Search results for: lewis model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16923

Search results for: lewis model

16563 Generic Model for Timetabling Problems by Integer Linear Programmimg Approach

Authors: Nur Aidya Hanum Aizam, Vikneswary Uvaraja

Abstract:

The agenda of showing the scheduled time for performing certain tasks is known as timetabling. It widely used in many departments such as transportation, education, and production. Some difficulties arise to ensure all tasks happen in the time and place allocated. Therefore, many researchers invented various programming model to solve the scheduling problems from several fields. However, the studies in developing the general integer programming model for many timetabling problems are still questionable. Meanwhile, this thesis describe about creating a general model which solve different types of timetabling problems by considering the basic constraints. Initially, the common basic constraints from five different fields are selected and analyzed. A general basic integer programming model was created and then verified by using the medium set of data obtained randomly which is much similar to realistic data. The mathematical software, AIMMS with CPLEX as a solver has been used to solve the model. The model obtained is significant in solving many timetabling problems easily since it is modifiable to all types of scheduling problems which have same basic constraints.

Keywords: AIMMS mathematical software, integer linear programming, scheduling problems, timetabling

Procedia PDF Downloads 438
16562 Integrating Knowledge Distillation of Multiple Strategies

Authors: Min Jindong, Wang Mingxia

Abstract:

With the widespread use of artificial intelligence in life, computer vision, especially deep convolutional neural network models, has developed rapidly. With the increase of the complexity of the real visual target detection task and the improvement of the recognition accuracy, the target detection network model is also very large. The huge deep neural network model is not conducive to deployment on edge devices with limited resources, and the timeliness of network model inference is poor. In this paper, knowledge distillation is used to compress the huge and complex deep neural network model, and the knowledge contained in the complex network model is comprehensively transferred to another lightweight network model. Different from traditional knowledge distillation methods, we propose a novel knowledge distillation that incorporates multi-faceted features, called M-KD. In this paper, when training and optimizing the deep neural network model for target detection, the knowledge of the soft target output of the teacher network in knowledge distillation, the relationship between the layers of the teacher network and the feature attention map of the hidden layer of the teacher network are transferred to the student network as all knowledge. in the model. At the same time, we also introduce an intermediate transition layer, that is, an intermediate guidance layer, between the teacher network and the student network to make up for the huge difference between the teacher network and the student network. Finally, this paper adds an exploration module to the traditional knowledge distillation teacher-student network model. The student network model not only inherits the knowledge of the teacher network but also explores some new knowledge and characteristics. Comprehensive experiments in this paper using different distillation parameter configurations across multiple datasets and convolutional neural network models demonstrate that our proposed new network model achieves substantial improvements in speed and accuracy performance.

Keywords: object detection, knowledge distillation, convolutional network, model compression

Procedia PDF Downloads 278
16561 Effects of Research-Based Blended Learning Model Using Adaptive Scaffolding to Enhance Graduate Students' Research Competency and Analytical Thinking Skills

Authors: Panita Wannapiroon, Prachyanun Nilsook

Abstract:

This paper is a report on the findings of a Research and Development (R&D) aiming to develop the model of Research-Based Blended Learning Model Using Adaptive Scaffolding (RBBL-AS) to enhance graduate students’ research competency and analytical thinking skills, to study the result of using such model. The sample consisted of 10 experts in the fields during the model developing stage, while there were 23 graduate students of KMUTNB for the RBBL-AS model try out stage. The research procedures included 4 phases: 1) literature review, 2) model development, 3) model experiment, and 4) model revision and confirmation. The research results were divided into 3 parts according to the procedures as described in the following session. First, the data gathering from the literature review were reported as a draft model; followed by the research finding from the experts’ interviews indicated that the model should be included 8 components to enhance graduate students’ research competency and analytical thinking skills. The 8 components were 1) cloud learning environment, 2) Ubiquitous Cloud Learning Management System (UCLMS), 3) learning courseware, 4) learning resources, 5) adaptive Scaffolding, 6) communication and collaboration tolls, 7) learning assessment, and 8) research-based blended learning activity. Second, the research finding from the experimental stage found that there were statistically significant difference of the research competency and analytical thinking skills posttest scores over the pretest scores at the .05 level. The Graduate students agreed that learning with the RBBL-AS model was at a high level of satisfaction. Third, according to the finding from the experimental stage and the comments from the experts, the developed model was revised and proposed in the report for further implication and references.

