemical properties of glazed. The pick and place station is equipped with a three-axis module. test piece housings placed on the vacuum are detected module picks up a test piece insert from the slide and places it on the test piece housing. Overall, glazes ceramics are compared with automatically and manually of speed and position control. The handling modules of automatic transfer are a new generation of high speed and precision then these color results from absorption and thickness than manual is also included.

Keywords: glaze, PID control, pick and place, ceramic

Procedia PDF Downloads 361
13438 Effect of Chemical Treatment on Mechanical Properties of KENAF Fiber Reinforced Unsaturated Polyester Composites

Authors: S. S. Abdullahi, H. Musa, A. A. Salisu, A. Ismaila, A. H. Birniwa

Abstract:

In this study the treated and untreated kenaf fiber reinforced unsaturated polyester conventional composites were prepared. Hand lay-up technique was used with dump-bell shaped mold. The kenaf bast fiber was retted enzymatically, washed, dried and combed with a nylon brush. A portion of the kenaf fiber was mercerized and treated with benzoylchloride prior to composite fabrication. Untreated kenaf fiber was also used to prepare the composites to serve as control. The cured composites were subjected to various mechanical testes, such as hardness test, impact test and tensile strength test. The results obtained indicated an increase in all the parameters tested with the fiber treatment. This is because the lignin, hemi-celluloses, pectin and other impurities were removed during alkaline treatment (i.e mercerization). This shows that, the durability of the natural cellulosic fibers to different composite applications can be achieved via fiber treatments.

Keywords: composite, kenaf fibre, reinforce, retted

Procedia PDF Downloads 497
13437 The Effects of Alkalization to the Mechanical Properties of Biocomposite PLA reinforced the Ijuk Fibers

Authors: Mochamad Chalid, Imam Prabowo

Abstract:

The pollution due to non-degradable material such as plastics, has led to studies about the development of environmental-friendly material. Because of biodegradability obtained from natural sources, polylactid acid (PLA) and ijuk fiber are interesting to modify into a composite. This material is also expected to reduce the impact of environmental pollution. Surface modification of ijuk fiber through alkalinization with 0.25 M NaOH solution for 30 minutes, was aimed to enhance it’s compatibility to PLA, in order to improve properties of the composite such as the mechanical properties. Alkalinization of the ijuk fibers annihilates some surface components such as lignin, wax and hemicelloluse, so the pore on the surface clearly appeared, decreasing of the density and diameter of the ijuk fibers. The change of the ijuk fiber properties leads to increase the mechanical properties of PLA composites reinforced the ijuk fibers through strengthening of the mechanical interlocking with the PLA matrix. An addition to enhance the distribution of the fibers in the PLA matrix, the stirring during DCM solvent evaporation from the mixture of the ijuk fibers and the dissolved-PLA can reduce amount of the trapped-voids and fibers pull-out phenomena, which can decrease the mechanical properties of the composite.

Keywords: polylactic acid, Arenga pinnata, alkalinization, compatibility, adhesion, morphology, mechanical properties, volume fraction, distributiom

Procedia PDF Downloads 351
13436 Experimental Study on Thermomechanical Properties of New-Generation ODS Alloys

Authors: O. Khalaj, B. Mašek, H. Jirková, J. Svoboda

Abstract:

By using a combination of new technologies together with an unconventional use of different types of materials, specific mechanical properties and structures of the material can be achieved. Some possibilities are enabled by a combination of powder metallurgy in the preparation of a metal matrix with dispersed stable particles achieved by mechanical alloying and hot consolidation. This paper explains the thermomechanical properties of new generation of Oxide Dispersion Strengthened alloys (ODS) within three ranges of temperature with specified deformation profiles. The results show that the mechanical properties of new ODS alloys are significantly affected by the thermomechanical treatment.

