Search results for: infrastructure boundary
2931 Vibrational Behavior of Cylindrical Shells in Axial Magnetic Field
Authors: Sedrak Vardanyan
Abstract:
The investigation of the vibrational character of magnetic cylindrical shells placed in an axial magnetic field has important practical applications. In this work, we study the vibrational behaviour of such a cylindrical shell by making use of the so-called exact space treatment, which does not assume any hypothesis. We discuss the effects of several practically important boundary conditions on the vibrations of the described setup. We find that, for some cases of boundary conditions, e.g. clamped, simply supported or peripherally earthed, as well as for some values of the wave numbers, the vibrational frequencies of the shell are approximately zero. The theoretical and numerical exploration of this fact confirms that the vibrations are absent or attenuate very rapidly. For all the considered cases, the imaginary part of the frequencies is negative, which implies stability for the vibrational process.Keywords: bending vibrational frequencies, exact space treatment, free vibrations, magnetic cylindrical shells
Procedia PDF Downloads 2792930 Capacity Oversizing for Infrastructure Sharing Synergies: A Game Theoretic Analysis
Authors: Robin Molinier
Abstract:
Industrial symbiosis (I.S) rely on two basic modes of cooperation between organizations that are infrastructure/service sharing and resource substitution (the use of waste materials, fatal energy and recirculated utilities for production). The former consists in the intensification of use of an asset and thus requires to compare the incremental investment cost to be incurred and the stand-alone cost faced by each potential participant to satisfy its own requirements. In order to investigate the way such a cooperation mode can be implemented we formulate a game theoretic model integrating the grassroot investment decision and the ex-post access pricing problem. In the first period two actors set cooperatively (resp. non-cooperatively) a level of common (resp. individual) infrastructure capacity oversizing to attract ex-post a potential entrant with a plug-and-play offer (available capacity, tariff). The entrant’s requirement is randomly distributed and known only after investments took place. Capacity cost exhibits sub-additive property so that there is room for profitable overcapacity setting in the first period under some conditions that we derive. The entrant willingness-to-pay for the access to the infrastructure is driven by both her standalone cost and the complement cost to be incurred in case she chooses to access an infrastructure whose the available capacity is lower than her requirement level. The expected complement cost function is thus derived, and we show that it is decreasing, convex and shaped by the entrant’s requirements distribution function. For both uniform and triangular distributions optimal capacity level is obtained in the cooperative setting and equilibrium levels are determined in the non-cooperative case. Regarding the latter, we show that competition is deterred by the first period investor with the highest requirement level. Using the non-cooperative game outcomes which gives lower bounds for the profit sharing problem in the cooperative one we solve the whole game and describe situations supporting sharing agreements.Keywords: capacity, cooperation, industrial symbiosis, pricing
Procedia PDF Downloads 4402929 Long-Term Resilience Performance Assessment of Dual and Singular Water Distribution Infrastructures Using a Complex Systems Approach
Authors: Kambiz Rasoulkhani, Jeanne Cole, Sybil Sharvelle, Ali Mostafavi
Abstract:
Dual water distribution systems have been proposed as solutions to enhance the sustainability and resilience of urban water systems by improving performance and decreasing energy consumption. The objective of this study was to evaluate the long-term resilience and robustness of dual water distribution systems versus singular water distribution systems under various stressors such as demand fluctuation, aging infrastructure, and funding constraints. To this end, the long-term dynamics of these infrastructure systems was captured using a simulation model that integrates institutional agency decision-making processes with physical infrastructure degradation to evaluate the long-term transformation of water infrastructure. A set of model parameters that varies for dual and singular distribution infrastructure based on the system attributes, such as pipes length and material, energy intensity, water demand, water price, average pressure and flow rate, as well as operational expenditures, were considered and input in the simulation model. Accordingly, the model was used to simulate various scenarios of demand changes, funding levels, water price growth, and renewal strategies. The long-term resilience and robustness of each distribution infrastructure were evaluated based on various performance measures including network average condition, break frequency, network leakage, and energy use. An ecologically-based resilience approach was used to examine regime shifts and tipping points in the long-term performance of the systems under different stressors. Also, Classification and Regression Tree analysis was adopted to assess the robustness of each system under various scenarios. Using data from the City of Fort Collins, the long-term resilience and robustness of the dual and singular water distribution systems were evaluated over a 100-year analysis horizon for various scenarios. The results of the analysis enabled: (i) comparison between dual and singular water distribution systems in terms of long-term performance, resilience, and robustness; (ii) identification of renewal strategies and decision factors that enhance the long-term resiliency and robustness of dual and singular water distribution systems under different stressors.Keywords: complex systems, dual water distribution systems, long-term resilience performance, multi-agent modeling, sustainable and resilient water systems
Procedia PDF Downloads 2922928 Direct Transient Stability Assessment of Stressed Power Systems
Authors: E. Popov, N. Yorino, Y. Zoka, Y. Sasaki, H. Sugihara
Abstract:
This paper discusses the performance of critical trajectory method (CTrj) for power system transient stability analysis under various loading settings and heavy fault condition. The method obtains Controlling Unstable Equilibrium Point (CUEP) which is essential for estimation of power system stability margins. The CUEP is computed by applying the CTrjto the boundary controlling unstable equilibrium point (BCU) method. The Proposed method computes a trajectory on the stability boundary that starts from the exit point and reaches CUEP under certain assumptions. The robustness and effectiveness of the method are demonstrated via six power system models and five loading conditions. As benchmark is used conventional simulation method whereas the performance is compared with and BCU Shadowing method.Keywords: power system, transient stability, critical trajectory method, energy function method
Procedia PDF Downloads 3862927 Study on Inverse Solution from Remote Displacements to Reservoir Process during Flow Injection
Abstract:
Either during water or gas injection into reservoir, in order to understand the areal flow pressure distribution underground, associated bounding deformation is prevalently monitored by ground or downhole tiltmeters. In this paper, an inverse solution to elastic response of far field displacements induced by reservoir pressure change due to flow injection was studied. Furthermore, the fundamental theory on inverse solution to elastic problem as well as its spatial smoothing approach is presented. Taking advantage of source code development based on Boundary Element Method, numerical analysis on the monitoring data of ground surface displacements to further understand the behavior of reservoir process was developed. Numerical examples were also conducted to verify the effectiveness.Keywords: remote displacement, inverse problem, boundary element method, BEM, reservoir process
Procedia PDF Downloads 1182926 Approaches to Vibration Analysis of Thick Plates Subjected to Different Supports, Loadings and Boundary Conditions: A Literature Review
Authors: Fazl E. Ahad, Shi Dongyan, Anees Ur Rehman
Abstract:
Plates are one of the most important structural components used in many industries like aerospace, marine and various other engineering fields and thus motivate designers and engineers to study the vibrational characteristics of these structures. This paper is a review of existing literature on vibration analysis of plates. Focus has been kept on prominent studies related to isotropic plates based on Mindlin plate theory; however few citations on orthotropic plates and higher order shear deformation theories have also been included. All citations are in English language. This review is aimed to provide contemporarily relevant survey of papers on vibrational characteristics of thick plates and will be useful for scientists, designers and researchers to locate important and relevant literature/research quickly.Keywords: mindlin plates, vibrations, arbitrary boundary conditions, mode shapes, natural frequency
Procedia PDF Downloads 3242925 Three Dimensional Dynamic Analysis of Water Storage Tanks Considering FSI Using FEM
Authors: S. Mahdi S. Kolbadi, Ramezan Ali Alvand, Afrasiab Mirzaei
Abstract:
In this study, to investigate and analyze the seismic behavior of concrete in open rectangular water storage tanks in two-dimensional and three-dimensional spaces, the Finite Element Method has been used. Through this method, dynamic responses can be investigated together in fluid storages system. Soil behavior has been simulated using tanks boundary conditions in linear form. In this research, in addition to flexibility of wall, the effects of fluid-structure interaction on seismic response of tanks have been investigated to account for the effects of flexible foundation in linear boundary conditions form, and a dynamic response of rectangular tanks in two-dimensional and three-dimensional spaces using finite element method has been provided. The boundary conditions of both rigid and flexible walls in two-dimensional finite element method have been considered to investigate the effect of wall flexibility on seismic response of fluid and storage system. Furthermore, three-dimensional model of fluid-structure interaction issue together with wall flexibility has been analyzed under the three components of earthquake. The obtained results show that two-dimensional model is also accurately near to the results of three-dimension as well as flexibility of foundation leads to absorb received energy and relative reduction of responses.Keywords: dynamic behavior, flexible wall, fluid-structure interaction, water storage tank
Procedia PDF Downloads 1852924 Enhanced Magnetoelastic Response near Morphotropic Phase Boundary in Ferromagnetic Materials: Experimental and Theoretical Analysis
Authors: Murtaza Adil, Sen Yang, Zhou Chao, Song Xiaoping
Abstract:
The morphotropic phase boundary (MPB) recently has attracted constant interest in ferromagnetic systems for obtaining enhanced large magnetoelastic response. In the present study, structural and magnetoelastic properties of MPB involved ferromagnetic Tb1-xGdxFe2 (0≤x≤1) system has been investigated. The change of easy magnetic direction from <111> to <100> with increasing x up MPB composition of x=0.9 is detected by step-scanned [440] synchrotron X-ray diffraction reflections. The Gd substitution for Tb changes the composition for the anisotropy compensation near MPB composition of x=0.9, which was confirmed by the analysis of detailed scanned XRD, magnetization curves and the calculation of the first anisotropy constant K1. The spin configuration diagram accompanied with different crystal structures for Tb1-xGdxFe2 was designed. The calculated first anisotropy constant K1 shows a minimum value at MPB composition of x=0.9. In addition, the large ratio between magnetostriction, and the absolute values of the first anisotropy constant │λS∕K1│ appears at MPB composition, which makes it a potential material for magnetostrictive application. Based on experimental results, a theoretically approach was also proposed to signify that the facilitated magnetization rotation and enhanced magnetoelastic effect near MPB composition are a consequence of the anisotropic flattening of free energy of ferromagnetic crystal. Our work specifies the universal existence of MPB in ferromagnetic materials which is important for substantial improvement of magnetic and magnetostrictive properties and may provide a new route to develop advanced functional materials.Keywords: free energy, magnetic anisotropy, magnetostriction, morphotropic phase boundary (MPB)
