Search results for: hand movement recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6886

Search results for: hand movement recognition

6526 Sarcasm Recognition System Using Hybrid Tone-Word Spotting Audio Mining Technique

Authors: Sandhya Baskaran, Hari Kumar Nagabushanam

Abstract:

Sarcasm sentiment recognition is an area of natural language processing that is being probed into in the recent times. Even with the advancements in NLP, typical translations of words, sentences in its context fail to provide the exact information on a sentiment or emotion of a user. For example, if something bad happens, the statement ‘That's just what I need, great! Terrific!’ is expressed in a sarcastic tone which could be misread as a positive sign by any text-based analyzer. In this paper, we are presenting a unique real time ‘word with its tone’ spotting technique which would provide the sentiment analysis for a tone or pitch of a voice in combination with the words being expressed. This hybrid approach increases the probability for identification of special sentiment like sarcasm much closer to the real world than by mining text or speech individually. The system uses a tone analyzer such as YIN-FFT which extracts pitch segment-wise that would be used in parallel with a speech recognition system. The clustered data is classified for sentiments and sarcasm score for each of it determined. Our Simulations demonstrates the improvement in f-measure of around 12% compared to existing detection techniques with increased precision and recall.

Keywords: sarcasm recognition, tone-word spotting, natural language processing, pitch analyzer

Procedia PDF Downloads 293
6525 An Improvement of a Dynamic Model of the Secondary Sedimentation Tank and Field Validation

Authors: Zahir Bakiri, Saci Nacefa

Abstract:

In this paper a comparison in made between two models, with and without dispersion term, and focused on the characterization of the movement of the sludge blanket in the secondary sedimentation tank using the solid flux theory and the velocity settling. This allowed us develop a one-dimensional models, with and without dispersion based on a thorough experimental study carried out in situ and the application of online data which are the mass load flow, transfer concentration, and influent characteristic. On the other hand, in the proposed model, the new settling velocity law (double-exponential function) used is based on the Vesilind function.

Keywords: wastewater, activated sludge, sedimentation, settling velocity, settling models

Procedia PDF Downloads 389
6524 Hand Controlled Mobile Robot Applied in Virtual Environment

Authors: Jozsef Katona, Attila Kovari, Tibor Ujbanyi, Gergely Sziladi

Abstract:

By the development of IT systems, human-computer interaction is also developing even faster and newer communication methods become available in human-machine interaction. In this article, the application of a hand gesture controlled human-computer interface is being introduced through the example of a mobile robot. The control of the mobile robot is implemented in a realistic virtual environment that is advantageous regarding the aspect of different tests, parallel examinations, so the purchase of expensive equipment is unnecessary. The usability of the implemented hand gesture control has been evaluated by test subjects. According to the opinion of the testing subjects, the system can be well used, and its application would be recommended on other application fields too.

Keywords: human-machine interface (HCI), mobile robot, hand control, virtual environment

Procedia PDF Downloads 298
6523 Factors Affecting Weld Line Movement in Tailor Welded Blank

Authors: Sanjay Patil, Shakil A. Kagzi, Harit K. Raval

Abstract:

Tailor Welded Blanks (TWB) are utilized in automotive industries widely because of their advantage of weight and cost reduction and maintaining required strength and structural integrity. TWB consist of two or more sheet having dissimilar or similar material and thickness; welded together to form a single sheet before forming it to desired shape. Forming of the tailor welded blank is affected by ratio of thickness of blanks, ratio of their strength, etc. mainly due to in-homogeneity of material. In the present work the relative effect of these parameters on weld line movement is studied during deep drawing of TWB using FE simulation using HYPERWORKS. The simulation is validated with results from the literature. Simulations were than performed based on Taguchi orthogonal array followed by the ANOVA analysis to determine the significance of these parameters on forming of TWB.

Keywords: ANOVA, deep drawing, Tailor Welded Blank (TWB), weld line movement

Procedia PDF Downloads 314
6522 From Makers to Maker Communities: A Survey on Turkish Makerspaces

Authors: Dogan Can Hatunoglu, Cengiz Hakan Gurkanlı, Hatice Merve Demirci

Abstract:

Today, the maker movement is regarded as a socio-cultural movement that represents designing and building objects for innovations. In these creativity-based activities of the movement, individuals from different backgrounds such as; inventors, programmers, craftspeople, DIY’ers, tinkerers, engineers, designers, and hackers, form a community and work collaboratively for mutual, open-source innovations. Today, with the accessibility of recently emerged technologies and digital fabrication tools, the Maker Movement is continuously expanding its scope and has evolved into a new experience, and for many, it is now considered as new kind of industrial revolution. In this new experience, makers create new things within their community by using new digital tools and technologies in spots called makerspaces. In these makerspaces, activities of learning, experience sharing, and mentoring are evolved into maker events. Makers who share common interests in making benefit from makerspaces as meeting and working spots. In literature, there are many sources on Maker Movement, maker communities, and their activities, especially in the field of business administration. However, there is a gap in the literature about the maker communities in Turkey. This research aims to be an information source on the dynamics and process design of “making” activities in Turkish maker communities and also aims to provide insights to sustain and enhance local maker communities in the future. Within this aim, semi-structured interviews were conducted with founders and facilitators from selected Turkish maker communities. (1) The perception towards Maker Movement, makers, activity of making, and current situation of maker communities, (2) motivations of individuals who participate the maker communities, and (3) key drivers (collaboration and decision-making in design processes) of maker activities from the perspectives of main actors (founders, facilitators) are all examined deeply with question on personal experiences and perspectives. After a qualitative approached data analysis concerning the maker communities in Turkey, this research reveals that there are two main conclusions regarding (1) the foundation of the Turkish maker mindset and (2) emergence of self-sustaining communities.