Keywords: hot forming, ODS, alloys, thermomechanical, Fe-Al, Al2O3

Procedia PDF Downloads 261
13435 A Strategy of Direct Power Control for PWM Rectifier Reducing Ripple in Instantaneous Power

Authors: T. Mohammed Chikouche, K. Hartani

Abstract:

Based on the analysis of basic direct torque control, a parallel master slave for four in-wheel permanent magnet synchronous motors (PMSM) fed by two three phase inverters used in electric vehicle is proposed in this paper. A conventional system with multi-inverter and multi-machine comprises a three phase inverter for each machine to be controlled. Another approach consists in using only one three-phase inverter to supply several permanent magnet synchronous machines. A modified direct torque control (DTC) algorithm is used for the control of the bi-machine traction system. Simulation results show that the proposed control strategy is well adapted for the synchronism of this system and provide good speed tracking performance.

Keywords: electric vehicle, multi-machine single-inverter system, multi-machine multi-inverter control, in-wheel motor, master-slave control

Procedia PDF Downloads 201
13434 X̄ and S Control Charts based on Weighted Standard Deviation Method

Authors: Derya Karagöz

Abstract:

A Shewhart chart based on normality assumption is not appropriate for skewed distributions since its Type-I error rate is inflated. This study presents X̄ and S control charts for monitoring the process variability for skewed distributions. We propose Weighted Standard Deviation (WSD) X̄ and S control charts. Standard deviation estimator is applied to monitor the process variability for estimating the process standard deviation, in the case of the W SD X̄ and S control charts as this estimator is simple and easy to compute. Unlike the Shewhart control chart, the proposed charts provide asymmetric limits in accordance with the direction and degree of skewness to construct the upper and lower limits. The performances of the proposed charts are compared with other heuristic charts for skewed distributions by using Simulation study. The Simulation studies show that the proposed control charts have good properties for skewed distributions and large sample sizes.

Keywords: weighted standard deviation, MAD, skewed distributions, S control charts

Procedia PDF Downloads 379
13433 Linac Quality Controls Using An Electronic Portal Imaging Device

Authors: Domingo Planes Meseguer, Raffaele Danilo Esposito, Maria Del Pilar Dorado Rodriguez

Abstract:

Monthly quality control checks for a Radiation Therapy Linac may be performed is a simple and efficient way once they have been standardized and protocolized. On the other hand this checks, in spite of being imperatives, require a not negligible execution times in terms of machine time and operators time. Besides it must be taken into account the amount of disposable material which may be needed together with the use of commercial software for their performing. With the aim of optimizing and standardizing mechanical-geometric checks and multi leaves collimator checks, we decided to implement a protocol which makes use of the Electronic Portal Imaging Device (EPID) available on our Linacs. The user is step by step guided by the software during the whole procedure. Acquired images are automatically analyzed by our programs all of them written using only free software.

Keywords: quality control checks, linac, radiation oncology, medical physics, free software

Procedia PDF Downloads 180
13432 Zonal and Sequential Extraction Design for Large Flat Space to Achieve Perpetual Tenability

Authors: Mingjun Xu, Man Pun Wan

Abstract:

This study proposed an effective smoke control strategy for the large flat space with a low ceiling to achieve the requirement of perpetual tenability. For the large flat space with a low ceiling, the depth of the smoke reservoir is very shallow, and it is difficult to perpetually constrain the smoke within a limited space. A series of numerical tests were conducted to determine the smoke strategy. A zonal design i.e., the fire zone and two adjacent zones was proposed and validated to be effective in controlling smoke. Once a fire happens in a compartment space, the Engineered Smoke Control (ESC) system will be activated in three zones i.e., the fire zone, in which the fire happened, and two adjacent zones. The smoke can be perpetually constrained within the three smoke zones. To further improve the extraction efficiency, sequential activation of the ESC system within the 3 zones turned out to be more efficient than simultaneous activation. Additionally, the proposed zonal and sequential extraction design can reduce the mechanical extraction flow rate by up to 40.7 % as compared to the conventional method, which is much more economical than that of the conventional method.