Procedia PDF Downloads 2752923 Free Convective Flow in a Vertical Cylinder with Heat Sink: A Numerical Study
Authors: Emmanuel Omokhuale
Abstract:
A mathematical model is presented to study free convective boundary layer flow in a semi-infinite vertical cylinder with heat sink effect in a porous medium. The governing dimensional governing partial differential equations (PDEs) with corresponding initial and boundary conditions are approximated and solved numerically employing finite difference method (FDM) the implicit type. Stability and convergence of the scheme are also established. Furthermore, the influence of significant physical parameters on the flow characteristics was analysed and shown graphically. The obtained results are benchmarked with previously published works in order to access the accuracy of the numerical method and found to be in good agreement.Keywords: free convection flow, vertical cylinder, implicit finite difference method, heat sink and porous medium
Procedia PDF Downloads 1412922 Framework for Implementation of National Electrical Safety Grounding Standards for Communication Infrastructure
Authors: Atif Mahmood, Mohammad Inayatullah Khan Babar
Abstract:
Communication infrastructure has been installed, operated, and maintained all over the world according to defined electrical safety standards for separate or joint structures. These safety standards have been set for the safeguard of public, utility workers (employees and contractors), utility facilities, electrical communication equipment’s connected to the utility facilities and other facilities or premise adjacent to utility facilities. Different communication utilities in Pakistan use standards of different countries due to the absence of Common National Electrical Safety Standards of Pakistan. It is really important to devise a framework for implementation of a uniform standard for strict compliance. In this context, it is important to explore the compliance of safety standards for communication conductors and equipment for separate or joint structures for which NESC standards are taken as reference. Specific reference to grounding techniques including grounding AC/DC systems and its frames, leaving Fences, Messenger wires and special circuits used for the protection for lightning etc, ungrounded so recommendations are also given after in-depth analysis of current technical practices for the installation and maintenance of communication infrastructure.Keywords: utility facilities, grounding electrodes, special circuits, grounding conductor
Procedia PDF Downloads 3482921 Effect of Magnetic Field on Mixed Convection Boundary Layer Flow over an Exponentially Shrinking Vertical Sheet with Suction
Authors: S. S. P. M. Isa, N. M. Arifin, R. Nazar, N. Bachok, F. M. Ali, I. Pop
Abstract:
A theoretical study has been presented to describe the boundary layer flow and heat transfer on an exponentially shrinking sheet with a variable wall temperature and suction, in the presence of magnetic field. The governing nonlinear partial differential equations are converted into ordinary differential equations by similarity transformation, which are then solved numerically using the shooting method. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented through graphs and tables for several sets of values of the parameters. The effects of the governing parameters on the flow and heat transfer characteristics are thoroughly examined.Keywords: exponentially shrinking sheet, magnetic field, mixed convection, suction
Procedia PDF Downloads 3302920 Nonlocal Beam Models for Free Vibration Analysis of Double-Walled Carbon Nanotubes with Various End Supports
Authors: Babak Safaei, Ahmad Ghanbari, Arash Rahmani
Abstract:
In the present study, the free vibration characteristics of double-walled carbon nanotubes (DWCNTs) are investigated. The small-scale effects are taken into account using the Eringen’s nonlocal elasticity theory. The nonlocal elasticity equations are implemented into the different classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), Reddy beam theory (RBT), and Levinson beam theory (LBT) to analyze the free vibrations of DWCNTs in which each wall of the nanotubes is considered as individual beam with van der Waals interaction forces. Generalized differential quadrature (GDQ) method is utilized to discretize the governing differential equations of each nonlocal beam model along with four commonly used boundary conditions. Then molecular dynamics (MD) simulation is performed for a series of armchair and zigzag DWCNTs with different aspect ratios and boundary conditions, the results of which are matched with those of nonlocal beam models to extract the appropriate values of the nonlocal parameter corresponding to each type of chirality, nonlocal beam model and boundary condition. It is found that the present nonlocal beam models with their proposed correct values of nonlocal parameter have good capability to predict the vibrational behavior of DWCNTs, especially for higher aspect ratios.Keywords: double-walled carbon nanotubes, nonlocal continuum elasticity, free vibrations, molecular dynamics simulation, generalized differential quadrature method
Procedia PDF Downloads 2942919 Advancements in Dielectric Materials: A Comprehensive Study on Properties, Synthesis, and Applications
Authors: M. Mesrar, T. Lamcharfi, Nor-S. Echatoui, F. Abdi
Abstract:
The solid-state reaction method was used to synthesize ferroelectric systems with lead-free properties, specifically (1-x-y)(Na₀.₅Bi₀.₅)TiO₃-xBaTiO₃-y(K₀.₅ Bi₀.₅)TiO₃. To achieve a pure perovskite phase, the optimal calcination temperature was determined to be 1000°C for 4 hours. X-ray diffraction (XRD) analysis identified the presence of the morphotropic phase boundary (MPB) in the (1-x-y)NBT xBT-yKBT ceramics for specific molar compositions, namely (0.95NBT-0.05BT, 0.84NBT-0.16KBT, and 0.79NBT-0.05BT-0.16KBT). To enhance densification, the sintering temperature was set at 1100°C for 4 hours. Scanning electron microscopy (SEM) images exhibited homogeneous distribution and dense packing of the grains in the ceramics, indicating a uniform microstructure. These materials exhibited favorable characteristics, including high dielectric permittivity, low dielectric loss, and diffused phase transition behavior. The ceramics composed of 0.79NBT-0.05BT-0.16KBT exhibited the highest piezoelectric constant (d33=148 pC/N) and electromechanical coupling factor (kp = 0.292) among all compositions studied. This enhancement in piezoelectric properties can be attributed to the presence of the morphotropic phase boundary (MPB) in the material. This study presents a comprehensive approach to improving the performance of lead-free ferroelectric systems of composition 0.79(Na₀.₅Bi₀.₅)Ti O₃-0.05BaTiO₃-0.16(K₀.₅Bi₀.₅)TiO₃.Keywords: solid-state method, (1-x-y)NBT-xBT-yKBT, morphotropic phase boundary, Raman spectroscopy, dielectric properties