Keywords: Maker Movement, maker community, makerspaces, open-source design, sustainability

Procedia PDF Downloads 144
6521 Sign Language Recognition of Static Gestures Using Kinect™ and Convolutional Neural Networks

Authors: Rohit Semwal, Shivam Arora, Saurav, Sangita Roy

Abstract:

This work proposes a supervised framework with deep convolutional neural networks (CNNs) for vision-based sign language recognition of static gestures. Our approach addresses the acquisition and segmentation of correct inputs for the CNN-based classifier. Microsoft Kinect™ sensor, despite complex environmental conditions, can track hands efficiently. Skin Colour based segmentation is applied on cropped images of hands in different poses, used to depict different sign language gestures. The segmented hand images are used as an input for our classifier. The CNN classifier proposed in the paper is able to classify the input images with a high degree of accuracy. The system was trained and tested on 39 static sign language gestures, including 26 letters of the alphabet and 13 commonly used words. This paper includes a problem definition for building the proposed system, which acts as a sign language translator between deaf/mute and the rest of the society. It is then followed by a focus on reviewing existing knowledge in the area and work done by other researchers. It also describes the working principles behind different components of CNNs in brief. The architecture and system design specifications of the proposed system are discussed in the subsequent sections of the paper to give the reader a clear picture of the system in terms of the capability required. The design then gives the top-level details of how the proposed system meets the requirements.

Keywords: sign language, CNN, HCI, segmentation

Procedia PDF Downloads 159
6520 Intelligent Campus Monitoring: YOLOv8-Based High-Accuracy Activity Recognition

Authors: A. Degale Desta, Tamirat Kebamo

Abstract:

Background: Recent advances in computer vision and pattern recognition have significantly improved activity recognition through video analysis, particularly with the application of Deep Convolutional Neural Networks (CNNs). One-stage detectors now enable efficient video-based recognition by simultaneously predicting object categories and locations. Such advancements are highly relevant in educational settings where CCTV surveillance could automatically monitor academic activities, enhancing security and classroom management. However, current datasets and recognition systems lack the specific focus on campus environments necessary for practical application in these settings.Objective: This study aims to address this gap by developing a dataset and testing an automated activity recognition system specifically tailored for educational campuses. The EthioCAD dataset was created to capture various classroom activities and teacher-student interactions, facilitating reliable recognition of academic activities using deep learning models. Method: EthioCAD, a novel video-based dataset, was created with a design science research approach to encompass teacher-student interactions across three domains and 18 distinct classroom activities. Using the Roboflow AI framework, the data was processed, with 4.224 KB of frames and 33.485 MB of images managed for frame extraction, labeling, and organization. The Ultralytics YOLOv8 model was then implemented within Google Colab to evaluate the dataset’s effectiveness, achieving high mean Average Precision (mAP) scores. Results: The YOLOv8 model demonstrated robust activity recognition within campus-like settings, achieving an mAP50 of 90.2% and an mAP50-95 of 78.6%. These results highlight the potential of EthioCAD, combined with YOLOv8, to provide reliable detection and classification of classroom activities, supporting automated surveillance needs on educational campuses. Discussion: The high performance of YOLOv8 on the EthioCAD dataset suggests that automated activity recognition for surveillance is feasible within educational environments. This system addresses current limitations in campus-specific data and tools, offering a tailored solution for academic monitoring that could enhance the effectiveness of CCTV systems in these settings. Conclusion: The EthioCAD dataset, alongside the YOLOv8 model, provides a promising framework for automated campus activity recognition. This approach lays the groundwork for future advancements in CCTV-based educational surveillance systems, enabling more refined and reliable monitoring of classroom activities.

Keywords: deep CNN, EthioCAD, deep learning, YOLOv8, activity recognition

Procedia PDF Downloads 17
6519 Human-Machine Cooperation in Facial Comparison Based on Likelihood Scores

Authors: Lanchi Xie, Zhihui Li, Zhigang Li, Guiqiang Wang, Lei Xu, Yuwen Yan

Abstract:

Image-based facial features can be classified into category recognition features and individual recognition features. Current automated face recognition systems extract a specific feature vector of different dimensions from a facial image according to their pre-trained neural network. However, to improve the efficiency of parameter calculation, an algorithm generally reduces the image details by pooling. The operation will overlook the details concerned much by forensic experts. In our experiment, we adopted a variety of face recognition algorithms based on deep learning, compared a large number of naturally collected face images with the known data of the same person's frontal ID photos. Downscaling and manual handling were performed on the testing images. The results supported that the facial recognition algorithms based on deep learning detected structural and morphological information and rarely focused on specific markers such as stains and moles. Overall performance, distribution of genuine scores and impostor scores, and likelihood ratios were tested to evaluate the accuracy of biometric systems and forensic experts. Experiments showed that the biometric systems were skilled in distinguishing category features, and forensic experts were better at discovering the individual features of human faces. In the proposed approach, a fusion was performed at the score level. At the specified false accept rate, the framework achieved a lower false reject rate. This paper contributes to improving the interpretability of the objective method of facial comparison and provides a novel method for human-machine collaboration in this field.