Keywords: research based learning, blended learning, adaptive scaffolding, research competency, analytical thinking skills

Procedia PDF Downloads 418
16560 Investigation on Machine Tools Energy Consumptions

Authors: Shiva Abdoli, Daniel T.Semere

Abstract:

Several researches have been conducted to study consumption of energy in cutting process. Most of these researches are focusing to measure the consumption and propose consumption reduction methods. In this work, the relation between the cutting parameters and the consumption is investigated in order to establish a generalized energy consumption model that can be used for process and production planning in real production lines. Using the generalized model, the process planning will be carried out by taking into account the energy as a function of the selected process parameters. Similarly, the generalized model can be used in production planning to select the right operational parameters like batch sizes, routing, buffer size, etc. in a production line. The description and derivation of the model as well as a case study are given in this paper to illustrate the applicability and validity of the model.

Keywords: process parameters, cutting process, energy efficiency, Material Removal Rate (MRR)

Procedia PDF Downloads 500
16559 Development of EREC IF Model to Increase Critical Thinking and Creativity Skills of Undergraduate Nursing Students

Authors: Kamolrat Turner, Boontuan Wattanakul

Abstract:

Critical thinking and creativity are prerequisite skills for working professionals in the 21st century. A survey conducted in 2014 at the Boromarajonani College of Nursing, Chon Buri, Thailand, revealed that these skills within students across all academic years was at a low to moderate level. An action research study was conducted to develop the EREC IF Model, a framework which includes the concepts of experience, reflection, engagement, culture and language, ICT, and flexibility and fun, to guide pedagogic activities for 75 sophomores of the undergraduate nursing science program at the college. The model was applied to all professional nursing courses. Prior to implementation, workshops were held to prepare lecturers and students. Both lecturers and students initially expressed their discomfort and pointed to the difficulties with the model. However, later they felt more comfortable, and by the end of the project they expressed their understanding and appreciation of the model. A survey conducted four and eight months after implementation found that the critical thinking and creativity skills of the sophomores were significantly higher than those recorded in the pretest. It could be concluded that the EREC IF model is efficient for fostering critical thinking and creativity skills in the undergraduate nursing science program. This model should be used for other levels of students.

Keywords: critical thinking, creativity, undergraduate nursing students, EREC IF model

Procedia PDF Downloads 323
16558 Proactive Pure Handoff Model with SAW-TOPSIS Selection and Time Series Predict

Authors: Harold Vásquez, Cesar Hernández, Ingrid Páez

Abstract:

This paper approach cognitive radio technic and applied pure proactive handoff Model to decrease interference between PU and SU and comparing it with reactive handoff model. Through the study and analysis of multivariate models SAW and TOPSIS join to 3 dynamic prediction techniques AR, MA ,and ARMA. To evaluate the best model is taken four metrics: number failed handoff, number handoff, number predictions, and number interference. The result presented the advantages using this type of pure proactive models to predict changes in the PU according to the selected channel and reduce interference. The model showed better performance was TOPSIS-MA, although TOPSIS-AR had a higher predictive ability this was not reflected in the interference reduction.

Keywords: cognitive radio, spectrum handoff, decision making, time series, wireless networks

Procedia PDF Downloads 491
16557 Mobulid Ray Post-Release Mortality to Assess the Feasibility of Live-Release Management Measures

Authors: Sila K. Sari, Betty J.L. Laglbauer, Muhammad G. Salim, Irianies C. Gozali, Iqbal Herwata, Fahmi Fahmi, Selvia Oktaviyani, Isabel Ender, Sarah Lewis, Abraham Sianipar, Mark Erdmann

Abstract:

Taking strides towards the sustainable use of marine stocks requires science-based management of target fish populations and reduction of bycatch in non-selective fisheries. Among elasmobranchs, mobulid rays are faced with high extinction risk due to intrinsic vulnerability to fishing and their conservation has been recognized as a strong priority both in Indonesia and worldwide. Despite their common vulnerabilities to fishing pressure due to slow growth, late maturation and low fecundity, only manta rays, but not devil rays, are protected in Indonesian waters. However, both manta and devil rays are captured in non-selective fisheries, in particular drift gillnets, since their habitat overlaps with fishing grounds for primary target species (e.g. marlin, swordfish and bullet tuna off the coast of Muncar). For this reason, mobulid populations are being heavily impacted, and while national-level protections are crucial to help conservation, they may not suffice alone to insure populations sustainability. In order to assess the potential of applying live-release management measures to conserve mobulids captured as bycatch in drift gillnets, we deployed pop-up survival archival transmitters to assess post-release mortality in Indonesian mobulid rays. We also assessed which fishing practices, in particular, soak duration, affected post-release mortality in order to draw relevant conclusions for management.