Keywords: performance-based design, perpetual tenability, smoke control, fire plume

Procedia PDF Downloads 50
13431 Static Output Feedback Control of a Two-Wheeled Inverted Pendulum Using Sliding Mode Technique

Authors: Yankun Yang, Xinggang Yan, Konstantinos Sirlantzis, Gareth Howells

Abstract:

This paper presents a static output feedback sliding mode control method to regulate a two-wheeled inverted pendulum system with considerations of matched and unmatched uncertainties. A sliding surface is designed and the associated sliding motion stability is analysed based on the reduced-order dynamics. A static output sliding mode control law is synthesised to drive the system to the sliding surface and maintain a sliding motion afterwards. The nonlinear bounds on the uncertainties are employed in the stability analysis and control design to improve the robustness. The simulation results demonstrate the effectiveness of the proposed control.

Keywords: two-wheeled inverted pendulum, output feedback sliding mode control, nonlinear systems, robotics

Procedia PDF Downloads 227
13430 Identification of the Orthotropic Parameters of Cortical Bone under Nanoindentation

Authors: D. Remache, M. Semaan, C. Baron, M. Pithioux, P. Chabrand, J. M. Rossi, J. L. Milan

Abstract:

A good understanding of the mechanical properties of the bone implies a better understanding of its various diseases, such as osteoporosis. Berkovich nanoindentation tests were performed on the human cortical bone to extract its orthotropic parameters. The nanoindentation experiments were then simulated by the finite element method. Different configurations of interactions between the tip indenter and the bone were simulated. The orthotropic parameters of the material were identified by the inverse method for each configuration. The friction effect on the bone mechanical properties was then discussed. It was found that the inverse method using the finite element method is a very efficient method to predict the mechanical behavior of the bone.

Keywords: mechanical behavior of bone, nanoindentation, finite element analysis, inverse optimization approaches

Procedia PDF Downloads 366
13429 Predictive Functional Control with Disturbance Observer for Tendon-Driven Balloon Actuator

Authors: Jun-ya Nagase, Toshiyuki Satoh, Norihiko Saga, Koichi Suzumori

Abstract:

In recent years, Japanese society has been aging, engendering a labour shortage of young workers. Robots are therefore expected to perform tasks such as rehabilitation, nursing elderly people, and day-to-day work support for elderly people. The pneumatic balloon actuator is a rubber artificial muscle developed for use in a robot hand in such environments. This actuator has a long stroke, and a high power-to-weight ratio compared with the present pneumatic artificial muscle. Moreover, the dynamic characteristics of this actuator resemble those of human muscle. This study evaluated characteristics of force control of balloon actuator using a predictive functional control (PFC) system with disturbance observer. The predictive functional control is a model-based predictive control (MPC) scheme that predicts the future outputs of the actual plants over the prediction horizon and computes the control effort over the control horizon at every sampling instance. For this study, a 1-link finger system using a pneumatic balloon actuator is developed. Then experiments of PFC control with disturbance observer are performed. These experiments demonstrate the feasibility of its control of a pneumatic balloon actuator for a robot hand.

Keywords: disturbance observer, pneumatic balloon, predictive functional control, rubber artificial muscle

Procedia PDF Downloads 431
13428 Nonlinear Adaptive PID Control for a Semi-Batch Reactor Based on an RBF Network

Authors: Magdi. M. Nabi, Ding-Li Yu

Abstract:

Control of a semi-batch polymerization reactor using an adaptive radial basis function (RBF) neural network method is investigated in this paper. A neural network inverse model is used to estimate the valve position of the reactor; this method can identify the controlled system with the RBF neural network identifier. The weights of the adaptive PID controller are timely adjusted based on the identification of the plant and self-learning capability of RBFNN. A PID controller is used in the feedback control to regulate the actual temperature by compensating the neural network inverse model output. Simulation results show that the proposed control has strong adaptability, robustness and satisfactory control performance and the nonlinear system is achieved.