Keywords: likelihood ratio, automated facial recognition, facial comparison, biometrics

Procedia PDF Downloads 130
6518 Investigating Activity Recognition Using 9-Axis Sensors and Filters in Wearable Devices

Authors: Jun Gil Ahn, Jong Kang Park, Jong Tae Kim

Abstract:

In this paper, we analyze major components of activity recognition (AR) in wearable device with 9-axis sensors and sensor fusion filters. 9-axis sensors commonly include 3-axis accelerometer, 3-axis gyroscope and 3-axis magnetometer. We chose sensor fusion filters as Kalman filter and Direction Cosine Matrix (DCM) filter. We also construct sensor fusion data from each activity sensor data and perform classification by accuracy of AR using Naïve Bayes and SVM. According to the classification results, we observed that the DCM filter and the specific combination of the sensing axes are more effective for AR in wearable devices while classifying walking, running, ascending and descending.

Keywords: accelerometer, activity recognition, directiona cosine matrix filter, gyroscope, Kalman filter, magnetometer

Procedia PDF Downloads 333
6517 Facial Emotion Recognition with Convolutional Neural Network Based Architecture

Authors: Koray U. Erbas

Abstract:

Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.

Keywords: convolutional neural network, deep learning, deep learning based FER, facial emotion recognition

Procedia PDF Downloads 275
6516 Random Subspace Neural Classifier for Meteor Recognition in the Night Sky

Authors: Carlos Vera, Tetyana Baydyk, Ernst Kussul, Graciela Velasco, Miguel Aparicio

Abstract:

This article describes the Random Subspace Neural Classifier (RSC) for the recognition of meteors in the night sky. We used images of meteors entering the atmosphere at night between 8:00 p.m.-5: 00 a.m. The objective of this project is to classify meteor and star images (with stars as the image background). The monitoring of the sky and the classification of meteors are made for future applications by scientists. The image database was collected from different websites. We worked with RGB-type images with dimensions of 220x220 pixels stored in the BitMap Protocol (BMP) format. Subsequent window scanning and processing were carried out for each image. The scan window where the characteristics were extracted had the size of 20x20 pixels with a scanning step size of 10 pixels. Brightness, contrast and contour orientation histograms were used as inputs for the RSC. The RSC worked with two classes and classified into: 1) with meteors and 2) without meteors. Different tests were carried out by varying the number of training cycles and the number of images for training and recognition. The percentage error for the neural classifier was calculated. The results show a good RSC classifier response with 89% correct recognition. The results of these experiments are presented and discussed.

Keywords: contour orientation histogram, meteors, night sky, RSC neural classifier, stars

Procedia PDF Downloads 140
6515 Influence of Bacterial Motility on Biofilm Formation

Authors: Li Cheng, Zhang Yilei, Cohen Yehuda

Abstract:

Two motility mechanisms were introduced into iDynoMiCs software, which adopts an individual-based modeling method. Based on the new capabilities, along with the pressure motility developed before, influence of bacterial motility on biofilm formation was studied. Simulation results were evaluated both qualitatively through 3D structure inspections and quantitatively by parameter characterizations. It was showed that twitching motility increased the biofilm surface irregularity probably due to movement of cells towards higher nutrient concentration location whereas free motility, on the other hand, could make biofilms flatter and smoother relatively. Pressure motility showed no significant influence in this study.

Keywords: iDynoMics, biofilm structure, bacterial motility, motility mechanisms

Procedia PDF Downloads 390
6514 Portable Glove Controlled Video Game for Hand Rehabilitation

Authors: Vinesh Janarthanan, Mohammad H. Rahman

Abstract:

There are numerous neurological conditions that may result in a loss of motor function. Such conditions may include cerebral palsy, Parkinson’s disease, stroke or multiple sclerosis. Due to impaired motor function, specifically in the hand and arm, living independently becomes tremendously more difficult. Rehabilitation programs are the main method to treat these kinds of disabled individuals. However, these programs require longtime commitment from the clinicians/therapists, demand person to person caring, and typically the treatment duration is usually very long. Aside from the treatment received from the therapist, the continuation of neuroplasticity at home is essential to maximizing development and restoring the biological function. To contribute in this area, we have researched and developed a portable and comfortable hand glove for fine motor skills rehabilitation. The glove provides interactive home-based therapy to engage the patient with simple games. The key to this treatment is the repetition of moving the hand and being capable of positioning the hand in various ways.

