Search results for: grey clustering
457 Design of a Fuzzy Luenberger Observer for Fault Nonlinear System
Authors: Mounir Bekaik, Messaoud Ramdani
Abstract:
We present in this work a new technique of stabilization for fault nonlinear systems. The approach we adopt focus on a fuzzy Luenverger observer. The T-S approximation of the nonlinear observer is based on fuzzy C-Means clustering algorithm to find local linear subsystems. The MOESP identification approach was applied to design an empirical model describing the subsystems state variables. The gain of the observer is given by the minimization of the estimation error through Lyapunov-krasovskii functional and LMI approach. We consider a three tank hydraulic system for an illustrative example.Keywords: nonlinear system, fuzzy, faults, TS, Lyapunov-Krasovskii, observer
Procedia PDF Downloads 332456 Minimization of Denial of Services Attacks in Vehicular Adhoc Networking by Applying Different Constraints
Authors: Amjad Khan
Abstract:
The security of Vehicular ad hoc networking is of great importance as it involves serious life threats. Thus to provide secure communication amongst Vehicles on road, the conventional security system is not enough. It is necessary to prevent the network resources from wastage and give them protection against malicious nodes so that to ensure the data bandwidth availability to the legitimate nodes of the network. This work is related to provide a non conventional security system by introducing some constraints to minimize the DoS (Denial of services) especially data and bandwidth. The data packets received by a node in the network will pass through a number of tests and if any of the test fails, the node will drop those data packets and will not forward it anymore. Also if a node claims to be the nearest node for forwarding emergency messages then the sender can effectively identify the true or false status of the claim by using these constraints. Consequently the DoS(Denial of Services) attack is minimized by the instant availability of data without wasting the network resources.Keywords: black hole attack, grey hole attack, intransient traffic tempering, networking
Procedia PDF Downloads 284455 Cluster Analysis and Benchmarking for Performance Optimization of a Pyrochlore Processing Unit
Authors: Ana C. R. P. Ferreira, Adriano H. P. Pereira
Abstract:
Given the frequent variation of mineral properties throughout the Araxá pyrochlore deposit, even if a good homogenization work has been carried out before feeding the processing plants, an operation with quality and performance’s high variety standard is expected. These results could be improved and standardized if the blend composition parameters that most influence the processing route are determined, and then the types of raw materials are grouped by them, finally presenting a great reference with operational settings for each group. Associating the physical and chemical parameters of a unit operation through benchmarking or even an optimal reference of metallurgical recovery and product quality reflects in the reduction of the production costs, optimization of the mineral resource, and guarantee of greater stability in the subsequent processes of the production chain that uses the mineral of interest. Conducting a comprehensive exploratory data analysis to identify which characteristics of the ore are most relevant to the process route, associated with the use of Machine Learning algorithms for grouping the raw material (ore) and associating these with reference variables in the process’ benchmark is a reasonable alternative for the standardization and improvement of mineral processing units. Clustering methods through Decision Tree and K-Means were employed, associated with algorithms based on the theory of benchmarking, with criteria defined by the process team in order to reference the best adjustments for processing the ore piles of each cluster. A clean user interface was created to obtain the outputs of the created algorithm. The results were measured through the average time of adjustment and stabilization of the process after a new pile of homogenized ore enters the plant, as well as the average time needed to achieve the best processing result. Direct gains from the metallurgical recovery of the process were also measured. The results were promising, with a reduction in the adjustment time and stabilization when starting the processing of a new ore pile, as well as reaching the benchmark. Also noteworthy are the gains in metallurgical recovery, which reflect a significant saving in ore consumption and a consequent reduction in production costs, hence a more rational use of the tailings dams and life optimization of the mineral deposit.Keywords: mineral clustering, machine learning, process optimization, pyrochlore processing
Procedia PDF Downloads 143454 Using Two-Mode Network to Access the Connections of Film Festivals
Authors: Qiankun Zhong
Abstract:
In a global cultural context, film festival awards become authorities to define the aesthetic value of films. To study which genres and producing countries are valued by different film festivals and how those evaluations interact with each other, this research explored the interactions between the film festivals through their selection of movies and the factors that lead to the tendency of film festivals to nominate the same movies. To do this, the author employed a two-mode network on the movies that won the highest awards at five international film festivals with the highest attendance in the past ten years (the Venice Film Festival, the Cannes Film Festival, the Toronto International Film Festival, Sundance Film Festival, and the Berlin International Film Festival) and the film festivals that nominated those movies. The title, genre, producing country and language of 50 movies, and the range (regional, national or international) and organizing country or area of 129 film festivals were collected. These created networks connected by nominating the same films and awarding the same movies. The author then assessed the density and centrality of these networks to answer the question: What are the film festivals that tend to have more shared values with other festivals? Based on the Eigenvector centrality of the two-mode network, Palm Springs, Robert Festival, Toronto, Chicago, and San Sebastian are the festivals that tend to nominate commonly appreciated movies. In contrast, Black Movie Film Festival has the unique value of generally not sharing nominations with other film festivals. A homophily test was applied to access the clustering effects of film and film festivals. The result showed that movie genres (E-I index=0.55) and geographic location (E-I index=0.35) are possible indicators of film festival clustering. A blockmodel was also created to examine the structural roles of the film festivals and their meaning in real-world context. By analyzing the same blocks with film festival attributes, it was identified that film festivals either organized in the same area, with the same history, or with the same attitude on independent films would occupy the same structural roles in the network. Through the interpretation of the blocks, language was identified as an indicator that contributes to the role position of a film festival. Comparing the result of blockmodeling in the different periods, it is seen that international film festivals contrast with the Hollywood industry’s dominant value. The structural role dynamics provide evidence for a multi-value film festival network.Keywords: film festivals, film studies, media industry studies, network analysis