Keywords: Chylla-Haase polymerization reactor, RBF neural networks, feed-forward, feedback control

Procedia PDF Downloads 680
13427 Synthesis and Study the Effect of HNTs on PVA/Chitosan Composite Material

Authors: Malek Ali

Abstract:

Composites materials of Poly (vinyl alcohol) (PVA)/Chitosan (CS) have been synthesized and characterized successfully. HNTs have been added to composites to enhance the mechanical and degradation properties by hydrogen bonding interactions, compatibility, and chemical crosslink between HNTs and PVA. PVA/CS/HNTs composites prepared with different concentration ratio. SEM micrographs of composites surface showed that more agglomeration with more chitosan ratio. Mechanical and degradation properties were characterized and the result indicates that Mechanical and degradation of 80%PVA/5%Chitosan/15%HNTs higher than the others PVA/CS/HNTs composites.

Keywords: PVA/chitosan, composites, PVA/CS/HNTs, HNTs

Procedia PDF Downloads 270
13426 Mechanical Properties of Powder Metallurgy Processed Biodegradable Zn-Based Alloy for Biomedical Application

Authors: Maruf Yinka Kolawole, Jacob Olayiwola Aweda, Farasat Iqbal, Asif Ali, Sulaiman Abdulkareem

Abstract:

Zinc is a non-ferrous metal with potential application in orthopaedic implant materials. However, its poor mechanical properties were major challenge to its application. Therefore, this paper studies the mechanical properties of biodegradable Zn-based alloy for biomedical application. Pure zinc powder with varying (0, 1, 2, 3 & 6) wt% of magnesium powders were ball milled using ball-to-powder ratio (B:P) of 10:1 at 350 rpm for 4 hours. The resulting milled powders were compacted and sintered at 300 MPa and 350 °C respectively. Microstructural, phase and mechanical properties analyses were performed following American standard of testing and measurement. The results show that magnesium has influence on the mechanical properties of zinc. The compressive strength, hardness and elastic modulus of 210 ± 8.878 MPa, 76 ± 5.707 HV and 45 ± 11.616 GPa respectively as obtained in Zn-2Mg alloy were optimum and meet the minimum requirement of biodegradable metal for orthopaedics application. These results indicate an increase of 111, 93 and 93% in compressive strength, hardness and elastic modulus respectively as compared to pure zinc. The increase in mechanical properties was adduced to effectiveness of compaction pressure and intermetallic phase formation within the matrix resulting in high dislocation density for improving strength. The study concluded that, Zn-2Mg alloy with optimum mechanical properties can therefore be considered a potential candidate for orthopaedic application.

Keywords: Biodegradable metal, Biomedical application, Mechanical properties, Powder Metallurgy, Zinc

Procedia PDF Downloads 121
13425 An Enhanced AODV Routing Protocol for Wireless Sensor and Actuator Networks

Authors: Apidet Booranawong, Wiklom Teerapabkajorndet

Abstract:

An enhanced ad-hoc on-demand distance vector routing (E-AODV) protocol for control system applications in wireless sensor and actuator networks (WSANs) is proposed. Our routing algorithm is designed by considering both wireless network communication and the control system aspects. Control system error and network delay are the main selection criteria in our routing protocol. The control and communication performance is evaluated on multi-hop IEEE 802.15.4 networks for building-temperature control systems. The Gilbert-Elliott error model is employed to simulate packet loss in wireless networks. The simulation results demonstrate that the E-AODV routing approach can significantly improve the communication performance better than an original AODV routing under various packet loss rates. However, the control performance result by our approach is not much improved compared with the AODV routing solution.

Keywords: WSANs, building temperature control, AODV routing protocol, control system error, settling time, delay, delivery ratio

Procedia PDF Downloads 317
13424 Control of Sensors in Metering System of Fluid

Authors: A. Harrouz, O. Harrouz, A. Benatiallah

Abstract:

This paper is to review the essential definitions, roles, and characteristics of communication of metering system. We discuss measurement, data acquisition, and metrological control of a signal sensor from dynamic metering system. After that, we present control of instruments of metering system of fluid with more detailed discussions to the reference standards.