Keywords: Mobulid, Devil ray, Manta ray, Bycatch

Procedia PDF Downloads 173
16556 Late Presentation of Pseudophakic Macula Edema from Oral Kinase Inhibitors: A Case and Literature Review

Authors: Christolyn Raj, Lewis Levitz

Abstract:

Introduction: Two cases of late presentation ( > five years ) of bilateral pseudophakic macula edema related to oral tyrosine kinase inhibitors are described. These cases are the first of their type in the published literature. A review of ocular inflammatory complications of tyrosine kinase inhibitors in the current literature is explored. Case Presentations(s): Case 1 is an 83-year-old female who has been stable on Ibrutinib (Imbruvica ®) for chronic lymphocytic leukemia (CLL). She presented with bilateral blurred vision from severe cystoid macula edema seven years following routine cataract surgery. She was treated with intravitreal steroids with complete resolution without relapse. Case 2 is a 76-year-old female who was on therapy for polycythemia vera with Ruxolitinib (Jakafi®). She presented with bilateral blurred vision from mild cystoid macula edema six years following routine cataract surgery. She responded well to topical steroids without relapse. In both cases, oral tyrosine kinase inhibitor agents were presumed to be the underlying cause and were ceased. Over the last five years, there have been increasing reports in the literature of the inflammatory effects of tyrosine kinase inhibitors on the retina, uvea and optic nerve. Conclusion: Late presentation of pseudophakic macula edema following routine cataract surgery is rare. Such presentations should prompt investigation of the chronic use of systemic medications, especially oral kinase inhibitors. Patients who must remain on these agents require ongoing ophthalmologic assessment in view of their long-term inflammatory side effects.

Keywords: macula edema, oral kinase inhibitors, retinal toxicity, pseudo-phakia

Procedia PDF Downloads 100
16555 Software Assessment Using Ant Colony Optimization Algorithm

Authors: Saad M. Darwish

Abstract:

Recently, software quality issues have come to be seen as important subject as we see an enormous growth of agencies involved in software industries. However,these agencies cannot guarantee the quality of their products, thus leaving users in uncertainties. Software certification is the extension of quality by means that quality needs to be measured prior to certification granting process. This research participates in solving the problem of software assessment by proposing a model for assessment and certification of software product that uses a fuzzy inference engine to integrate both of process–driven and application-driven quality assurance strategies. The key idea of the on hand model is to improve the compactness and the interpretability of the model’s fuzzy rules via employing an ant colony optimization algorithm (ACO), which tries to find good rules description by dint of compound rules initially expressed with traditional single rules. The model has been tested by case study and the results have demonstrated feasibility and practicability of the model in a real environment.

Keywords: optimization technique, quality assurance, software certification model, software assessment

Procedia PDF Downloads 487
16554 Simulation Study on Vehicle Drag Reduction by Surface Dimples

Authors: S. F. Wong, S. S. Dol

Abstract:

Automotive designers have been trying to use dimples to reduce drag in vehicles. In this work, a car model has been applied with dimple surface with a parameter called dimple ratio DR, the ratio between the depths of the half dimple over the print diameter of the dimple, has been introduced and numerically simulated via k-ε turbulence model to study the aerodynamics performance with the increasing depth of the dimples The Ahmed body car model with 25 degree slant angle is simulated with the DR of 0.05, 0.2, 0.3 0.4 and 0.5 at Reynolds number of 176387 based on the frontal area of the car model. The geometry of dimple changes the kinematics and dynamics of flow. Complex interaction between the turbulent fluctuating flow and the mean flow escalates the turbulence quantities. The maximum level of turbulent kinetic energy occurs at DR = 0.4. It can be concluded that the dimples have generated extra turbulence energy at the surface and as a result, the application of dimples manages to reduce the drag coefficient of the car model compared to the model with smooth surface.