Procedia PDF Downloads 316453 Government and Non-Government Policy Responses to Anti-Trafficking Initiatives: A Discursive Analysis of the Construction of the Problem of Human Trafficking in Australia and Thailand
Authors: Jessica J. Gillies
Abstract:
Human trafficking is a gross violation of human rights and thus invokes a strong response particularly throughout the global academic community. A longstanding tension throughout academic debate remains the question of a relationship between anti-trafficking policy and sex industry policy. In Australia, over the previous decade, many human trafficking investigations have related to the sexual exploitation of female victims, and convictions in Australia to date have often been for trafficking women from Thailand. Sex industry policy in Australia varies between states, providing a rich contextual landscape in which to explore this relationship. The purpose of this study was to deconstruct how meaning is constructed surrounding human trafficking throughout these supposedly related political discourses in Australia. In order to analyse the discursive construction of the problem of human trafficking in relation to sex industry policy, a discursive analysis was conducted. The methodology of the study was informed by a feminist theoretical framework, and included academic sources and grey literature such as organisational reports and policy statements regarding anti-trafficking initiatives. The scope of grey literature was restricted to Australian and Thai government and non-government organisation texts. The chosen methodology facilitated a qualitative exploration of the influence of feminist discourses over political discourse in this arena. The discursive analysis exposed clusters of active feminist debates interacting with sex industry policy within individual states throughout Australia. Additionally, strongly opposed sex industry perspectives were uncovered within these competing feminist frameworks. While the influence these groups may exert over policy differs, the debate constructs a discursive relationship between human trafficking and sex industry policy. This is problematic because anti-trafficking policy is drawn to some extent from this discursive construction, therefore affecting support services for survivors of human trafficking. The discursive analysis further revealed misalignment between government and non-government priorities, Australian government anti-trafficking policy appears to favour criminal justice priorities; whereas non-government settings preference human rights protections. Criminal justice priorities invoke questions of legitimacy, leading to strict eligibility policy for survivors seeking support following exploitation in the Australian sex industry, undermining women’s agency and human rights. In practice, these two main findings demonstrate a construction of policy that has serious outcomes on typical survivors in Australia following a lived experience of human trafficking for the purpose of sexual exploitation. The discourses constructed by conflicting feminist arguments influence political discourses throughout Australia. The application of a feminist theoretical framework to the discursive analysis of the problem of human trafficking is unique to this study. The study has exposed a longstanding and unresolved feminist debate that has filtered throughout anti-trafficking political discourse. This study illuminates the problematic construction of anti-trafficking policy, and the implications in practice on survivor support services. Australia has received international criticism for the focus on criminal justice rather than human rights throughout anti-trafficking policy discourse. The outcome of this study has the potential to inform future language and constructive conversations contributing to knowledge around how policy effects survivors in the post trafficking experience.Keywords: Australia, discursive analysis, government, human trafficking, non-government, Thailand
Procedia PDF Downloads 119452 Transaction Costs in Institutional Environment and Entry Mode Choice
Authors: K. D. Mroczek
Abstract:
In the study presented institutional context is discussed in terms of companies’ entry mode choice. In contrary to many previous analyses, instead of using one or two aggregated variables, a set of eleven determinants is used to establish equity and non-equity internationalization friendly conditions. Based on secondary data, 140 countries are analysed and grouped into clusters revealing similar framework. The range of the economies explored is wide as it covers all regions distinguished by The World Bank. The results can prove a useful alternative for operationalization of institutional variables in further research concerning entry modes or strategic management in international markets.Keywords: clustering, entry mode choice, institutional environment, transaction costs
Procedia PDF Downloads 269451 Sky Farming: The Alternative Concept of Green Building Using Vertical Landscape Model in Urban Area as an Effort to Achieve Sustainable Development
Authors: Nadiah Yola Putri, Nesia Putri Sharfina, Traviata Prakarti
Abstract:
This paper is a literature review presented descriptively to review the concept of green building to face the challenge of sustainable development and food in urban areas. In this paper, researchers initiated the concept of green building with sky farming method. Sky farming use vertical landscape system in order to realizing food self-sufficient green city. Sky farming relying on plantings and irrigation system efficiency in the building which is adopted the principles of green building. Planting system is done by applying hydroponic plants with Nutrient Film Technique (NFT) using energy source of solar cell and grey water from the processing of waste treatment plant. The application of sky farming in urban areas can be a recommendation for the design of environmental-friendly construction. In order to keep the land and distance efficiency, this system is a futuristic idea that would be the connector of human civilization in the future.Keywords: green building, urban area, sky farming, vertical landscape