Keywords: data acquisition, dynamic metering system, reference standards, metrological control

Procedia PDF Downloads 474
13423 Thermo-Mechanical Treatment of Chromium Alloyed Low Carbon Steel

Authors: L. Kučerová, M. Bystrianský, V. Kotěšovec

Abstract:

Thermo-mechanical processing with various processing parameters was applied to 0.2%C-0.6%Mn-2S%i-0.8%Cr low alloyed high strength steel. The aim of the processing was to achieve the microstructures typical for transformation induced plasticity (TRIP) steels. Thermo-mechanical processing used in this work incorporated two or three deformation steps. The deformations were in all the cases carried out during the cooling from soaking temperatures to various bainite hold temperatures. In this way, 4-10% of retained austenite were retained in the final microstructures, consisting further of ferrite, bainite, martensite and pearlite. The complex character of TRIP steel microstructure is responsible for its good strength and ductility. The strengths achieved in this work were in the range of 740 MPa – 836 MPa with ductility A5mm of 31-41%.

Keywords: pearlite, retained austenite, thermo-mechanical treatment, TRIP steel

Procedia PDF Downloads 276
13422 Development of an Aerosol Protection Capsule for Patients with COVID-19

Authors: Isomar Lima da Silva, Aristeu Jonatas Leite de Oliveira, Roberto Maia Augusto

Abstract:

Biological isolation capsules are equipment commonly used in the control and prevention of infectious diseases in the hospital environment. This type of equipment, combined with pre-established medical protocols, contributes significantly to the containment of highly transmissible pathogens such as COVID-19. Due to its hermetic isolation, it allows more excellent patient safety, protecting companions and the health team. In this context, this work presents the development, testing, and validation of a medical capsule to treat patients affected by COVID-19. To this end, requirements such as low cost and easy handling were considered to meet the demand of people infected with the virus in remote locations in the Amazon region and/or where there are no ICU beds and mechanical ventilators for orotracheal intubation. Conceived and developed in a partnership between SAMEL Planos de Saúde and Instituto Conecthus, the device entitled "Vanessa Capsule" was designed to be used together with the NIV protocol (non-invasive ventilation), has an automatic exhaust system and filters performing the CO2 exchange, in addition to having BiPaps ventilatory support equipment (mechanical fans) in the Cabin Kit. The results show that the degree of effectiveness in protecting against infection by aerosols, with the protection cabin, is satisfactory, implying the consideration of the Vanessa capsule as an auxiliary method to be evaluated by the health team. It should also be noted that the medical observation of the evaluated patients found that the treatment against the COVID-19 virus started earlier with non-invasive mechanical ventilation reduces the patient's suffering and contributes positively to their recovery, in association with isolation through the Vanessa capsule.

Keywords: COVID-19, mechanical ventilators, medical capsule, non-invasive ventilation

Procedia PDF Downloads 66
13421 Flexible Arm Manipulator Control for Industrial Tasks

Authors: Mircea Ivanescu, Nirvana Popescu, Decebal Popescu, Dorin Popescu

Abstract:

This paper addresses the control problem of a class of hyper-redundant arms. In order to avoid discrepancy between the mathematical model and the actual dynamics, the dynamic model with uncertain parameters of this class of manipulators is inferred. A procedure to design a feedback controller which stabilizes the uncertain system has been proposed. A PD boundary control algorithm is used in order to control the desired position of the manipulator. This controller is easy to implement from the point of view of measuring techniques and actuation. Numerical simulations verify the effectiveness of the presented methods. In order to verify the suitability of the control algorithm, a platform with a 3D flexible manipulator has been employed for testing. Experimental tests on this platform illustrate the applications of the techniques developed in the paper.

Keywords: distributed model, flexible manipulator, observer, robot control

Procedia PDF Downloads 304
13420 Performences of Type-2 Fuzzy Logic Control and Neuro-Fuzzy Control Based on DPC for Grid Connected DFIG with Fixed Switching Frequency

Authors: Fayssal Amrane, Azeddine Chaiba

Abstract:

In this paper, type-2 fuzzy logic control (T2FLC) and neuro-fuzzy control (NFC) for a doubly fed induction generator (DFIG) based on direct power control (DPC) with a fixed switching frequency is proposed for wind generation application. First, a mathematical model of the doubly-fed induction generator implemented in d-q reference frame is achieved. Then, a DPC algorithm approach for controlling active and reactive power of DFIG via fixed switching frequency is incorporated using PID. The performance of T2FLC and NFC, which is based on the DPC algorithm, are investigated and compared to those obtained from the PID controller. Finally, simulation results demonstrate that the NFC is more robust, superior dynamic performance for wind power generation system applications.