Keywords: aerodynamics, boundary layer, dimple, drag, kinetic energy, turbulence

Procedia PDF Downloads 315
16553 A Comparative Analysis of the Performance of COSMO and WRF Models in Quantitative Rainfall Prediction

Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Mary Nsabagwa, Triphonia Jacob Ngailo, Joachim Reuder, Sch¨attler Ulrich, Musa Semujju

Abstract:

The Numerical weather prediction (NWP) models are considered powerful tools for guiding quantitative rainfall prediction. A couple of NWP models exist and are used at many operational weather prediction centers. This study considers two models namely the Consortium for Small–scale Modeling (COSMO) model and the Weather Research and Forecasting (WRF) model. It compares the models’ ability to predict rainfall over Uganda for the period 21st April 2013 to 10th May 2013 using the root mean square (RMSE) and the mean error (ME). In comparing the performance of the models, this study assesses their ability to predict light rainfall events and extreme rainfall events. All the experiments used the default parameterization configurations and with same horizontal resolution (7 Km). The results show that COSMO model had a tendency of largely predicting no rain which explained its under–prediction. The COSMO model (RMSE: 14.16; ME: -5.91) presented a significantly (p = 0.014) higher magnitude of error compared to the WRF model (RMSE: 11.86; ME: -1.09). However the COSMO model (RMSE: 3.85; ME: 1.39) performed significantly (p = 0.003) better than the WRF model (RMSE: 8.14; ME: 5.30) in simulating light rainfall events. All the models under–predicted extreme rainfall events with the COSMO model (RMSE: 43.63; ME: -39.58) presenting significantly higher error magnitudes than the WRF model (RMSE: 35.14; ME: -26.95). This study recommends additional diagnosis of the models’ treatment of deep convection over the tropics.

Keywords: comparative performance, the COSMO model, the WRF model, light rainfall events, extreme rainfall events

Procedia PDF Downloads 262
16552 Mathematical Model for Output Yield Obtained by Single Slope Solar Still

Authors: V. Nagaraju, G. Murali, Nagarjunavarma Ganna, Atluri Pavan Kalyan, N. Sree Sai Ganesh, V. S. V. S. Badrinath

Abstract:

The present work focuses on the development of a mathematical model for the yield obtained by single slope solar still incorporated with cylindrical pipes filled with sand. The mathematical results obtained were validated with the experimental results for the 3 cm of water level at the basin. The mathematical model and results obtained with the experimental investigation are within 11% of deviation. The theoretical model to predict the yield obtained due to the capillary effect was proposed first. And then, to predict the total yield obtained, the thermal effect model was integrated with the capillary effect model. With the obtained results, it is understood that the yield obtained is more in the case of solar stills with sand-filled cylindrical pipes when compared to solar stills without sand-filled cylindrical pipes. And later model was used for predicting yield for 1 cm and 2 cm of water levels at the basin. And it is observed that the maximum yield was obtained for a 1 cm water level at the basin. It means solar still produces better yield with the lower depth of water level at the basin; this may be because of the availability of more space in the sand for evaporation.

Keywords: solar still, cylindrical pipes, still efficiency, mathematical modeling, capillary effect model, yield, solar desalination

Procedia PDF Downloads 120
16551 Iterative Panel RC Extraction for Capacitive Touchscreen

Authors: Chae Hoon Park, Jong Kang Park, Jong Tae Kim

Abstract:

Electrical characteristics of capacitive touchscreen need to be accurately analyzed to result in better performance for multi-channel capacitance sensing. In this paper, we extracted the panel resistances and capacitances of the touchscreen by comparing measurement data and model data. By employing a lumped RC model for driver-to-receiver paths in touchscreen, we estimated resistance and capacitance values according to the physical lengths of channel paths which are proportional to the RC model. As a result, we obtained the model having 95.54% accuracy of the measurement data.