Procedia PDF Downloads 361450 A Comparative Study of k-NN and MLP-NN Classifiers Using GA-kNN Based Feature Selection Method for Wood Recognition System
Authors: Uswah Khairuddin, Rubiyah Yusof, Nenny Ruthfalydia Rosli
Abstract:
This paper presents a comparative study between k-Nearest Neighbour (k-NN) and Multi-Layer Perceptron Neural Network (MLP-NN) classifier using Genetic Algorithm (GA) as feature selector for wood recognition system. The features have been extracted from the images using Grey Level Co-Occurrence Matrix (GLCM). The use of GA based feature selection is mainly to ensure that the database used for training the features for the wood species pattern classifier consists of only optimized features. The feature selection process is aimed at selecting only the most discriminating features of the wood species to reduce the confusion for the pattern classifier. This feature selection approach maintains the ‘good’ features that minimizes the inter-class distance and maximizes the intra-class distance. Wrapper GA is used with k-NN classifier as fitness evaluator (GA-kNN). The results shows that k-NN is the best choice of classifier because it uses a very simple distance calculation algorithm and classification tasks can be done in a short time with good classification accuracy.Keywords: feature selection, genetic algorithm, optimization, wood recognition system
Procedia PDF Downloads 545449 The Use of Artificial Intelligence in the Prevention of Micro and Macrovascular Complications in Type Diabetic Patients in Low and Middle-Income Countries
Authors: Ebere Ellison Obisike, Justina N. Adalikwu-Obisike
Abstract:
Artificial intelligence (AI) is progressively transforming health and social care. With the rapid invention of various electronic devices, machine learning, and computing systems, the use of AI istraversing many health and social care practices. In this systematic review of journal and grey literature, this study explores how the applications of AI might promote the prevention of micro and macrovascular complications in type 1 diabetic patients. This review focuses on the use of a digitized blood glucose meter and the application of insulin pumps for the effective management of type 1 diabetes in low and middle-income countries. It is projected that the applications of AI may assist individuals with type 1 diabetes to monitor and control their blood glucose level and prevent the early onset of micro and macrovascular complications.Keywords: artificial intelligence, blood glucose meter, insulin pump, low and middle-income countries, micro and macrovascular complications, type 1 diabetes
Procedia PDF Downloads 196448 Topological Analyses of Unstructured Peer to Peer Systems: A Survey
Authors: Hend Alrasheed
Abstract:
Due to their different properties that have led to avoid several limitations of classic client/server systems, there has been a great interest in the development and the improvement of different peer to peer systems. Understanding the properties of complex peer to peer networks is essential for their future improvements. It was shown that the performances of peer to peer protocols are directly related to their underlying topologies. Therefore, multiple efforts have analyzed the topologies of different peer to peer systems. This study presents an overview of major findings of close experimental analyses to different topologies of three unstructured peer to peer systems: BitTorrent, Gnutella, and FreeNet.Keywords: peer to peer networks, network topology, graph diameter, clustering coefficient, small-world property, random graph, degree distribution
Procedia PDF Downloads 381447 Cluster-Based Multi-Path Routing Algorithm in Wireless Sensor Networks
Authors: Si-Gwan Kim
Abstract:
Small-size and low-power sensors with sensing, signal processing and wireless communication capabilities is suitable for the wireless sensor networks. Due to the limited resources and battery constraints, complex routing algorithms used for the ad-hoc networks cannot be employed in sensor networks. In this paper, we propose node-disjoint multi-path hexagon-based routing algorithms in wireless sensor networks. We suggest the details of the algorithm and compare it with other works. Simulation results show that the proposed scheme achieves better performance in terms of efficiency and message delivery ratio.Keywords: clustering, multi-path, routing protocol, sensor network
Procedia PDF Downloads 403446 Orphan Node Inclusion Protocol for Wireless Sensor Network
Authors: Sandeep Singh Waraich
Abstract:
Wireless sensor network (WSN ) consists of a large number of sensor nodes. The disparity in their energy consumption usually lead to the loss of equilibrium in wireless sensor network which may further results in an energy hole problem in wireless network. In this paper, we have considered the inclusion of orphan nodes which usually remain unutilized as intermediate nodes in multi-hop routing. The Orphan Node Inclusion (ONI) Protocol lets the cluster member to bring the orphan nodes into their clusters, thereby saving important resources and increasing network lifetime in critical applications of WSN.Keywords: wireless sensor network, orphan node, clustering, ONI protocol
Procedia PDF Downloads 420445 Factors Affecting Cesarean Section among Women in Qatar Using Multiple Indicator Cluster Survey Database
Authors: Sahar Elsaleh, Ghada Farhat, Shaikha Al-Derham, Fasih Alam
Abstract:
Background: Cesarean section (CS) delivery is one of the major concerns both in developing and developed countries. The rate of CS deliveries are on the rise globally, and especially in Qatar. Many socio-economic, demographic, clinical and institutional factors play an important role for cesarean sections. This study aims to investigate factors affecting the prevalence of CS among women in Qatar using the UNICEF’s Multiple Indicator Cluster Survey (MICS) 2012 database. Methods: The study has focused on the women’s questionnaire of the MICS, which was successfully distributed to 5699 participants. Following study inclusion and exclusion criteria, a final sample of 761 women aged 19- 49 years who had at least one delivery of giving birth in their lifetime before the survey were included. A number of socio-economic, demographic, clinical and institutional factors, identified through literature review and available in the data, were considered for the analyses. Bivariate and multivariate logistic regression models, along with a multi-level modeling to investigate clustering effect, were undertaken to identify the factors that affect CS prevalence in Qatar. Results: From the bivariate analyses the study has shown that, a number of categorical factors are statistically significantly associated with the dependent variable (CS). When identifying the factors from a multivariate logistic regression, the study found that only three categorical factors -‘age of women’, ‘place at delivery’ and ‘baby weight’ appeared to be significantly affecting the CS among women in Qatar. Although the MICS dataset is based on a cluster survey, an exploratory multi-level analysis did not show any clustering effect, i.e. no significant variation in results at higher level (households), suggesting that all analyses at lower level (individual respondent) are valid without any significant bias in results. Conclusion: The study found a statistically significant association between the dependent variable (CS delivery) and age of women, frequency of TV watching, assistance at birth and place of birth. These results need to be interpreted cautiously; however, it can be used as evidence-base for further research on cesarean section delivery in Qatar.Keywords: cesarean section, factors, multiple indicator cluster survey, MICS database, Qatar
Procedia PDF Downloads 116444 Enhancement of X-Rays Images Intensity Using Pixel Values Adjustments Technique
Authors: Yousif Mohamed Y. Abdallah, Razan Manofely, Rajab M. Ben Yousef
Abstract:
X-Ray images are very popular as a first tool for diagnosis. Automating the process of analysis of such images is important in order to help physician procedures. In this practice, teeth segmentation from the radiographic images and feature extraction are essential steps. The main objective of this study was to study correction preprocessing of x-rays images using local adaptive filters in order to evaluate contrast enhancement pattern in different x-rays images such as grey color and to evaluate the usage of new nonlinear approach for contrast enhancement of soft tissues in x-rays images. The data analyzed by using MatLab program to enhance the contrast within the soft tissues, the gray levels in both enhanced and unenhanced images and noise variance. The main techniques of enhancement used in this study were contrast enhancement filtering and deblurring images using the blind deconvolution algorithm. In this paper, prominent constraints are firstly preservation of image's overall look; secondly, preservation of the diagnostic content in the image and thirdly detection of small low contrast details in diagnostic content of the image.Keywords: enhancement, x-rays, pixel intensity values, MatLab
Procedia PDF Downloads 485443 Structuring Highly Iterative Product Development Projects by Using Agile-Indicators
Authors: Guenther Schuh, Michael Riesener, Frederic Diels
Abstract:
Nowadays, manufacturing companies are faced with the challenge of meeting heterogeneous customer requirements in short product life cycles with a variety of product functions. So far, some of the functional requirements remain unknown until late stages of the product development. A way to handle these uncertainties is the highly iterative product development (HIP) approach. By structuring the development project as a highly iterative process, this method provides customer oriented and marketable products. There are first approaches for combined, hybrid models comprising deterministic-normative methods like the Stage-Gate process and empirical-adaptive development methods like SCRUM on a project management level. However, almost unconsidered is the question, which development scopes can preferably be realized with either empirical-adaptive or deterministic-normative approaches. In this context, a development scope constitutes a self-contained section of the overall development objective. Therefore, this paper focuses on a methodology that deals with the uncertainty of requirements within the early development stages and the corresponding selection of the most appropriate development approach. For this purpose, internal influencing factors like a company’s technology ability, the prototype manufacturability and the potential solution space as well as external factors like the market accuracy, relevance and volatility will be analyzed and combined into an Agile-Indicator. The Agile-Indicator is derived in three steps. First of all, it is necessary to rate each internal and external factor in terms of the importance for the overall development task. Secondly, each requirement has to be evaluated for every single internal and external factor appropriate to their suitability for empirical-adaptive development. Finally, the total sums of internal and external side are composed in the Agile-Indicator. Thus, the Agile-Indicator constitutes a company-specific and application-related criterion, on which the allocation of empirical-adaptive and deterministic-normative development scopes can be made. In a last step, this indicator will be used for a specific clustering of development scopes by application of the fuzzy c-means (FCM) clustering algorithm. The FCM-method determines sub-clusters within functional clusters based on the empirical-adaptive environmental impact of the Agile-Indicator. By means of the methodology presented in this paper, it is possible to classify requirements, which are uncertainly carried out by the market, into empirical-adaptive or deterministic-normative development scopes.Keywords: agile, highly iterative development, agile-indicator, product development
Procedia PDF Downloads 246442 Genomic Prediction Reliability Using Haplotypes Defined by Different Methods
Authors: Sohyoung Won, Heebal Kim, Dajeong Lim
Abstract:
Genomic prediction is an effective way to measure the abilities of livestock for breeding based on genomic estimated breeding values, statistically predicted values from genotype data using best linear unbiased prediction (BLUP). Using haplotypes, clusters of linked single nucleotide polymorphisms (SNPs), as markers instead of individual SNPs can improve the reliability of genomic prediction since the probability of a quantitative trait loci to be in strong linkage disequilibrium (LD) with markers is higher. To efficiently use haplotypes in genomic prediction, finding optimal ways to define haplotypes is needed. In this study, 770K SNP chip data was collected from Hanwoo (Korean cattle) population consisted of 2506 cattle. Haplotypes were first defined in three different ways using 770K SNP chip data: haplotypes were defined based on 1) length of haplotypes (bp), 2) the number of SNPs, and 3) k-medoids clustering by LD. To compare the methods in parallel, haplotypes defined by all methods were set to have comparable sizes; in each method, haplotypes defined to have an average number of 5, 10, 20 or 50 SNPs were tested respectively. A modified GBLUP method using haplotype alleles as predictor variables was implemented for testing the prediction reliability of each haplotype set. Also, conventional genomic BLUP (GBLUP) method, which uses individual SNPs were tested to evaluate the performance of the haplotype sets on genomic prediction. Carcass weight was used as the phenotype for testing. As a result, using haplotypes defined by all three methods showed increased reliability compared to conventional GBLUP. There were not many differences in the reliability between different haplotype defining methods. The reliability of genomic prediction was highest when the average number of SNPs per haplotype was 20 in all three methods, implying that haplotypes including around 20 SNPs can be optimal to use as markers for genomic prediction. When the number of alleles generated by each haplotype defining methods was compared, clustering by LD generated the least number of alleles. Using haplotype alleles for genomic prediction showed better performance, suggesting improved accuracy in genomic selection. The number of predictor variables was decreased when the LD-based method was used while all three haplotype defining methods showed similar performances. This suggests that defining haplotypes based on LD can reduce computational costs and allows efficient prediction. Finding optimal ways to define haplotypes and using the haplotype alleles as markers can provide improved performance and efficiency in genomic prediction.Keywords: best linear unbiased predictor, genomic prediction, haplotype, linkage disequilibrium
Procedia PDF Downloads 141441 Hydrochemical Contamination Profiling and Spatial-Temporal Mapping with the Support of Multivariate and Cluster Statistical Analysis
Authors: Sofia Barbosa, Mariana Pinto, José António Almeida, Edgar Carvalho, Catarina Diamantino
Abstract:
The aim of this work was to test a methodology able to generate spatial-temporal maps that can synthesize simultaneously the trends of distinct hydrochemical indicators in an old radium-uranium tailings dam deposit. Multidimensionality reduction derived from principal component analysis and subsequent data aggregation derived from clustering analysis allow to identify distinct hydrochemical behavioural profiles and to generate synthetic evolutionary hydrochemical maps.Keywords: Contamination plume migration, K-means of PCA scores, groundwater and mine water monitoring, spatial-temporal hydrochemical trends
Procedia PDF Downloads 235440 Clustering-Based Detection of Alzheimer's Disease Using Brain MR Images
Authors: Sofia Matoug, Amr Abdel-Dayem
Abstract:
This paper presents a comprehensive survey of recent research studies to segment and classify brain MR (magnetic resonance) images in order to detect significant changes to brain ventricles. The paper also presents a general framework for detecting regions that atrophy, which can help neurologists in detecting and staging Alzheimer. Furthermore, a prototype was implemented to segment brain MR images in order to extract the region of interest (ROI) and then, a classifier was employed to differentiate between normal and abnormal brain tissues. Experimental results show that the proposed scheme can provide a reliable second opinion that neurologists can benefit from.Keywords: Alzheimer, brain images, classification techniques, Magnetic Resonance Images MRI
Procedia PDF Downloads 302439 Clustering Ethno-Informatics of Naming Village in Java Island Using Data Mining
Authors: Atje Setiawan Abdullah, Budi Nurani Ruchjana, I. Gede Nyoman Mindra Jaya, Eddy Hermawan
Abstract:
Ethnoscience is used to see the culture with a scientific perspective, which may help to understand how people develop various forms of knowledge and belief, initially focusing on the ecology and history of the contributions that have been there. One of the areas studied in ethnoscience is etno-informatics, is the application of informatics in the culture. In this study the science of informatics used is data mining, a process to automatically extract knowledge from large databases, to obtain interesting patterns in order to obtain a knowledge. While the application of culture described by naming database village on the island of Java were obtained from Geographic Indonesia Information Agency (BIG), 2014. The purpose of this study is; first, to classify the naming of the village on the island of Java based on the structure of the word naming the village, including the prefix of the word, syllable contained, and complete word. Second to classify the meaning of naming the village based on specific categories, as well as its role in the community behavioral characteristics. Third, how to visualize the naming of the village to a map location, to see the similarity of naming villages in each province. In this research we have developed two theorems, i.e theorems area as a result of research studies have collected intersection naming villages in each province on the island of Java, and the composition of the wedge theorem sets the provinces in Java is used to view the peculiarities of a location study. The methodology in this study base on the method of Knowledge Discovery in Database (KDD) on data mining, the process includes preprocessing, data mining and post processing. The results showed that the Java community prioritizes merit in running his life, always working hard to achieve a more prosperous life, and love as well as water and environmental sustainment. Naming villages in each location adjacent province has a high degree of similarity, and influence each other. Cultural similarities in the province of Central Java, East Java and West Java-Banten have a high similarity, whereas in Jakarta-Yogyakarta has a low similarity. This research resulted in the cultural character of communities within the meaning of the naming of the village on the island of Java, this character is expected to serve as a guide in the behavior of people's daily life on the island of Java.Keywords: ethnoscience, ethno-informatics, data mining, clustering, Java island culture
Procedia PDF Downloads 283438 Analysis of Ozone Episodes in the Forest and Vegetation Areas with Using HYSPLIT Model: A Case Study of the North-West Side of Biga Peninsula, Turkey