Procedia PDF Downloads 522918 Uncertainty and Multifunctionality as Bridging Concepts from Socio-Ecological Resilience to Infrastructure Finance in Water Resource Decision Making
Authors: Anita Lazurko, Laszlo Pinter, Jeremy Richardson
Abstract:
Uncertain climate projections, multiple possible development futures, and a financing gap create challenges for water infrastructure decision making. In contrast to conventional predict-plan-act methods, an emerging decision paradigm that enables social-ecological resilience supports decisions that are appropriate for uncertainty and leverage social, ecological, and economic multifunctionality. Concurrently, water infrastructure project finance plays a powerful role in sustainable infrastructure development but remains disconnected from discourse in socio-ecological resilience. At the time of research, a project to transfer water from Lesotho to Botswana through South Africa in the Orange-Senqu River Basin was at the pre-feasibility stage. This case was analysed through documents and interviews to investigate how uncertainty and multifunctionality are conceptualised and considered in decisions for the resilience of water infrastructure and to explore bridging concepts that might allow project finance to better enable socio-ecological resilience. Interviewees conceptualised uncertainty as risk, ambiguity and ignorance, and multifunctionality as politically-motivated shared benefits. Numerous efforts to adopt emerging decision methods that consider these terms were in use but required compromises to accommodate the persistent, conventional decision paradigm, though a range of future opportunities was identified. Bridging these findings to finance revealed opportunities to consider a more comprehensive scope of risk, to leverage risk mitigation measures, to diffuse risks and benefits over space, time and to diverse actor groups, and to clarify roles to achieve multiple objectives for resilience. In addition to insights into how multiple decision paradigms interact in real-world decision contexts, the research highlights untapped potential at the juncture between socio-ecological resilience and project finance.Keywords: socio-ecological resilience, finance, multifunctionality, uncertainty
Procedia PDF Downloads 1262917 Entrepreneurship Education: A Panacea for Entrepreneurial Intention of University Undergraduates in Ogun State, Nigeria
Authors: Adedayo Racheal Agbonna
Abstract:
The rising level of graduate unemployment in Nigeria has brought about the introduction of entrepreneurship education as a career option for self–reliance and self-employment. Sequel to this, it is important to have an understanding of the determining factors of entrepreneurial intention. Therefore this research empirically investigated the influence of entrepreneurship education on entrepreneurial intention of undergraduate students of selected universities in Ogun State, Nigeria. The study is significant to researchers, university policy makers, and the government. Survey research design was adopted in the study. The population consisted of 17,659 final year undergraduate students universities in Ogun State. The study adopted stratified and random sampling technique. The table of sample size determination was used to determine the sample size for this study at 95% confidence level and 5% margin error to arrive at a sample size of 1877 respondents. The elements of population were 400 level students of the selected universities. A structured questionnaire titled 'Entrepreneurship Education and students’ Entrepreneurial intention' was administered. The result of the reliability test had the following values 0.716, 0.907 and 0.949 for infrastructure, perceived university support, and entrepreneurial intention respectively. In the same vein, from the construct validity test, the following values were obtained 0.711, 0.663 and 0.759 for infrastructure, perceived university support and entrepreneurial intention respectively. Findings of this study revealed that each of the entrepreneurship education variables significantly affected intention University infrastructure B= -1.200, R²=0.679, F (₁,₁₈₇₅) = 3958.345, P < 0.05) Perceived University Support B= -1.027, R²=0.502, F(₁,₁₈₇₅) = 1924.612, P < 0.05). The perception of respondents in public university and private university on entrepreneurship education have a statistically significant difference [F(₁,₁₈₇₅) = 134.614, p < 0.05) α F(₁,₁₈₇₅) = 363.439]. The study concluded that entrepreneurship education positively influenced entrepreneurial intention of undergraduate students in Ogun State, Nigeria. Also, university infrastructure and perceived university support have negative and significant effect on entrepreneurial intention. The study recommended that to promote entrepreneurial intention of university undergraduate students, infrastructures and the university support that can arouse entrepreneurial intention of students should be put in place.Keywords: entrepreneurship education, entrepreneurial intention, perceived university support, university infrastructure
Procedia PDF Downloads 2342916 Linear Evolution of Compressible Görtler Vortices Subject to Free-Stream Vortical Disturbances
Authors: Samuele Viaro, Pierre Ricco
Abstract:
Görtler instabilities generate in boundary layers from an unbalance between pressure and centrifugal forces caused by concave surfaces. Their spatial streamwise evolution influences transition to turbulence. It is therefore important to understand even the early stages where perturbations, still small, grow linearly and could be controlled more easily. This work presents a rigorous theoretical framework for compressible flows using the linearized unsteady boundary region equations, where only the streamwise pressure gradient and streamwise diffusion terms are neglected from the full governing equations of fluid motion. Boundary and initial conditions are imposed through an asymptotic analysis in order to account for the interaction of the boundary layer with free-stream turbulence. The resulting parabolic system is discretize with a second-order finite difference scheme. Realistic flow parameters are chosen from wind tunnel studies performed at supersonic and subsonic conditions. The Mach number ranges from 0.5 to 8, with two different radii of curvature, 5 m and 10 m, frequencies up to 2000 Hz, and vortex spanwise wavelengths from 5 mm to 20 mm. The evolution of the perturbation flow is shown through velocity, temperature, pressure profiles relatively close to the leading edge, where non-linear effects can still be neglected, and growth rate. Results show that a global stabilizing effect exists with the increase of Mach number, frequency, spanwise wavenumber and radius of curvature. In particular, at high Mach numbers curvature effects are less pronounced and thermal streaks become stronger than velocity streaks. This increase of temperature perturbations saturates at approximately Mach 4 flows, and is limited in the early stage of growth, near the leading edge. In general, Görtler vortices evolve closer to the surface with respect to a flat plate scenario but their location shifts toward the edge of the boundary layer as the Mach number increases. In fact, a jet-like behavior appears for steady vortices having small spanwise wavelengths (less than 10 mm) at Mach 8, creating a region of unperturbed flow close to the wall. A similar response is also found at the highest frequency considered for a Mach 3 flow. Larger vortices are found to have a higher growth rate but are less influenced by the Mach number. An eigenvalue approach is also employed to study the amplification of the perturbations sufficiently downstream from the leading edge. These eigenvalue results are compared with the ones obtained through the initial value approach with inhomogeneous free-stream boundary conditions. All of the parameters here studied have a significant influence on the evolution of the instabilities for the Görtler problem which is indeed highly dependent on initial conditions.Keywords: compressible boundary layers, Görtler instabilities, receptivity, turbulence transition
Procedia PDF Downloads 2532915 Adaptation of Climate Change and Building Resilience for Seaports: Empirical Study on Egyptian Mediterranean Seaports
Authors: Alsnosy Balbaa, Mohamed Nabil Elnabawi, Yasmin El Meladi
Abstract:
With the ever-growing concerns of climate change, Mediterranean ports, as vital economic and transport hubs face unique challenges in maintaining operations and infrastructure. This empirical study seeks to understand the current adaptations and preparedness levels of Egyptian Mediterranean ports against climate-induced disruptions. Drawing from a structured questionnaire, the research gathers insights on observed climate impacts, infrastructure adaptations, operational changes, and stakeholder engagement, aiming to shed light on the resilience of these ports in the face of a changing climate.Keywords: climate, infrastructures, port, mediterranean
Procedia PDF Downloads 652914 System of System Decisions Framework for Cross-Border Railway Projects
Authors: Dimitrios J. Dimitriou, Maria F. Sartzetaki, Anastasia Kalamakidou
Abstract:
Transport infrastructure assets are key components of the national asset portfolio. The decision to invest in a new infrastructure in transports could take from a few years to some decades. This is mainly because of the need to reserve and spent many capitals, the long payback period, the number of the stakeholders involved in the decision process and –many times- the investment and business risks are high. Decision makers and stakeholders need to define the framework and the outputs of the decision process taking into account the project characteristics, the business uncertainties, and the different expectations. Therefore, the decision assessment framework is an essential challenge linked with the key decision factors meet the stakeholder expectations highlighting project trade-offs, financial risks, business uncertainties and market limitations. This paper examines the decision process for new transport infrastructure projects in cross-border regions, where a wide range of stakeholders with different expectation is involved. According to a consequences analysis systemic approach, the relationship of transport infrastructure development, economic system development and stakeholder expectation is analysed. Adopting the on system of system methodological approach, the decision making the framework, variables, inputs and outputs are defined, highlighting the key shareholder’s role and expectations. The application provides the methodology outputs presenting the proposed decision framework for a strategic railway project in north Greece deals with the upgrade of the existing railway corridor connecting Greece, Turkey, and Bulgaria.Keywords: system of system decision making, managing decisions for transport projects, decision support framework, defining decision process
Procedia PDF Downloads 3082913 A Hybrid Classical-Quantum Algorithm for Boundary Integral Equations of Scattering Theory
Authors: Damir Latypov
Abstract:
A hybrid classical-quantum algorithm to solve boundary integral equations (BIE) arising in problems of electromagnetic and acoustic scattering is proposed. The quantum speed-up is due to a Quantum Linear System Algorithm (QLSA). The original QLSA of Harrow et al. provides an exponential speed-up over the best-known classical algorithms but only in the case of sparse systems. Due to the non-local nature of integral operators, matrices arising from discretization of BIEs, are, however, dense. A QLSA for dense matrices was introduced in 2017. Its runtime as function of the system's size N is bounded by O(√Npolylog(N)). The run time of the best-known classical algorithm for an arbitrary dense matrix scales as O(N².³⁷³). Instead of exponential as in case of sparse matrices, here we have only a polynomial speed-up. Nevertheless, sufficiently high power of this polynomial, ~4.7, should make QLSA an appealing alternative. Unfortunately for the QLSA, the asymptotic separability of the Green's function leads to high compressibility of the BIEs matrices. Classical fast algorithms such as Multilevel Fast Multipole Method (MLFMM) take advantage of this fact and reduce the runtime to O(Nlog(N)), i.e., the QLSA is only quadratically faster than the MLFMM. To be truly impactful for computational electromagnetics and acoustics engineers, QLSA must provide more substantial advantage than that. We propose a computational scheme which combines elements of the classical fast algorithms with the QLSA to achieve the required performance.Keywords: quantum linear system algorithm, boundary integral equations, dense matrices, electromagnetic scattering theory