Keywords: electrical characteristics of capacitive touchscreen, iterative extraction, lumped RC model, physical lengths of channel paths

Procedia PDF Downloads 335
16550 Identification of Wiener Model Using Iterative Schemes

Authors: Vikram Saini, Lillie Dewan

Abstract:

This paper presents the iterative schemes based on Least square, Hierarchical Least Square and Stochastic Approximation Gradient method for the Identification of Wiener model with parametric structure. A gradient method is presented for the parameter estimation of wiener model with noise conditions based on the stochastic approximation. Simulation results are presented for the Wiener model structure with different static non-linear elements in the presence of colored noise to show the comparative analysis of the iterative methods. The stochastic gradient method shows improvement in the estimation performance and provides fast convergence of the parameters estimates.

Keywords: hard non-linearity, least square, parameter estimation, stochastic approximation gradient, Wiener model

Procedia PDF Downloads 406
16549 Prediction of Thermodynamic Properties of N-Heptane in the Critical Region

Authors: Sabrina Ladjama, Aicha Rizi, Azzedine Abbaci

Abstract:

In this work, we use the crossover model to formulate a comprehensive fundamental equation of state for the thermodynamic properties for several n-alkanes in the critical region that extends to the classical region. This equation of state is constructed on the basis of comparison of selected measurements of pressure-density-temperature data, isochoric and isobaric heat capacity. The model can be applied in a wide range of temperatures and densities around the critical point for n-heptane. It is found that the developed model represents most of the reliable experimental data accurately.

Keywords: crossover model, critical region, fundamental equation, n-heptane

Procedia PDF Downloads 476
16548 Markov Characteristics of the Power Line Communication Channels in China

Authors: Ming-Yue Zhai

Abstract:

Due to the multipath and pulse noise nature, power line communications(PLC) channel can be modelled as a memory one with the finite states Markov model(FSMC). As the most important parameter modelling a Markov channel,the memory order in an FSMC is not solved in PLC systems yet. In the paper, the mutual information is used as a measure of the dependence between the different symbols, treated as the received SNA or amplitude of the current channel symbol or that of previous symbols. The joint distribution probabilities of the envelopes in PLC systems are computed based on the multi-path channel model, which is commonly used in PLC. we confirm that given the information of the symbol immediately preceding the current one, any other previous symbol is independent of the current one in PLC systems, which means the PLC channels is a Markov chain with the first-order. The field test is also performed to model the received OFDM signals with the help of AR model. The results show that the first-order AR model is enough to model the fading channel in PLC systems, which means the amount of uncertainty remaining in the current symbol should be negligible, given the information corresponding to the immediately preceding one.

Keywords: power line communication, channel model, markovian, information theory, first-order

Procedia PDF Downloads 414
16547 Estimation of the Effect of Initial Damping Model and Hysteretic Model on Dynamic Characteristics of Structure

Authors: Shinji Ukita, Naohiro Nakamura, Yuji Miyazu

Abstract:

In considering the dynamic characteristics of structure, natural frequency and damping ratio are useful indicator. When performing dynamic design, it's necessary to select an appropriate initial damping model and hysteretic model. In the linear region, the setting of initial damping model influences the response, and in the nonlinear region, the combination of initial damping model and hysteretic model influences the response. However, the dynamic characteristics of structure in the nonlinear region remain unclear. In this paper, we studied the effect of setting of initial damping model and hysteretic model on the dynamic characteristics of structure. On initial damping model setting, Initial stiffness proportional, Tangent stiffness proportional, and Rayleigh-type were used. On hysteretic model setting, TAKEDA model and Normal-trilinear model were used. As a study method, dynamic analysis was performed using a lumped mass model of base-fixed. During analysis, the maximum acceleration of input earthquake motion was gradually increased from 1 to 600 gal. The dynamic characteristics were calculated using the ARX model. Then, the characteristics of 1st and 2nd natural frequency and 1st damping ratio were evaluated. Input earthquake motion was simulated wave that the Building Center of Japan has published. On the building model, an RC building with 30×30m planes on each floor was assumed. The story height was 3m and the maximum height was 18m. Unit weight for each floor was 1.0t/m2. The building natural period was set to 0.36sec, and the initial stiffness of each floor was calculated by assuming the 1st mode to be an inverted triangle. First, we investigated the difference of the dynamic characteristics depending on the difference of initial damping model setting. With the increase in the maximum acceleration of the input earthquake motions, the 1st and 2nd natural frequency decreased, and the 1st damping ratio increased. Then, in the natural frequency, the difference due to initial damping model setting was small, but in the damping ratio, a significant difference was observed (Initial stiffness proportional≒Rayleigh type>Tangent stiffness proportional). The acceleration and the displacement of the earthquake response were largest in the tangent stiffness proportional. In the range where the acceleration response increased, the damping ratio was constant. In the range where the acceleration response was constant, the damping ratio increased. Next, we investigated the difference of the dynamic characteristics depending on the difference of hysteretic model setting. With the increase in the maximum acceleration of the input earthquake motions, the natural frequency decreased in TAKEDA model, but in Normal-trilinear model, the natural frequency didn’t change. The damping ratio in TAKEDA model was higher than that in Normal-trilinear model, although, both in TAKEDA model and Normal-trilinear model, the damping ratio increased. In conclusion, in initial damping model setting, the tangent stiffness proportional was evaluated the most. In the hysteretic model setting, TAKEDA model was more appreciated than the Normal-trilinear model in the nonlinear region. Our results would provide useful indicator on dynamic design.