Authors: Deniz Sari, Selahattin İncecik, Nesimi Ozkurt
Abstract:
Surface ozone, which named as one of the most critical pollutants in the 21th century, threats to human health, forest and vegetation. Specifically, in rural areas surface ozone cause significant influences on agricultural productions and trees. In this study, in order to understand to the surface ozone levels in rural areas we focus on the north-western side of Biga Peninsula which covers by the mountainous and forested area. Ozone concentrations were measured for the first time with passive sampling at 10 sites and two online monitoring stations in this rural area from 2013 and 2015. Using with the daytime hourly O3 measurements during light hours (08:00–20:00) exceeding the threshold of 40 ppb over the 3 months (May, June and July) for agricultural crops, and over the six months (April to September) for forest trees AOT40 (Accumulated hourly O3 concentrations Over a Threshold of 40 ppb) cumulative index was calculated. AOT40 is defined by EU Directive 2008/50/EC to evaluate whether ozone pollution is a risk for vegetation, and is calculated by using hourly ozone concentrations from monitoring systems. In the present study, we performed the trajectory analysis by The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to follow the long-range transport sources contributing to the high ozone levels in the region. The ozone episodes observed between 2013 and 2015 were analysed using the HYSPLIT model developed by the NOAA-ARL. In addition, the cluster analysis is used to identify homogeneous groups of air mass transport patterns can be conducted through air trajectory clustering by grouping similar trajectories in terms of air mass movement. Backward trajectories produced for 3 years by HYSPLIT model were assigned to different clusters according to their moving speed and direction using a k-means clustering algorithm. According to cluster analysis results, northerly flows to study area cause to high ozone levels in the region. The results present that the ozone values in the study area are above the critical levels for forest and vegetation based on EU Directive 2008/50/EC.Keywords: AOT40, Biga Peninsula, HYSPLIT, surface ozone
Procedia PDF Downloads 255437 A Biologically Inspired Approach to Automatic Classification of Textile Fabric Prints Based On Both Texture and Colour Information
Authors: Babar Khan, Wang Zhijie
Abstract:
Machine Vision has been playing a significant role in Industrial Automation, to imitate the wide variety of human functions, providing improved safety, reduced labour cost, the elimination of human error and/or subjective judgments, and the creation of timely statistical product data. Despite the intensive research, there have not been any attempts to classify fabric prints based on printed texture and colour, most of the researches so far encompasses only black and white or grey scale images. We proposed a biologically inspired processing architecture to classify fabrics w.r.t. the fabric print texture and colour. We created a texture descriptor based on the HMAX model for machine vision, and incorporated colour descriptor based on opponent colour channels simulating the single opponent and double opponent neuronal function of the brain. We found that our algorithm not only outperformed the original HMAX algorithm on classification of fabric print texture and colour, but we also achieved a recognition accuracy of 85-100% on different colour and different texture fabric.Keywords: automatic classification, texture descriptor, colour descriptor, opponent colour channel
Procedia PDF Downloads 484436 K-Means Based Matching Algorithm for Multi-Resolution Feature Descriptors
Authors: Shao-Tzu Huang, Chen-Chien Hsu, Wei-Yen Wang
Abstract:
Matching high dimensional features between images is computationally expensive for exhaustive search approaches in computer vision. Although the dimension of the feature can be degraded by simplifying the prior knowledge of homography, matching accuracy may degrade as a tradeoff. In this paper, we present a feature matching method based on k-means algorithm that reduces the matching cost and matches the features between images instead of using a simplified geometric assumption. Experimental results show that the proposed method outperforms the previous linear exhaustive search approaches in terms of the inlier ratio of matched pairs.Keywords: feature matching, k-means clustering, SIFT, RANSAC
Procedia PDF Downloads 357435 An Infinite Mixture Model for Modelling Stutter Ratio in Forensic Data Analysis
Authors: M. A. C. S. Sampath Fernando, James M. Curran, Renate Meyer
Abstract:
Forensic DNA analysis has received much attention over the last three decades, due to its incredible usefulness in human identification. The statistical interpretation of DNA evidence is recognised as one of the most mature fields in forensic science. Peak heights in an Electropherogram (EPG) are approximately proportional to the amount of template DNA in the original sample being tested. A stutter is a minor peak in an EPG, which is not masking as an allele of a potential contributor, and considered as an artefact that is presumed to be arisen due to miscopying or slippage during the PCR. Stutter peaks are mostly analysed in terms of stutter ratio that is calculated relative to the corresponding parent allele height. Analysis of mixture profiles has always been problematic in evidence interpretation, especially with the presence of PCR artefacts like stutters. Unlike binary and semi-continuous models; continuous models assign a probability (as a continuous weight) for each possible genotype combination, and significantly enhances the use of continuous peak height information resulting in more efficient reliable interpretations. Therefore, the presence of a sound methodology to distinguish between stutters and real alleles is essential for the accuracy of the interpretation. Sensibly, any such method has to be able to focus on modelling stutter peaks. Bayesian nonparametric methods provide increased flexibility in applied statistical modelling. Mixture models are frequently employed as fundamental data analysis tools in clustering and classification of data and assume unidentified heterogeneous sources for data. In model-based clustering, each unknown source is reflected by a cluster, and the clusters are modelled using parametric models. Specifying the number of components in finite mixture models, however, is practically difficult even though the calculations are relatively simple. Infinite mixture models, in contrast, do not require the user to specify the number of components. Instead, a Dirichlet process, which is an infinite-dimensional generalization of the Dirichlet distribution, is used to deal with the problem of a number of components. Chinese restaurant process (CRP), Stick-breaking process and Pólya urn scheme are frequently used as Dirichlet priors in Bayesian mixture models. In this study, we illustrate an infinite mixture of simple linear regression models for modelling stutter ratio and introduce some modifications to overcome weaknesses associated with CRP.Keywords: Chinese restaurant process, Dirichlet prior, infinite mixture model, PCR stutter