Keywords: home based, wearable sensors, glove, rehabilitation, motor function, video games

Procedia PDF Downloads 148
6513 SAMRA: Dataset in Al-Soudani Arabic Maghrebi Script for Recognition of Arabic Ancient Words Handwritten

Authors: Sidi Ahmed Maouloud, Cheikh Ba

Abstract:

Much of West Africa’s cultural heritage is written in the Al-Soudani Arabic script, which was widely used in West Africa before the time of European colonization. This Al-Soudani Arabic script is an African version of the Maghrebi script, in particular, the Al-Mebssout script. However, the local African qualities were incorporated into the Al-Soudani script in a way that gave it a unique African diversity and character. Despite the existence of several Arabic datasets in Oriental script, allowing for the analysis, layout, and recognition of texts written in these calligraphies, many Arabic scripts and written traditions remain understudied. In this paper, we present a dataset of words from Al-Soudani calligraphy scripts. This dataset consists of 100 images selected from three different manuscripts written in Al-Soudani Arabic script by different copyists. The primary source for this database was the libraries of Boston University and Cambridge University. This dataset highlights the unique characteristics of the Al-Soudani Arabic script as well as the new challenges it presents in terms of automatic word recognition of Arabic manuscripts. An HTR system based on a hybrid ANN (CRNN-CTC) is also proposed to test this dataset. SAMRA is a dataset of annotated Arabic manuscript words in the Al-Soudani script that can help researchers automatically recognize and analyze manuscript words written in this script.

Keywords: dataset, CRNN-CTC, handwritten words recognition, Al-Soudani Arabic script, HTR, manuscripts

Procedia PDF Downloads 131
6512 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.

Keywords: human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, prior distribution and approximate posterior distribution, KTH dataset

Procedia PDF Downloads 355
6511 Multilingual and Ideological Graffiti in Palestine

Authors: Olivia Martina Dalla Torre

Abstract:

The aim of this paper is to describe and analyse some urban writings that emerge in politically disputed areas, namely the Occupied Palestinian Territories, and more specifically in Deheishe refugee camp. These graffiti are visible on the walls of houses, all around the camp, and they convey messages of protest but also of hope or claim about the complex political situation in the occupied territories. These graffiti can be then interpreted as political and politicized semiotic resources. In this paper, after having introduced the political situation of the Palestinian Territories in a historical perspective, we will question a specific dimension of these writings, i.e., their multilingual and ideological aspect. To do this, we will focus on ethnographic fieldwork on Deheishe refugee camp and we will draw on the theoretical framework of the critical communication studies which assert that language practices are not neutral and that they need to be understood through the lens of the historical context of production, crossing space and time. By analysing the relationship between the discursive constructions of the messages and the languages used, we will point out some of the possible reasons and functions of the presence of these multilingual discursive productions. We will show that if, on the one hand, these graffiti confirm the huge presence of Western actors in the region, on the other hand, they attest the presence of an international movement against the Israeli occupation and against other struggles as well. Concluding, we will argue that multilingualism certainly represents a diversification of the linguistic landscape and that it gives a transnational and political dimension to the graffiti.

Keywords: communication, graffiti, multilingualism, Palestine, transnationalism

Procedia PDF Downloads 184
6510 The Use of the Limit Cycles of Dynamic Systems for Formation of Program Trajectories of Points Feet of the Anthropomorphous Robot

Authors: A. S. Gorobtsov, A. S. Polyanina, A. E. Andreev

Abstract:

The movement of points feet of the anthropomorphous robot in space occurs along some stable trajectory of a known form. A large number of modifications to the methods of control of biped robots indicate the fundamental complexity of the problem of stability of the program trajectory and, consequently, the stability of the control for the deviation for this trajectory. Existing gait generators use piecewise interpolation of program trajectories. This leads to jumps in the acceleration at the boundaries of sites. Another interpolation can be realized using differential equations with fractional derivatives. In work, the approach to synthesis of generators of program trajectories is considered. The resulting system of nonlinear differential equations describes a smooth trajectory of movement having rectilinear sites. The method is based on the theory of an asymptotic stability of invariant sets. The stability of such systems in the area of localization of oscillatory processes is investigated. The boundary of the area is a bounded closed surface. In the corresponding subspaces of the oscillatory circuits, the resulting stable limit cycles are curves having rectilinear sites. The solution of the problem is carried out by means of synthesis of a set of the continuous smooth controls with feedback. The necessary geometry of closed trajectories of movement is obtained due to the introduction of high-order nonlinearities in the control of stabilization systems. The offered method was used for the generation of trajectories of movement of point’s feet of the anthropomorphous robot. The synthesis of the robot's program movement was carried out by means of the inverse method.

Keywords: control, limits cycle, robot, stability

Procedia PDF Downloads 332
6509 Non-intrusive Hand Control of Drone Using an Inexpensive and Streamlined Convolutional Neural Network Approach

Authors: Evan Lowhorn, Rocio Alba-Flores

Abstract:

The purpose of this work is to develop a method for classifying hand signals and using the output in a drone control algorithm. To achieve this, methods based on Convolutional Neural Networks (CNN) were applied. CNN's are a subset of deep learning, which allows grid-like inputs to be processed and passed through a neural network to be trained for classification. This type of neural network allows for classification via imaging, which is less intrusive than previous methods using biosensors, such as EMG sensors. Classification CNN's operate purely from the pixel values in an image; therefore they can be used without additional exteroceptive sensors. A development bench was constructed using a desktop computer connected to a high-definition webcam mounted on a scissor arm. This allowed the camera to be pointed downwards at the desk to provide a constant solid background for the dataset and a clear detection area for the user. A MATLAB script was created to automate dataset image capture at the development bench and save the images to the desktop. This allowed the user to create their own dataset of 12,000 images within three hours. These images were evenly distributed among seven classes. The defined classes include forward, backward, left, right, idle, and land. The drone has a popular flip function which was also included as an additional class. To simplify control, the corresponding hand signals chosen were the numerical hand signs for one through five for movements, a fist for land, and the universal “ok” sign for the flip command. Transfer learning with PyTorch (Python) was performed using a pre-trained 18-layer residual learning network (ResNet-18) to retrain the network for custom classification. An algorithm was created to interpret the classification and send encoded messages to a Ryze Tello drone over its 2.4 GHz Wi-Fi connection. The drone’s movements were performed in half-meter distance increments at a constant speed. When combined with the drone control algorithm, the classification performed as desired with negligible latency when compared to the delay in the drone’s movement commands.

Keywords: classification, computer vision, convolutional neural networks, drone control

Procedia PDF Downloads 212
6508 Labyrinthine Venous Vasculature Ablation for the Treatment of Sudden Sensorineural Hearing Loss: Two Case Reports

Authors: Kritin K. Verma, Bailey Duhon, Patrick W. Slater

Abstract:

Objective: To introduce the possible etiological role that the Labyrinthine Venous Vasculature (LVV) has in venous congestion of the cochlear system in Sudden Sensorineural Hearing Loss (SSNHL) patients. Patients: Two patients (62-year-old female, 50-year-old male) presented within twenty-four hours of onset of SSNHL. Intervention: Following failed conservative and salvage techniques, the patients underwent ablation of the labyrinthine venous vasculature ipsilateral to the side of the loss. Main Outcome Measures: Improvement of sudden SSNHL based on an improvement of pure-tone audiometric (PTA) low-tone scoring averages at 250, 500, and 1000 Hz. Word recognition scoring using the NU-6 word list was used to assess quality of life. Results: Case 1 experienced a 51.7 dB increase in low-tone PTA and an increased word recognition scoring of 90%. Case 2 experienced a 33.4 dB increase in low-tone PTA and 60% increase in word recognition score. No major complications noted. Conclusion: Two patients experienced significant improvement in their low-tone PTA and word recognition scoring following the labyrinthine venous vasculature ablation.

Keywords: case report, sudden sensorineural hearing loss, venous congestion, vascular ablation

Procedia PDF Downloads 136
6507 Peculiar Implications of Self Perceived Identity as Policy Tool for Transgender Recognition in Pakistan

Authors: Hamza Iftikhar

Abstract:

The research study focuses on the transgender community's gender recognition challenges. It is one of the issues for the transgender community, interacting directly with the difficulties of gender identity and the lives of these people who are facing gender disapproval from society. This study investigates the major flaws of the transgender act. The study's goal is to look into the strange implications of self-perceived identity as a policy tool for transgender recognition. This policy tool jeopardises the rights of Pakistan's indigenous gender-variant people as well as the country's legal and social framework. Qualitative research using semi structured interviews will be carried out. This study proposes developing a scheme for mainstreaming gender-variant people on the basis of the Pakistani Constitution, Supreme Court guidelines, and internationally recognised principles of law. This would necessitate a thorough review of current law using a new approach and reference point.

Keywords: transgender act, self perceived identity, gender variant, policy tool

Procedia PDF Downloads 117
6506 The Research of Hand-Grip Strength for Adults with Intellectual Disability

Authors: Haiu-Lan Chin, Yu-Fen Hsiao, Hua-Ying Chuang, Wei Lee

Abstract:

An adult with intellectual disability generally has insufficient physical activity which is an important factor leading to premature weakness. Studies in recent years on frailty syndrome have accumulated substantial data about indicators of human aging, including unintentional weight loss, self-reported exhaustion, weakness, slow walking speed, and low physical activity. Of these indicators, hand-grip strength can be seen as a predictor of mortality, disability, complications, and increased length of hospital stay. Hand-grip strength in fact provides a comprehensive overview of one’s vitality. The research is about the investigation on hand-grip strength of adults with intellectual disabilities in facilities, institutions and workshops. The participants are 197 male adults (M=39.09±12.85 years old), and 114 female ones (M=35.80±8.2 years old) so far. The aim of the study is to figure out the performance of their hand-grip strength, and initiate the setting of training on hand-grip strength in their daily life which will decrease the weakening on their physical condition. Test items include weight, bone density, basal metabolic rate (BMR), static body balance except hand-grip strength. Hand-grip strength was measured by a hand dynamometer and classified as normal group ( ≧ 30 kg for male and ≧ 20 kg for female) and weak group ( < 30 kg for male, < 20 kg for female)The analysis includes descriptive statistics, and the indicators of grip strength fo the adults with intellectual disability. Though the research is still ongoing and the participants are increasing, the data indicates: (1) The correlation between hand-grip strength and degree of the intellectual disability (p ≦. 001), basal metabolic rate (p ≦ .001), and static body balance (p ≦ .01) as well. Nevertheless, there is no significant correlation between grip strength and basal metabolic rate which had been having significant correlation with hand-grip strength. (2) The difference between male and female subjects in hand-grip strength is significant, the hand-grip strength of male subjects (25.70±12.81 Kg) is much higher than female ones (16.30±8.89 Kg). Compared to the female counterparts, male participants indicate greater individual differences. And the proportion of weakness between male and female subjects is also different. (3) The regression indicates the main factors related to grip strength performance include degree of the intellectual disability, height, static body balance, training and weight sequentially. (4) There is significant difference on both hand-grip and static body balance between participants in facilities and workshops. The study supports the truth about the sex and gender differences in health. Nevertheless, the average hand-grip strength of left hand is higher than right hand in both male and female subjects. Moreover, 71.3% of male subjects and 64.2% of female subjects have better performance in their left hand-grip which is distinctive features especially in low degree of the intellectual disability.