Keywords: initial damping model, damping ratio, dynamic analysis, hysteretic model, natural frequency

Procedia PDF Downloads 178
16546 Spatial Time Series Models for Rice and Cassava Yields Based on Bayesian Linear Mixed Models

Authors: Panudet Saengseedam, Nanthachai Kantanantha

Abstract:

This paper proposes a linear mixed model (LMM) with spatial effects to forecast rice and cassava yields in Thailand at the same time. A multivariate conditional autoregressive (MCAR) model is assumed to present the spatial effects. A Bayesian method is used for parameter estimation via Gibbs sampling Markov Chain Monte Carlo (MCMC). The model is applied to the rice and cassava yields monthly data which have been extracted from the Office of Agricultural Economics, Ministry of Agriculture and Cooperatives of Thailand. The results show that the proposed model has better performance in most provinces in both fitting part and validation part compared to the simple exponential smoothing and conditional auto regressive models (CAR) from our previous study.

Keywords: Bayesian method, linear mixed model, multivariate conditional autoregressive model, spatial time series

Procedia PDF Downloads 397
16545 Comparison of Accumulated Stress Based Pore Pressure Model and Plasticity Model in 1D Site Response Analysis

Authors: Saeedullah J. Mandokhail, Shamsher Sadiq, Meer H. Khan

Abstract:

This paper presents the comparison of excess pore water pressure ratio (ru) predicted by using accumulated stress based pore pressure model and plasticity model. One dimensional effective stress site response analyses were performed on a 30 m deep sand column (consists of a liquefiable layer in between non-liquefiable layers) using accumulated stress based pore pressure model in Deepsoil and PDMY2 (PressureDependentMultiYield02) model in Opensees. Three Input motions with different peak ground acceleration (PGA) levels of 0.357 g, 0.124 g, and 0.11 g were used in this study. The developed excess pore pressure ratio predicted by the above two models were compared and analyzed along the depth. The time history of the ru at mid of the liquefiable layer and non-liquefiable layer were also compared. The comparisons show that the two models predict mostly similar ru values. The predicted ru is also consistent with the PGA level of the input motions.

Keywords: effective stress, excess pore pressure ratio, pore pressure model, site response analysis

Procedia PDF Downloads 228
16544 The Ability of Forecasting the Term Structure of Interest Rates Based on Nelson-Siegel and Svensson Model

Authors: Tea Poklepović, Zdravka Aljinović, Branka Marasović

Abstract:

Due to the importance of yield curve and its estimation it is inevitable to have valid methods for yield curve forecasting in cases when there are scarce issues of securities and/or week trade on a secondary market. Therefore in this paper, after the estimation of weekly yield curves on Croatian financial market from October 2011 to August 2012 using Nelson-Siegel and Svensson models, yield curves are forecasted using Vector auto-regressive model and Neural networks. In general, it can be concluded that both forecasting methods have good prediction abilities where forecasting of yield curves based on Nelson Siegel estimation model give better results in sense of lower Mean Squared Error than forecasting based on Svensson model Also, in this case Neural networks provide slightly better results. Finally, it can be concluded that most appropriate way of yield curve prediction is neural networks using Nelson-Siegel estimation of yield curves.