Keywords: doubly fed induction generator (DFIG), direct power control (DPC), neuro-fuzzy control (NFC), maximum power point tracking (MPPT), space vector modulation (SVM), type 2 fuzzy logic control (T2FLC)

Procedia PDF Downloads 395
13419 Modeling and Control of an Acrobot Using MATLAB and Simulink

Authors: Dong Sang Yoo

Abstract:

The problem of finding control laws for underactuated systems has attracted growing attention since these systems are characterized by the fact that they have fewer actuators than the degrees of freedom to be controlled. The acrobot, which is a planar two-link robotic arm in the vertical plane with an actuator at the elbow but no actuator at the shoulder, is a representative of underactuated systems. In this paper, the dynamic model of the acrobot is implemented using Mathworks’ Simscape. And the sliding mode control is constructed using MATLAB and Simulink.

Keywords: acrobot, MATLAB and simulink, sliding mode control, underactuated system

Procedia PDF Downloads 765
13418 Evaluation of Geomechanical and Geometrical Parameters’ Effects on Hydro-Mechanical Estimation of Water Inflow into Underground Excavations

Authors: M. Mazraehli, F. Mehrabani, S. Zare

Abstract:

In general, mechanical and hydraulic processes are not independent of each other in jointed rock masses. Therefore, the study on hydro-mechanical coupling of geomaterials should be a center of attention in rock mechanics. Rocks in their nature contain discontinuities whose presence extremely influences mechanical and hydraulic characteristics of the medium. Assuming this effect, experimental investigations on intact rock cannot help to identify jointed rock mass behavior. Hence, numerical methods are being used for this purpose. In this paper, water inflow into a tunnel under significant water table has been estimated using hydro-mechanical discrete element method (HM-DEM). Besides, effects of geomechanical and geometrical parameters including constitutive model, friction angle, joint spacing, dip of joint sets, and stress factor on the estimated inflow rate have been studied. Results demonstrate that inflow rates are not identical for different constitutive models. Also, inflow rate reduces with increased spacing and stress factor.

Keywords: distinct element method, fluid flow, hydro-mechanical coupling, jointed rock mass, underground excavations

Procedia PDF Downloads 147
13417 Effect of Printing Process on Mechanical Properties of Interface between 3D Printed Concrete Strips

Authors: Wei Chen, Jinlong Pan

Abstract:

3D concrete printing technology is a novel and highly efficient construction method that holds significant promise for advancing low-carbon initiatives within the construction industry. In contrast to traditional construction practices, 3D printing offers a manual and formwork-free approach, resulting in a transformative shift in labor requirements and fabrication techniques. This transition yields substantial reductions in carbon emissions during the construction phase, as well as decreased on-site waste generation. Furthermore, when compared to conventionally printed concrete, 3D concrete exhibits mechanical anisotropy due to its layer-by-layer construction methodology. Therefore, it becomes imperative to investigate the influence of the printing process on the mechanical properties of 3D printed strips and to optimize the mechanical characteristics of these coagulated strips. In this study, we conducted three-dimensional reconstructions of printed blocks using both circular and directional print heads, incorporating various overlap distances between strips, and employed CT scanning for comprehensive analysis. Our research focused on assessing mechanical properties and micro-pore characteristics under different loading orientations. Our findings reveal that increasing the overlap degree between strips leads to enhanced mechanical properties of the strips. However, it's noteworthy that once full overlap is achieved, further increases in the degree of coincidence do not lead to a decrease in porosity between strips. Additionally, due to its superior printing cross-sectional area, the square printing head exhibited the most favorable impact on mechanical properties.

Keywords: 3D printing concrete, mechanical anisotropy, micro-pore structure, printing technology

Procedia PDF Downloads 62