Keywords: adult with intellectual disability, frailty syndrome, grip strength, physical condition

Procedia PDF Downloads 179
6505 COVID-19, The Black Lives Matter Movement, and Race-Based Traumatic Stress

Authors: Claire Stafford, John Lewis, Ashley Stripling

Abstract:

The aim of this study is to examine the relationship between both the independent effects and intersection between COVID-19 and the Black Lives Matter (BLM) movement simultaneously to investigate how the two events have coincided with impacting race-based traumatic stress in Black Americans. Four groups will be surveyed: Black Americans who participated in BLM-related activism, Black Americans who did not participate in BLM-related activism, White Americans who participated in BLM-related activism, and White Americans who did not participate in BLM-related activism. Participants are between the ages of 30 and 50. All participants will be administered a Brief Trauma Questionnaire with an additional question asking whether or not they have ever tested positive for COVID-19. Based on prior findings, it is expected that Black Americans will have significantly higher levels of COVID-19 contraction, with Black Americans who participated in BLM-related activism having the highest levels of contractions. Additionally, Black Americans who participated in BLM-related activism will likely have the highest self-reported rates of traumatic experiences due to the compounding effect of both the pandemic and the BLM movement. With the development of the COVID-19 pandemic, stark racial disparities between Black and White Americans have become more defined. Compared to White Americans, Black Americans have more COVID-19-related cases and hospitalizations. Researchers must investigate and attempt to mitigate these disparities while simultaneously critically questioning the structure of our national health care system and how it serves our marginalized communities. Further, a critical gaze must be directed at the geopolitical climate of the United States in order to holistically look at how both the COVID-19 pandemic and the Black Lives Matter (BLM) movement have interacted and impacted race-based stress and trauma in African Americans.

Keywords: COVID-19, black lives matter movement, race-based traumatic stress, activism

Procedia PDF Downloads 100
6504 Multi-Plane Wrist Movement: Pathomechanics and Design of a 3D-Printed Splint

Authors: Sigal Portnoy, Yael Kaufman-Cohen, Yafa Levanon

Abstract:

Introduction: Rehabilitation following wrist fractures often includes exercising flexion-extension movements with a dynamic splint. However, during daily activities, we combine most of our wrist movements with radial and ulnar deviations. Also, the multi-plane wrist motion, named the ‘dart throw motion’ (DTM), was found to be a more stable motion in healthy individuals, in term of the motion of the proximal carpal bones, compared with sagittal wrist motion. The aim of this study was therefore to explore the pathomechanics of the wrist in a common multi-plane movement pattern (DTM) and design a novel splint for rehabilitation following distal radius fractures. Methods: First, a multi-axis electro-goniometer was used to quantify the plane angle of motion of the dominant and non-dominant wrists during various activities, e.g. drinking from a glass of water and answering a phone in 43 healthy individuals. The following protocols were then implemented with a population following distal radius fracture. Two dynamic scans were performed, one of the sagittal wrist motion and DTM, in a 3T magnetic resonance imaging (MRI) device, bilaterally. The scaphoid and lunate carpal bones, as well as the surface of the distal radius, were manually-segmented in SolidWorks and the angles of motion of the scaphoid and lunate bones were calculated. Subsequently, a patient-specific splint was designed using 3D scans of the hand. The brace design comprises of a proximal attachment to the arm and a distal envelope of the palm. An axle with two wheels is attached to the proximal part. Two wires attach the proximal part with the medial-palmar and lateral-ventral aspects of the distal part: when the wrist extends, the first wire is released and the second wire is strained towards the radius. The opposite occurs when the wrist flexes. The splint was attached to the wrist using Velcro and constrained the wrist movement to the desired calculated multi-plane of motion. Results: No significant differences were found between the multi-plane angles of the dominant and non-dominant wrists. The most common daily activities occurred at a plane angle of approximately 20° to 45° from the sagittal plane and the MRI studies show individual angles of the plane of motion. The printed splint fitted the wrist of the subjects and constricted movement to the desired multi-plane of motion. Hooks were inserted on each part to allow the addition of springs or rubber bands for resistance training towards muscle strengthening in the rehabilitation setting. Conclusions: It has been hypothesized that activation of the wrist in a multi-plane movement pattern following distal radius fractures will accelerate the recovery of the patient. Our results show that this motion can be determined from either the dominant or non-dominant wrists. The design of the patient-specific dynamic splint is the first step towards assessing whether splinting to induce combined movement is beneficial to the rehabilitation process, compared to conventional treatment. The evaluation of the clinical benefits of this method, compared to conventional rehabilitation methods following wrist fracture, are a part of a PhD work, currently conducted by an occupational therapist.