Keywords: Nelson-Siegel Model, neural networks, Svensson Model, vector autoregressive model, yield curve

Procedia PDF Downloads 337
16543 Model for Assessment of Quality Airport Services

Authors: Cristina da Silva Torres, José Luis Duarte Ribeiro, Maria Auxiliadora Cannarozzo Tinoco

Abstract:

As a result of the rapid growth of the Brazilian Air Transport, many airports are at the limit of their capacities and have a reduction in the quality of services provided. Thus, there is a need of models for assessing the quality of airport services. Because of this, the main objective of this work is to propose a model for the evaluation of quality attributes in airport services. To this end, we used the method composed by literature review and interview. Structured a working method composed by 5 steps, which resulted in a model to evaluate the quality of airport services, consisting of 8 dimensions and 45 attributes. Was used as base for model definition the process mapping of boarding and landing processes of passengers and luggage. As a contribution of this work is the integration of management process with structuring models to assess the quality of services in airport environments.

Keywords: quality airport services, model for identification of attributes quality, air transport, passenger

Procedia PDF Downloads 537
16542 Implementing Activity-Based Costing in Architectural Aluminum Projects: Case Study and Lessons Learned

Authors: Amer Momani, Tarek Al-Hawari, Abdallah Alakayleh

Abstract:

This study explains how to construct an actionable activity-based costing and management system to accurately track and account the total costs of architectural aluminum projects. Two ABC models were proposed to accomplish this purpose. First, the learning and development model was introduced to examine how to apply an ABC model in an architectural aluminum firm for the first time and to be familiar with ABC concepts. Second, an actual ABC model was built on the basis of the results of the previous model to accurately trace the actual costs incurred on each project in a year, and to be able to provide a quote with the best trade-off between competitiveness and profitability. The validity of the proposed model was verified on a local architectural aluminum company.

Keywords: activity-based costing, activity-based management, construction, architectural aluminum

Procedia PDF Downloads 105
16541 Dual-Network Memory Model for Temporal Sequences

Authors: Motonobu Hattori

Abstract:

In neural networks, when new patters are learned by a network, they radically interfere with previously stored patterns. This drawback is called catastrophic forgetting. We have already proposed a biologically inspired dual-network memory model which can much reduce this forgetting for static patterns. In this model, information is first stored in the hippocampal network, and thereafter, it is transferred to the neocortical network using pseudo patterns. Because, temporal sequence learning is more important than static pattern learning in the real world, in this study, we improve our conventional dual-network memory model so that it can deal with temporal sequences without catastrophic forgetting. The computer simulation results show the effectiveness of the proposed dual-network memory model.

Keywords: catastrophic forgetting, dual-network, temporal sequences, hippocampal

Procedia PDF Downloads 273
16540 Extending Early High Energy Physics Studies with a Tri-Preon Model

Authors: Peter J. Riley

Abstract:

Introductory courses in High Energy Physics (HEP) can be extended with the Tri-Preon (TP) model to both supplements and challenge the Standard Model (SM) theory. TP supplements by simplifying the tracking of Conserved Quantum Numbers at an interaction vertex, e.g., the lepton number can be seen as a di-preon current. TP challenges by proposing extended particle families to three generations of particle triplets for leptons, quarks, and weak bosons. There are extensive examples discussed at an introductory level in six arXiv publications, including supersymmetry, hyper color, and the Higgs. Interesting exercises include pion decay, kaon-antikaon mixing, neutrino oscillations, and K+ decay to muons. It is a revealing exercise for students to weigh the pros and cons of parallel theories at an early stage in their HEP journey.

Keywords: HEP, particle physics, standard model, Tri-Preon model

Procedia PDF Downloads 73
16539 A Generalized Model for Performance Analysis of Airborne Radar in Clutter Scenario

Authors: Vinod Kumar Jaysaval, Prateek Agarwal

Abstract:

Performance prediction of airborne radar is a challenging and cumbersome task in clutter scenario for different types of targets. A generalized model requires to predict the performance of Radar for air targets as well as ground moving targets. In this paper, we propose a generalized model to bring out the performance of airborne radar for different Pulsed Repetition Frequency (PRF) as well as different type of targets. The model provides a platform to bring out different subsystem parameters for different applications and performance requirements under different types of clutter terrain.