Procedia PDF Downloads 1542912 An Exploratory Study on Challenges of Public Private Partnership Projects in Oman
Authors: Omar Amoudi, Mariya Khalid
Abstract:
The limitation of the public funds for the infrastructure projects and with the deterioration of international oil prices and the negative consequences on the economies of oil producing and exporting countries, Oman has encouraged the partnership between the public and private sectors. As the private sector has a role in planning, financing, designing, operating and the maintenance of the public services. There is no doubt that, the adoption of Public Private Partnership (PPP) strategy faces many challenges which might affect the project seriously if it is not overcome in earlier time. These challenges depend on the level of understanding of the strategy, the roles and regulations and the availability of resources as well. This research aims at identifying the challenges facing the PPP infrastructure projects in Oman based on the similar previous studies supported by questionnaire survey and semi structured interviews. It also seeks to discuss the rationale for adoption in Oman and uncover the current status of PPP strategy. The identified challenges were ranked according to the importance index of each challenge. After analysis of data, it has observed that, the main challenges facing PPPs projects in Oman are high participation cost, high projects cost and regulation changes. The PPP strategy has to be adopted well and with a high level of experience in order to ensure a successful implementation of PPP projects in Oman.Keywords: public private partnership (PPP), challenges, infrastructure, Oman
Procedia PDF Downloads 3032911 Effect of Mesh Size on the Supersonic Viscous Flow Parameters around an Axisymmetric Blunt Body
Authors: Haoui Rabah
Abstract:
The aim of this work is to analyze a viscous flow around the axisymmetric blunt body taken into account the mesh size both in the free stream and into the boundary layer. The resolution of the Navier-Stokes equations is realized by using the finite volume method to determine the flow parameters and detached shock position. The numerical technique uses the Flux Vector Splitting method of Van Leer. Here, adequate time stepping parameter, CFL coefficient and mesh size level are selected to ensure numerical convergence. The effect of the mesh size is significant on the shear stress and velocity profile. The best solution is obtained with using a very fine grid. This study enabled us to confirm that the determination of boundary layer thickness can be obtained only if the size of the mesh is lower than a certain value limits given by our calculations.Keywords: supersonic flow, viscous flow, finite volume, blunt body
Procedia PDF Downloads 6042910 Conduction Accompanied With Transient Radiative Heat Transfer Using Finite Volume Method
Authors: A. Ashok, K.Satapathy, B. Prerana Nashine
Abstract:
The objective of this research work is to investigate for one dimensional transient radiative transfer equations with conduction using finite volume method. Within the infrastructure of finite-volume, we obtain the conservative discretization of the terms in order to preserve the overall conservative property of finitevolume schemes. Coupling of conductive and radiative equation resulting in fluxes is governed by the magnitude of emissivity, extinction coefficient, and temperature of the medium as well as geometry of the problem. The problem under consideration has been solved, for a slab dominating radiation coupled with transient conduction based on finite volume method. The boundary conditions are also chosen so as to give a good model of the discretized form of radiation transfer equation. The important feature of the present method is flexibility in specifying the control angles in the FVM, while keeping the simplicity in the solution procedure. Effects of various model parameters are examined on the distributions of temperature, radiative and conductive heat fluxes and incident radiation energy etc. The finite volume method is considered to effectively evaluate the propagation of radiation intensity through a participating medium.Keywords: participating media, finite volume method, radiation coupled with conduction, transient radiative heat transfer
Procedia PDF Downloads 3892909 Effect of Thermal Radiation on Flow, Heat, and Mass Transfer of a Nanofluid over a Stretching Horizontal Cylinder Embedded in a Porous Medium with Suction/Injection
Authors: Elsayed M. A. Elbashbeshy, T. G. Emam, M. S. El-Azab, K. M. Abdelgaber
Abstract:
The effect of thermal radiation on flow, heat and mass transfer of an incompressible viscous nanofluid over a stretching horizontal cylinder embedded in a porous medium with suction/injection is discussed numerically. The governing boundary layer equations are reduced to a system of ordinary differential equations. Mathematica has been used to solve such system after obtaining the missed initial conditions. Comparison of obtained numerical results is made with previously published results in some special cases, and found to be in a good agreement.Keywords: laminar flow, boundary layer, stretching horizontal cylinder, thermal radiation, suction/injection, nanofluid
Procedia PDF Downloads 3822908 Vibration Frequencies Analysis of Nanoporous Graphene Membrane
Authors: Haw-Long Lee, Win-Jin Chang, Yu-Ching Yang
Abstract:
In this study, we use the atomic-scale finite element method to investigate the vibrational behavior of the armchair- and zigzag-structured nanoporous graphene layers with different size under the SFSF and CFFF boundary conditions. The fundamental frequencies computed for the graphene layers without pore are compared with the results of previous studies. We observe very good correspondence of our results with that of the other studies in all the considered cases. For the armchair- and zigzag-structured nanoporous graphene layers under the SFSF and CFFF boundary conditions, the frequencies decrease as the size of the nanopore increase. When the positions of the pore are symmetric with respect to the center of the graphene, the frequency of the zigzag pore graphene is higher than that of the armchair one.Keywords: atomic-scale finite element method, graphene, nanoporous, natural frequency