Procedia PDF Downloads 330434 A Queer Approach to the National Irish Identity during 'The Troubles' in Belfast in Paul Mcveigh's 'The Good Son'
Authors: Eduardo Garcia Agustin
Abstract:
This paper focuses on how Mickey – the 10-year-old main character and narrator in Paul McVeigh’s novel The Good Son (2015) – becomes aware of his own queerness and its implications in a conflicting place and time such as Belfast during ‘The Troubles’ in the 1980s. Queer theory allows a comparative reading of identity issues such as national and gender discourses. As opposed to some other excluding social constructs that classify identities in an Us-Others binomial, queer has become a sort of umbrella term where there is room for more identities other than LGTBQ. Therefore, it offers some relevant tools to read this highly awarded novel by focusing on the intersectional construction of Mickey’s identity in progress within the social and familiar realms. The aim of this paper is to offer a queer reading of the The Good Son, which was awarded with the Polari First Book Prize in 2016, by showing the key role of Mickey’s conflictive realization of his own queerness in the polarized society of Northern Ireland in the 1980s, where there is no shade of grey. Within such a polarized context, Mickey’s perception of his own internal and external identity conflicts he is exposed to will show how necessary a certain touch of pink is as a potential escape to those conflicts.Keywords: conflict, national identity, Northern Ireland, queer identity
Procedia PDF Downloads 533433 Recognition of Objects in a Maritime Environment Using a Combination of Pre- and Post-Processing of the Polynomial Fit Method
Authors: R. R. Hordijk, O. J. G. Somsen
Abstract:
Traditionally, radar systems are the eyes and ears of a ship. However, these systems have their drawbacks and nowadays they are extended with systems that work with video and photos. Processing of data from these videos and photos is however very labour-intensive and efforts are being made to automate this process. A major problem when trying to recognize objects in water is that the 'background' is not homogeneous so that traditional image recognition technics do not work well. Main question is, can a method be developed which automate this recognition process. There are a large number of parameters involved to facilitate the identification of objects on such images. One is varying the resolution. In this research, the resolution of some images has been reduced to the extreme value of 1% of the original to reduce clutter before the polynomial fit (pre-processing). It turned out that the searched object was clearly recognizable as its grey value was well above the average. Another approach is to take two images of the same scene shortly after each other and compare the result. Because the water (waves) fluctuates much faster than an object floating in the water one can expect that the object is the only stable item in the two images. Both these methods (pre-processing and comparing two images of the same scene) delivered useful results. Though it is too early to conclude that with these methods all image problems can be solved they are certainly worthwhile for further research.Keywords: image processing, image recognition, polynomial fit, water
Procedia PDF Downloads 534432 Integrating Data Mining with Case-Based Reasoning for Diagnosing Sorghum Anthracnose
Authors: Mariamawit T. Belete
Abstract:
Cereal production and marketing are the means of livelihood for millions of households in Ethiopia. However, cereal production is constrained by technical and socio-economic factors. Among the technical factors, cereal crop diseases are the major contributing factors to the low yield. The aim of this research is to develop an integration of data mining and knowledge based system for sorghum anthracnose disease diagnosis that assists agriculture experts and development agents to make timely decisions. Anthracnose diagnosing systems gather information from Melkassa agricultural research center and attempt to score anthracnose severity scale. Empirical research is designed for data exploration, modeling, and confirmatory procedures for testing hypothesis and prediction to draw a sound conclusion. WEKA (Waikato Environment for Knowledge Analysis) was employed for the modeling. Knowledge based system has come across a variety of approaches based on the knowledge representation method; case-based reasoning (CBR) is one of the popular approaches used in knowledge-based system. CBR is a problem solving strategy that uses previous cases to solve new problems. The system utilizes hidden knowledge extracted by employing clustering algorithms, specifically K-means clustering from sampled anthracnose dataset. Clustered cases with centroid value are mapped to jCOLIBRI, and then the integrator application is created using NetBeans with JDK 8.0.2. The important part of a case based reasoning model includes case retrieval; the similarity measuring stage, reuse; which allows domain expert to transfer retrieval case solution to suit for the current case, revise; to test the solution, and retain to store the confirmed solution to the case base for future use. Evaluation of the system was done for both system performance and user acceptance. For testing the prototype, seven test cases were used. Experimental result shows that the system achieves an average precision and recall values of 70% and 83%, respectively. User acceptance testing also performed by involving five domain experts, and an average of 83% acceptance is achieved. Although the result of this study is promising, however, further study should be done an investigation on hybrid approach such as rule based reasoning, and pictorial retrieval process are recommended.Keywords: sorghum anthracnose, data mining, case based reasoning, integration
Procedia PDF Downloads 81431 Food Security Indicators in Deltaic and Coastal Research: A Scoping Review
Authors: Sylvia Szabo, Thilini Navaratne, Indrajit Pal, Seree Park
Abstract:
Deltaic and coastal regions are often strategically important both from local and regional perspectives. While deltas are known to be bread baskets of the world, delta inhabitants often face the risk of food and nutritional insecurity. These risks are highly exacerbated by the impacts of climate and environmental change. While numerous regional studies examined the prevalence and the determinants of food security in specific delta and coastal regions, there is still a lack of a systematic analysis of the most widely used scientific food security indicators. In order to fill this gap, a systematic review was carried out using Covidence, a Cochrane-adopted systematic review processing software. Papers included in the review were selected from the SCOPUS, Thomson Reuters Web of Science, Science Direct, ProQuest, and Google Scholar databases. Both scientific papers and grey literature (e.g., reports by international organizations) were considered. The results were analyzed by food security components (access, availability, quality, and strategy) and by world regions. Suggestions for further food security, nutrition, and health research, as well as policy-related implications, are also discussed.Keywords: delta regions, coastal, food security, indicators, systematic review
Procedia PDF Downloads 239430 Automatic Post Stroke Detection from Computed Tomography Images
Authors: C. Gopi Jinimole, A. Harsha
Abstract:
For detecting strokes, Computed Tomography (CT) scan is preferred for imaging the abnormalities or infarction in the brain. Because of the problems in the window settings used to evaluate brain CT images, they are very poor in the early stage infarction detection. This paper presents an automatic estimation method for the window settings of the CT images for proper contrast of the hyper infarction present in the brain. In the proposed work the window width is estimated automatically for each slice and the window centre is changed to a new value of 31HU, which is the average of the HU values of the grey matter and white matter in the brain. The automatic window width estimation is based on the average of median of statistical central moments. Thus with the new suggested window centre and estimated window width, the hyper infarction or post-stroke regions in CT brain images are properly detected. The proposed approach assists the radiologists in CT evaluation for early quantitative signs of delayed stroke, which leads to severe hemorrhage in the future can be prevented by providing timely medication to the patients.Keywords: computed tomography (CT), hyper infarction or post stroke region, Hounsefield Unit (HU), window centre (WC), window width (WW)
Procedia PDF Downloads 203429 Quantitative Texture Analysis of Shoulder Sonography for Rotator Cuff Lesion Classification
Authors: Chung-Ming Lo, Chung-Chien Lee
Abstract:
In many countries, the lifetime prevalence of shoulder pain is up to 70%. In America, the health care system spends 7 billion per year about the healthy issues of shoulder pain. With respect to the origin, up to 70% of shoulder pain is attributed to rotator cuff lesions This study proposed a computer-aided diagnosis (CAD) system to assist radiologists classifying rotator cuff lesions with less operator dependence. Quantitative features were extracted from the shoulder ultrasound images acquired using an ALOKA alpha-6 US scanner (Hitachi-Aloka Medical, Tokyo, Japan) with linear array probe (scan width: 36mm) ranging from 5 to 13 MHz. During examination, the postures of the examined patients are standard sitting position and are followed by the regular routine. After acquisition, the shoulder US images were drawn out from the scanner and stored as 8-bit images with pixel value ranging from 0 to 255. Upon the sonographic appearance, the boundary of each lesion was delineated by a physician to indicate the specific pattern for analysis. The three lesion categories for classification were composed of 20 cases of tendon inflammation, 18 cases of calcific tendonitis, and 18 cases of supraspinatus tear. For each lesion, second-order statistics were quantified in the feature extraction. The second-order statistics were the texture features describing the correlations between adjacent pixels in a lesion. Because echogenicity patterns were expressed via grey-scale. The grey-scale co-occurrence matrixes with four angles of adjacent pixels were used. The texture metrics included the mean and standard deviation of energy, entropy, correlation, inverse different moment, inertia, cluster shade, cluster prominence, and Haralick correlation. Then, the quantitative features were combined in a multinomial logistic regression classifier to generate a prediction model of rotator cuff lesions. Multinomial logistic regression classifier is widely used in the classification of more than two categories such as the three lesion types used in this study. In the classifier, backward elimination was used to select a feature subset which is the most relevant. They were selected from the trained classifier with the lowest error rate. Leave-one-out cross-validation was used to evaluate the performance of the classifier. Each case was left out of the total cases and used to test the trained result by the remaining cases. According to the physician’s assessment, the performance of the proposed CAD system was shown by the accuracy. As a result, the proposed system achieved an accuracy of 86%. A CAD system based on the statistical texture features to interpret echogenicity values in shoulder musculoskeletal ultrasound was established to generate a prediction model for rotator cuff lesions. Clinically, it is difficult to distinguish some kinds of rotator cuff lesions, especially partial-thickness tear of rotator cuff. The shoulder orthopaedic surgeon and musculoskeletal radiologist reported greater diagnostic test accuracy than general radiologist or ultrasonographers based on the available literature. Consequently, the proposed CAD system which was developed according to the experiment of the shoulder orthopaedic surgeon can provide reliable suggestions to general radiologists or ultrasonographers. More quantitative features related to the specific patterns of different lesion types would be investigated in the further study to improve the prediction.Keywords: shoulder ultrasound, rotator cuff lesions, texture, computer-aided diagnosis
Procedia PDF Downloads 284428 Review and Comparison of Associative Classification Data Mining Approaches
Authors: Suzan Wedyan
Abstract:
Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases.Keywords: associative classification, classification, data mining, learning, rule ranking, rule pruning, prediction
Procedia PDF Downloads 537