Keywords: airborne radar, blind zone, clutter, probability of detection

Procedia PDF Downloads 470
16538 Enhancement Method of Network Traffic Anomaly Detection Model Based on Adversarial Training With Category Tags

Authors: Zhang Shuqi, Liu Dan

Abstract:

For the problems in intelligent network anomaly traffic detection models, such as low detection accuracy caused by the lack of training samples, poor effect with small sample attack detection, a classification model enhancement method, F-ACGAN(Flow Auxiliary Classifier Generative Adversarial Network) which introduces generative adversarial network and adversarial training, is proposed to solve these problems. Generating adversarial data with category labels could enhance the training effect and improve classification accuracy and model robustness. FACGAN consists of three steps: feature preprocess, which includes data type conversion, dimensionality reduction and normalization, etc.; A generative adversarial network model with feature learning ability is designed, and the sample generation effect of the model is improved through adversarial iterations between generator and discriminator. The adversarial disturbance factor of the gradient direction of the classification model is added to improve the diversity and antagonism of generated data and to promote the model to learn from adversarial classification features. The experiment of constructing a classification model with the UNSW-NB15 dataset shows that with the enhancement of FACGAN on the basic model, the classification accuracy has improved by 8.09%, and the score of F1 has improved by 6.94%.

Keywords: data imbalance, GAN, ACGAN, anomaly detection, adversarial training, data augmentation

Procedia PDF Downloads 106
16537 A Hybrid Model Tree and Logistic Regression Model for Prediction of Soil Shear Strength in Clay

Authors: Ehsan Mehryaar, Seyed Armin Motahari Tabari

Abstract:

Without a doubt, soil shear strength is the most important property of the soil. The majority of fatal and catastrophic geological accidents are related to shear strength failure of the soil. Therefore, its prediction is a matter of high importance. However, acquiring the shear strength is usually a cumbersome task that might need complicated laboratory testing. Therefore, prediction of it based on common and easy to get soil properties can simplify the projects substantially. In this paper, A hybrid model based on the classification and regression tree algorithm and logistic regression is proposed where each leaf of the tree is an independent regression model. A database of 189 points for clay soil, including Moisture content, liquid limit, plastic limit, clay content, and shear strength, is collected. The performance of the developed model compared to the existing models and equations using root mean squared error and coefficient of correlation.

Keywords: model tree, CART, logistic regression, soil shear strength

Procedia PDF Downloads 197
16536 Prediction on Housing Price Based on Deep Learning

Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang

Abstract:

In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.

Keywords: deep learning, convolutional neural network, LSTM, housing prediction

Procedia PDF Downloads 307
16535 A Business Model Design Process for Social Enterprises: The Critical Role of the Environment

Authors: Hadia Abdel Aziz, Raghda El Ebrashi

Abstract:

Business models are shaped by their design space or the environment they are designed to be implemented in. The rapidly changing economic, technological, political, regulatory and market external environment severely affects business logic. This is particularly true for social enterprises whose core mission is to transform their environments, and thus, their whole business logic revolves around the interchange between the enterprise and the environment. The context in which social business operates imposes different business design constraints while at the same time, open up new design opportunities. It is also affected to a great extent by the impact that successful enterprises generate; a continuous loop of interaction that needs to be managed through a dynamic capability in order to generate a lasting powerful impact. This conceptual research synthesizes and analyzes literature on social enterprise, social enterprise business models, business model innovation, business model design, and the open system view theory to propose a new business model design process for social enterprises that takes into account the critical role of environmental factors. This process would help the social enterprise develop a dynamic capability that ensures the alignment of its business model to its environmental context, thus, maximizing its probability of success.

Keywords: social enterprise, business model, business model design, business model environment

Procedia PDF Downloads 374
16534 An Extended Inverse Pareto Distribution, with Applications

Authors: Abdel Hadi Ebraheim

Abstract:

This paper introduces a new extension of the Inverse Pareto distribution in the framework of Marshal-Olkin (1997) family of distributions. This model is capable of modeling various shapes of aging and failure data. The statistical properties of the new model are discussed. Several methods are used to estimate the parameters involved. Explicit expressions are derived for different types of moments of value in reliability analysis are obtained. Besides, the order statistics of samples from the new proposed model have been studied. Finally, the usefulness of the new model for modeling reliability data is illustrated using two real data sets with simulation study.

Keywords: pareto distribution, marshal-Olkin, reliability, hazard functions, moments, estimation

Procedia PDF Downloads 83