Procedia PDF Downloads 3612907 Study and Simulation of the Thrust Vectoring in Supersonic Nozzles
Authors: Kbab H, Hamitouche T
Abstract:
In recent years, significant progress has been accomplished in the field of aerospace propulsion and propulsion systems. These developments are associated with efforts to enhance the accuracy of the analysis of aerothermodynamic phenomena in the engine. This applies in particular to the flow in the nozzles used. One of the most remarkable processes in this field is thrust vectoring by means of devices able to orientate the thrust vector and control the deflection of the exit jet in the engine nozzle. In the study proposed, we are interested in the fluid thrust vectoring using a second injection in the nozzle divergence. This fluid injection causes complex phenomena, such as boundary layer separation, which generates a shock wave in the primary jet upstream of the fluid interacting zone (primary jet - secondary jet). This will cause the deviation of the main flow, and therefore of the thrust vector with reference to the axis nozzle. In the modeling of the fluidic thrust vector, various parameters can be used. The Mach number of the primary jet and the injected fluid, the total pressures ratio, the injection rate, the thickness of the upstream boundary layer, the injector position in the divergent part, and the nozzle geometry are decisive factors in this type of phenomenon. The complexity of the latter challenges researchers to understand the physical phenomena of the turbulent boundary layer encountered in supersonic nozzles, as well as the calculation of its thickness and the friction forces induced on the walls. The present study aims to numerically simulate the thrust vectoring by secondary injection using the ANSYS-FLUENT, then to analyze and validate the results and the performances obtained (angle of deflection, efficiency...), which will then be compared with those obtained by other authors.Keywords: CD Nozzle, TVC, SVC, NPR, CFD, NPR, SPR
Procedia PDF Downloads 1332906 Determination of Optimal Stress Locations in 2D–9 Noded Element in Finite Element Technique
Authors: Nishant Shrivastava, D. K. Sehgal
Abstract:
In Finite Element Technique nodal stresses are calculated through displacement as nodes. In this process, the displacement calculated at nodes is sufficiently good enough but stresses calculated at nodes are not sufficiently accurate. Therefore, the accuracy in the stress computation in FEM models based on the displacement technique is obviously matter of concern for computational time in shape optimization of engineering problems. In the present work same is focused to find out unique points within the element as well as the boundary of the element so, that good accuracy in stress computation can be achieved. Generally, major optimal stress points are located in domain of the element some points have been also located at boundary of the element where stresses are fairly accurate as compared to nodal values. Then, it is subsequently concluded that there is an existence of unique points within the element, where stresses have higher accuracy than other points in the elements. Therefore, it is main aim is to evolve a generalized procedure for the determination of the optimal stress location inside the element as well as at the boundaries of the element and verify the same with results from numerical experimentation. The results of quadratic 9 noded serendipity elements are presented and the location of distinct optimal stress points is determined inside the element, as well as at the boundaries. The theoretical results indicate various optimal stress locations are in local coordinates at origin and at a distance of 0.577 in both directions from origin. Also, at the boundaries optimal stress locations are at the midpoints of the element boundary and the locations are at a distance of 0.577 from the origin in both directions. The above findings were verified through experimentation and findings were authenticated. For numerical experimentation five engineering problems were identified and the numerical results of 9-noded element were compared to those obtained by using the same order of 25-noded quadratic Lagrangian elements, which are considered as standard. Then root mean square errors are plotted with respect to various locations within the elements as well as the boundaries and conclusions were drawn. After numerical verification it is noted that in a 9-noded element, origin and locations at a distance of 0.577 from origin in both directions are the best sampling points for the stresses. It was also noted that stresses calculated within line at boundary enclosed by 0.577 midpoints are also very good and the error found is very less. When sampling points move away from these points, then it causes line zone error to increase rapidly. Thus, it is established that there are unique points at boundary of element where stresses are accurate, which can be utilized in solving various engineering problems and are also useful in shape optimizations.Keywords: finite elements, Lagrangian, optimal stress location, serendipity
Procedia PDF Downloads 1052905 Tribological Behavior of EP Additives with Different Percentage of Sulfur
Authors: Salete Martins Alves, José Josemar de Oliveira Junior
Abstract:
The current efforts on design of lubricants are based in attending the new requirement of modern equipment with the focus on the choice of base oil and additives. Nowadays, there are different types of lubricant oils’ bases, such as mineral oils, synthetic oils, re-refined oils and vegetable oils. The lubrication in the boundary condition is controlled mainly by EP additives that interact with the surface forming very thin films. Therefore, the study’s goal is to evaluate the action of three EP additives, with different percentage of sulfur, on friction and wear reduction. They were evaluated in mineral and synthetic oils. Lubricants were prepared with synthetic and mineral oils and added 3 % and 5 % of EP additives. The friction and wear characteristics were studied using HFRR test. In this test, a normal load of 10 N was applied at a frequency of 20 Hz. The analysis of results has appointed that the percentage of sulfur in mineral oil has influenced on wear reduction. However, synthetic oil had good performance with low sulfur content.Keywords: boundary lubrication, EP additives, sulfur, wear