Keywords: distal radius fracture, rehabilitation, dynamic magnetic resonance imaging, dart throw motion

Procedia PDF Downloads 299
6503 Recognition by the Voice and Speech Features of the Emotional State of Children by Adults and Automatically

Authors: Elena E. Lyakso, Olga V. Frolova, Yuri N. Matveev, Aleksey S. Grigorev, Alexander S. Nikolaev, Viktor A. Gorodnyi

Abstract:

The study of the children’s emotional sphere depending on age and psychoneurological state is of great importance for the design of educational programs for children and their social adaptation. Atypical development may be accompanied by violations or specificities of the emotional sphere. To study characteristics of the emotional state reflection in the voice and speech features of children, the perceptual study with the participation of adults and the automatic recognition of speech were conducted. Speech of children with typical development (TD), with Down syndrome (DS), and with autism spectrum disorders (ASD) aged 6-12 years was recorded. To obtain emotional speech in children, model situations were created, including a dialogue between the child and the experimenter containing questions that can cause various emotional states in the child and playing with a standard set of toys. The questions and toys were selected, taking into account the child’s age, developmental characteristics, and speech skills. For the perceptual experiment by adults, test sequences containing speech material of 30 children: TD, DS, and ASD were created. The listeners were 100 adults (age 19.3 ± 2.3 years). The listeners were tasked with determining the children’s emotional state as “comfort – neutral – discomfort” while listening to the test material. Spectrographic analysis of speech signals was conducted. For automatic recognition of the emotional state, 6594 speech files containing speech material of children were prepared. Automatic recognition of three states, “comfort – neutral – discomfort,” was performed using automatically extracted from the set of acoustic features - the Geneva Minimalistic Acoustic Parameter Set (GeMAPS) and the extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS). The results showed that the emotional state is worse determined by the speech of TD children (comfort – 58% of correct answers, discomfort – 56%). Listeners better recognized discomfort in children with ASD and DS (78% of answers) than comfort (70% and 67%, respectively, for children with DS and ASD). The neutral state is better recognized by the speech of children with ASD (67%) than by the speech of children with DS (52%) and TD children (54%). According to the automatic recognition data using the acoustic feature set GeMAPSv01b, the accuracy of automatic recognition of emotional states for children with ASD is 0.687; children with DS – 0.725; TD children – 0.641. When using the acoustic feature set eGeMAPSv01b, the accuracy of automatic recognition of emotional states for children with ASD is 0.671; children with DS – 0.717; TD children – 0.631. The use of different models showed similar results, with better recognition of emotional states by the speech of children with DS than by the speech of children with ASD. The state of comfort is automatically determined better by the speech of TD children (precision – 0.546) and children with ASD (0.523), discomfort – children with DS (0.504). The data on the specificities of recognition by adults of the children’s emotional state by their speech may be used in recruitment for working with children with atypical development. Automatic recognition data can be used to create alternative communication systems and automatic human-computer interfaces for social-emotional learning. Acknowledgment: This work was financially supported by the Russian Science Foundation (project 18-18-00063).

Keywords: autism spectrum disorders, automatic recognition of speech, child’s emotional speech, Down syndrome, perceptual experiment

Procedia PDF Downloads 190
6502 Sustaining the Mitochondrial Transcription Factor A in Sperm

Authors: Betty Anson

Abstract:

Researchers have found that mature sperm cells are not only devoid of mature MTDNA (mitochondrial DNA) but also lack a particular protein essential for DNA maintenance, known as mitochondrial transcription factor A, or TFAM (transcription factor A mitochondria). As a result, children get the DNA of certain important body functions only from their mothers. More experiments show that TFAM appears to burn out when it is used as a source of energy for sperm movement. This study investigates alternative sources of energy for sperm movement that could sustain the existence of TFAM.

Keywords: mItochondria, DNA, TFAM, sperm

Procedia PDF Downloads 77
6501 Study of Dermatoglyphics Pattern in Patient with Hypertension

Authors: Ajeevan Gautam, Gulam Anwer Khan, Pratibha Pokhrel

Abstract:

Introduction: Dermatoglyphics is the science which deals with the study of dermal ridge configuration on the digits, palms and soles. It is grooved by ridges and forms variety of configurations. The aim of the study was to identify dermal ridge patterns on fingertip of hypertensive patients and in normal population and to compare patterns among them. Methods: The subjects of the study were 130 hypertensives and 130 non-hypertensives cases of Kathmandu Valley aged between 40 to 80 years. Case history was recorded after consent finger prints were taken. Different parameters as whorl, loop, arch and composite patterns were studied and analysed. Result: It revealed, increased whorl pattern in hypertensive. It showed 65.69% whorl, 29.23% loop and 5.07% arch patterns in right hand of hypertensive people. In control, it was found to be 34.46% whorl, 58.15% loop and 5.38% arch patterns respectively. Similarly in left hand 63.69% whorl, 32% loop and 4.30% arch in hypertensive group. In control group it was 60.15% as loop, 35.69% as whorl and 15% as arch. Discussion: Based on findings of the result, it was concluded that the whorl, loop and arch patterns observed as 65.69%, 29.23% and 5.07% respectively in hypertensive cases in right hand. Similarly in left hand, it was found to be 4.30% as arch, 32% as loop and 63.69% as whorl patterns, but in normotensive subjects these patterns were recorded as 36.43%, 58.15%, 5.38% in right hand and 35.69%, 60.15%, 4.15% in left hand as whorl, loop and arch respectively.

Keywords: arch, dermatoglyphics, hypertension, loop, whorl

Procedia PDF Downloads 295
6500 An Insight into the Conformational Dynamics of Glycan through Molecular Dynamics Simulation

Authors: K. Veluraja

Abstract:

Glycan of glycolipids and glycoproteins is playing a significant role in living systems particularly in molecular recognition processes. Molecular recognition processes are attributed to their occurrence on the surface of the cell, sequential arrangement and type of sugar molecules present in the oligosaccharide structure and glyosidic linkage diversity (glycoinformatics) and conformational diversity (glycoconformatics). Molecular Dynamics Simulation study is a theoretical-cum-computational tool successfully utilized to establish glycoconformatics of glycan. The study on various oligosaccharides of glycan clearly indicates that oligosaccharides do exist in multiple conformational states and these conformational states arise due to the flexibility associated with a glycosidic torsional angle (φ,ψ) . As an example: a single disaccharide structure NeuNacα(2-3) Gal exists in three different conformational states due to the differences in the preferential value of glycosidic torsional angles (φ,ψ). Hence establishing three dimensional structural and conformational models for glycan (cartesian coordinates of every individual atoms of an oligosaccharide structure in a preferred conformation) is quite crucial to understand various molecular recognition processes such as glycan-toxin interaction and glycan-virus interaction. The gycoconformatics models obtained for various glycan through Molecular Dynamics Simulation stored in our 3DSDSCAR (3DSDSCAR.ORG) a public domain database and its utility value in understanding the molecular recognition processes and in drug design venture will be discussed.

Keywords: glycan, glycoconformatics, molecular dynamics simulation, oligosaccharide

Procedia PDF Downloads 138
6499 A Constructive Analysis of the Formation of LGBTQ Families: Where Utopia and Reality Meet

Authors: Panagiotis Pentaris

Abstract:

The issue of social and legal recognition of LGBTQ families is of high importance when exploring the possibility of a family. Of equal importance is the fact that both society and the individual contribute to the overall recognition of LGBTQ families. This paper is a conceptual discussion, by methodology, of both sides; it uses a method of constructive analysis to expound on this issue. This method’s aim is to broaden conceptual theory, and introduce a new relationship between concepts that were previously not associated by evidence. This exploration has found that LGBTQ realities from an international perspective may differ and both legal and social rights are critical toward self-consciousness and the formation of a family. This paper asserts that internalised and historic oppression of LGBTQ individuals, places them, not always and not in all places, in a disadvantageous position as far as engaging with the potential of forming a family goes. The paper concludes that lack of social recognition and internalised oppression are key barriers regarding LGBTQ families.

Keywords: family, gay, self-worth, LGBTQ, social rights

Procedia PDF Downloads 125
6498 Global Based Histogram for 3D Object Recognition

Authors: Somar Boubou, Tatsuo Narikiyo, Michihiro Kawanishi

Abstract:

In this work, we address the problem of 3D object recognition with depth sensors such as Kinect or Structure sensor. Compared with traditional approaches based on local descriptors, which depends on local information around the object key points, we propose a global features based descriptor. Proposed descriptor, which we name as Differential Histogram of Normal Vectors (DHONV), is designed particularly to capture the surface geometric characteristics of the 3D objects represented by depth images. We describe the 3D surface of an object in each frame using a 2D spatial histogram capturing the normalized distribution of differential angles of the surface normal vectors. The object recognition experiments on the benchmark RGB-D object dataset and a self-collected dataset show that our proposed descriptor outperforms two others descriptors based on spin-images and histogram of normal vectors with linear-SVM classifier.

Keywords: vision in control, robotics, histogram, differential histogram of normal vectors

Procedia PDF Downloads 280
6497 Speech Emotion Recognition with Bi-GRU and Self-Attention based Feature Representation

Authors: Bubai Maji, Monorama Swain

Abstract:

Speech is considered an essential and most natural medium for the interaction between machines and humans. However, extracting effective features for speech emotion recognition (SER) is remains challenging. The present studies show that the temporal information captured but high-level temporal-feature learning is yet to be investigated. In this paper, we present an efficient novel method using the Self-attention (SA) mechanism in a combination of Convolutional Neural Network (CNN) and Bi-directional Gated Recurrent Unit (Bi-GRU) network to learn high-level temporal-feature. In order to further enhance the representation of the high-level temporal-feature, we integrate a Bi-GRU output with learnable weights features by SA, and improve the performance. We evaluate our proposed method on our created SITB-OSED and IEMOCAP databases. We report that the experimental results of our proposed method achieve state-of-the-art performance on both databases.

Keywords: Bi-GRU, 1D-CNNs, self-attention, speech emotion recognition

Procedia PDF Downloads 114