Procedia PDF Downloads 4042904 Application of a Compact Wastewater Treatment Unit in a Rural Area
Authors: Mohamed El-Khateeb
Abstract:
Encompassing inventory, warehousing, and transportation management, logistics is a crucial predictor of firm performance. This has been extensively proven by extant literature in business and operations management. Logistics is also a fundamental determinant of a country's ability to access international markets. Available studies in international and transport economics have shown that limited transport infrastructure and underperforming transport services can severely affect international competitiveness. However, the evidence lacks the overall impact of logistics performance-encompassing all inventory, warehousing, and transport components- on global trade. In order to fill this knowledge gap, the paper uses a gravitational trade model with 155 countries from all geographical regions between 2007 and 2018. Data on logistics performance is obtained from the World Bank's Logistics Performance Index (LPI). First, the relationship between logistics performance and a country’s total trade is estimated, followed by a breakdown by the economic sector. Then, the analysis is disaggregated according to the level of technological intensity of traded goods. Finally, after evaluating the intensive margin of trade, the relevance of logistics infrastructure and services for the extensive trade margin is assessed. Results suggest that: (i) improvements in both logistics infrastructure and services are associated with export growth; (ii) manufactured goods can significantly benefit from these improvements, especially when both exporting and importing countries increase their logistics performance; (iii) the quality of logistics infrastructure and services becomes more important as traded goods are technology-intensive; and (iv) improving the exporting country's logistics performance is essential in the intensive margin of trade while enhancing the importing country's logistics performance is more relevant in the extensive margin.Keywords: low-cost, recycling, reuse, solid waste, wastewater treatment
Procedia PDF Downloads 1962903 Microstructure of AlCrFeNiMn High Entropy Alloy and Its Corrosion Behavior in Supercritical CO₂ Environment
Authors: Yang Wanhuan, Zou Jichun, LI Shen, Zhong Weihua, Yang Wen
Abstract:
High entropy alloys (HEAs) have aroused significant concern in high-temperature supercritical carbon dioxide (S-CO2) environments due to their unique microstructures and outstanding properties. However, the anti-corrosion ability and mechanism of these HEAs in the S-CO₂ remain unclear. Herein, we developed a new AlCrFeNiMn (AM)-HEA with double phases by vacuum arc melting furnace. The corrosion behavior of AM-HEA in the S-CO₂ at 500 ℃ under 25 MPa for 400 hours was deciphered by multiple characterization techniques. The results show that the discrepancy of corrosion between the matrix and boundary was accounted for by their microstructure and components. The role and mechanism of Mn contents for their oxide scales in boundary zones were emphasized. More importantly, the nano-precipitated second phase and numerous boundaries for the outstanding anti-corrosion ability of the matrix were proposed.Keywords: high entropy alloy, microstructure, corrosion, supercritical carbon oxide, AlCrFeNiMn
Procedia PDF Downloads 1462902 Assessment of Urban Infrastructure and Health Using Principal Component Analysis and Geographic Information System: A Case of Ahmedabad, India
Authors: Anusha Vaddiraj Pallapu
Abstract:
Across the globe, there is a steady increase in people residing in urban areas. Due to this increase in urban population, urban health is affecting. The major issues identified like overcrowding, air pollution, unhealthy diet, inadequate infrastructure, poor solid waste management systems and insufficient access to health facilities, these issues are gradually clearly observed in health statistics of diseases and deaths rapidly increase in urban areas. Therefore, the present study aims to assess the health statistics and infrastructure services at urban areas to know the cause and effect between Infrastructure, its management and diseases (water borne). Most of the Indian cities have the municipal boundaries, which authorized by their respective municipal corporations and development authorities. Generally, cities have various zones under which municipal wards exist. The paper focuses on the city Ahmedabad, at Gujarat state. Ahmedabad Municipal Corporation (AMC) is divided into six zones namely Central zone, West zone, New-West zone, East zone, North zone, and South zone. Each zone includes various wards within it. Incidence of diseases in Ahmadabad which are linked to infrastructure was identified such as water-borne diseases. Later on, the occurrence of water-borne diseases at urban area was examined at each zone level. The study methodology follows four steps i.e. 1) Pre-Field literature study: Study on Sewerage system in urban areas and its best practices and public health status globally and Indian scenario; 2) Field study: Data collection and interviews of stakeholders regarding heal status and issues at each zone and ward level; 3) Post field: Data analysis with qualitative description of each ward of zones, followed by correlation coefficient analysis between sewerage coverage, diseases and density of each ward using geographic information system mapping (GIS); 4) Identification of reasons: Affected health on each of zone and wards followed by correlation analysis on each reason. The results reveal that the health conditions in Ahmedabad municipal zones or boundaries are effected due to the slums created by the migrated people from various rural and urban areas. It is also observed that due to increase in population water supply and sewerage management is affecting. The overall effect on infrastructure is creating the health diseases which detailed in the paper using geographical information system in Indian city.Keywords: infrastructure, municipal wards, GIS, water supply, sewerage, medical facilities, water borne diseases
Procedia PDF Downloads 210