Search results for: fluid flow in porous media
8735 MHD Chemically Reacting Viscous Fluid Flow towards a Vertical Surface with Slip and Convective Boundary Conditions
Authors: Ibrahim Yakubu Seini, Oluwole Daniel Makinde
Abstract:
MHD chemically reacting viscous fluid flow towards a vertical surface with slip and convective boundary conditions has been conducted. The temperature and the chemical species concentration of the surface and the velocity of the external flow are assumed to vary linearly with the distance from the vertical surface. The governing differential equations are modeled and transformed into systems of ordinary differential equations, which are then solved numerically by a shooting method. The effects of various parameters on the heat and mass transfer characteristics are discussed. Graphical results are presented for the velocity, temperature, and concentration profiles whilst the skin-friction coefficient and the rate of heat and mass transfers near the surface are presented in tables and discussed. The results revealed that increasing the strength of the magnetic field increases the skin-friction coefficient and the rate of heat and mass transfers toward the surface. The velocity profiles are increased towards the surface due to the presence of the Lorenz force, which attracts the fluid particles near the surface. The rate of chemical reaction is seen to decrease the concentration boundary layer near the surface due to the destructive chemical reaction occurring near the surface.Keywords: boundary layer, surface slip, MHD flow, chemical reaction, heat transfer, mass transfer
Procedia PDF Downloads 5398734 Control for Fluid Flow Behaviours of Viscous Fluids and Heat Transfer in Mini-Channel: A Case Study Using Numerical Simulation Method
Authors: Emmanuel Ophel Gilbert, Williams Speret
Abstract:
The control for fluid flow behaviours of viscous fluids and heat transfer occurrences within heated mini-channel is considered. Heat transfer and flow characteristics of different viscous liquids, such as engine oil, automatic transmission fluid, one-half ethylene glycol, and deionized water were numerically analyzed. Some mathematical applications such as Fourier series and Laplace Z-Transforms were employed to ascertain the behaviour-wave like structure of these each viscous fluids. The steady, laminar flow and heat transfer equations are reckoned by the aid of numerical simulation technique. Further, this numerical simulation technique is endorsed by using the accessible practical values in comparison with the anticipated local thermal resistances. However, the roughness of this mini-channel that is one of the physical limitations was also predicted in this study. This affects the frictional factor. When an additive such as tetracycline was introduced in the fluid, the heat input was lowered, and this caused pro rata effect on the minor and major frictional losses, mostly at a very minute Reynolds number circa 60-80. At this ascertained lower value of Reynolds numbers, there exists decrease in the viscosity and minute frictional losses as a result of the temperature of these viscous liquids been increased. It is inferred that the three equations and models are identified which supported the numerical simulation via interpolation and integration of the variables extended to the walls of the mini-channel, yields the utmost reliance for engineering and technology calculations for turbulence impacting jets in the near imminent age. Out of reasoning with a true equation that could support this control for the fluid flow, Navier-stokes equations were found to tangential to this finding. Though, other physical factors with respect to these Navier-stokes equations are required to be checkmated to avoid uncertain turbulence of the fluid flow. This paradox is resolved within the framework of continuum mechanics using the classical slip condition and an iteration scheme via numerical simulation method that takes into account certain terms in the full Navier-Stokes equations. However, this resulted in dropping out in the approximation of certain assumptions. Concrete questions raised in the main body of the work are sightseen further in the appendices.Keywords: frictional losses, heat transfer, laminar flow, mini-channel, number simulation, Reynolds number, turbulence, viscous fluids
Procedia PDF Downloads 1768733 Two Years Retrospective Study of Body Fluid Cultures Obtained from Patients in the Intensive Care Unit of General Hospital of Ioannina
Authors: N. Varsamis, M. Gerasimou, P. Christodoulou, S. Mantzoukis, G. Kolliopoulou, N. Zotos
Abstract:
Purpose: Body fluids (pleural, peritoneal, synovial, pericardial, cerebrospinal) are an important element in the detection of microorganisms. For this reason, it is important to examine them in the Intensive Care Unit (ICU) patients. Material and Method: Body fluids are transported through sterile containers and enriched as soon as possible with Tryptic Soy Broth (TSB). After one day of incubation, the broth is poured into selective media: Blood, Mac Conkey No. 2, Chocolate, Mueller Hinton, Chapman and Saboureaud agar. The above selective media are incubated directly for 2 days. After this period, if any number of microbial colonies are detected, gram staining is performed. After that, the isolated organisms are identified by biochemical techniques in the automated Microscan system (Siemens) and followed by a sensitivity test on the same system using the minimum inhibitory concentration MIC technique. The sensitivity test is verified by Kirby Bauer-based plate test. Results: In 2017 the Laboratory of Microbiology received 60 samples of body fluids from the ICU. More specifically the Microbiology Department received 6 peritoneal fluid specimens, 18 pleural fluid specimens and 36 cerebrospinal fluid specimens. 36 positive cultures were tested. S. epidermidis was identified in 18 specimens, S. haemolyticus in 6, and E. faecium in 12. Conclusions: The results show low detection of microorganisms in body fluid cultures.Keywords: body fluids, culture, intensive care unit, microorganisms
Procedia PDF Downloads 2028732 A Prospective Evaluation of Thermal Radiation Effects on Magneto-Hydrodynamic Transport of a Nanofluid Traversing a Spongy Medium
Authors: Azad Hussain, Shoaib Ali, M. Y. Malik, Saba Nazir, Sarmad Jamal
Abstract:
This article reports a fundamental numerical investigation to analyze the impact of thermal radiations on MHD flow of differential type nanofluid past a porous plate. Here, viscosity is taken as function of temperature. Energy equation is deliberated in the existence of viscous dissipation. The mathematical terminologies of nano concentration, velocity and temperature are first cast into dimensionless expressions via suitable conversions and then solved by using Shooting technique to obtain the numerical solutions. Graphs has been plotted to check the convergence of constructed solutions. At the end, the influence of effective parameters on nanoparticle concentration, velocity and temperature fields are also deliberated in a comprehensive way. Moreover, the physical measures of engineering importance such as the Sherwood number, Skin friction and Nusselt number are also calculated. It is perceived that the thermal radiation enhances the temperature for both Vogel's and Reynolds' models but the normal stress parameter causes a reduction in temperature profile.Keywords: MHD flow, differential type nanofluid, Porous medium, variable viscosity, thermal radiation
Procedia PDF Downloads 2438731 Analytical Solving of Nonlinear Differential Equations in the Nonlinear Phenomena for Viscos Fluids
Authors: Arash Jafari, Mehdi Taghaddosi, Azin Parvin
Abstract:
In the paper, our purpose is to enhance the ability to solve a nonlinear differential equation which is about the motion of an incompressible fluid flow going down of an inclined plane without thermal effect with a simple and innovative approach which we have named it new method. Comparisons are made amongst the Numerical, new method, and HPM methods, and the results reveal that this method is very effective and simple and can be applied to other nonlinear problems. It is noteworthy that there are some valuable advantages in this way of solving differential equations, and also most of the sets of differential equations can be answered in this manner which in the other methods they do not have acceptable solutions up to now. A summary of the excellence of this method in comparison to the other manners is as follows: 1) Differential equations are directly solvable by this method. 2) Without any dimensionless procedure, we can solve equation(s). 3) It is not necessary to convert variables into new ones. According to the afore-mentioned assertions which will be proved in this case study, the process of solving nonlinear equation(s) will be very easy and convenient in comparison to the other methods.Keywords: viscos fluid, incompressible fluid flow, inclined plane, nonlinear phenomena
Procedia PDF Downloads 2838730 Flow of a Second Order Fluid through Constricted Tube with Slip Velocity at Wall Using Integral Method
Authors: Nosheen Zareen Khan, Abdul Majeed Siddiqui, Muhammad Afzal Rana
Abstract:
The steady flow of a second order fluid through constricted tube with slip velocity at wall is modeled and analyzed theoretically. The governing equations are simplified by implying no slip in radial direction. Based on Karman Pohlhausen procedure polynomial solution for axial velocity profile is presented. An expressions for pressure gradient, shear stress, separation and reattachment points and radial velocity are also calculated. The effect of slip and no slip velocity on velocity, shear stress, pressure gradient are discussed and depicted graphically. It is noted that when Reynolds number increases velocity of the fluid decreases in both slip and no slip conditions. It is also found that the wall shear stress, separation and reattachment points are strongly effected by Reynolds number.Keywords: approximate solution, constricted tube, non-Newtonian fluids, Reynolds number
Procedia PDF Downloads 3988729 The Effect of Artificial Intelligence on Media Production
Authors: Mona Mikhail Shakhloul Gadalla
Abstract:
The brand-new media revolution, which features a huge range of new media technologies like blogs, social networking, visual worlds, and wikis, has had a tremendous impact on communications, traditional media and across different disciplines. This paper gives an evaluation of the impact of recent media technology on the news, social interactions and conventional media in developing and advanced nations. The look points to the reality that there is a widespread impact of recent media technologies on the news, social interactions and the conventional media in developing and developed nations, albeit undoubtedly and negatively. Social interactions have been considerably affected, in addition to news manufacturing and reporting. It's miles reiterated that regardless of the pervasiveness of recent media technologies, it might now not carry a complete decline of conventional media. This paper contributes to the theoretical framework of the new media and will assist in assessing the extent of the effect of the new media in special places.Keywords: court reporting, offenders in media, quantitative content analysis, victims in mediamedia literacy, ICT, internet, education communication, media, news, new media technologies, social interactions, traditional media
Procedia PDF Downloads 348728 Fluid Flow and Heat Transfer Characteristics Investigation in Spray Cooling Systems Using Nanofluids
Authors: Lee Derk Huan, Nur Irmawati
Abstract:
This paper aims to investigate the heat transfer and fluid flow characteristics of nanofluids used in spray cooling systems. The effect of spray height, type of nanofluids and concentration of nanofluids are numerically investigated. Five different nanofluids such as AgH2O, Al2O3, CuO, SiO2 and TiO2 with volume fraction range of 0.5% to 2.5% are used. The results revealed that the heat transfer performance decreases as spray height increases. It is found that TiO2 has the highest transfer coefficient among other nanofluids. In dilute spray conditions, low concentration of nanofluids is observed to be more effective in heat removal in a spray cooling system.Keywords: numerical investigation, spray cooling, heat transfer, nanofluids
Procedia PDF Downloads 4658727 A Particle Image Velocimetric (PIV) Experiment on Simplified Bottom Hole Flow Field
Authors: Heqian Zhao, Huaizhong Shi, Zhongwei Huang, Zhengliang Chen, Ziang Gu, Fei Gao
Abstract:
Hydraulics mechanics is significantly important in the drilling process of oil or gas exploration, especially for the drill bit. The fluid flows through the nozzles on the bit and generates a water jet to remove the cutting at the bottom hole. In this paper, a simplified bottom hole model is established. The Particle Image Velocimetric (PIV) is used to capture the flow field of the single nozzle. Due to the limitation of the bottom and wellbore, the potential core is shorter than that of the free water jet. The velocity magnitude rapidly attenuates when fluid close to the bottom is lower than about 5 mm. Besides, a vortex zone appears near the middle of the bottom beside the water jet zone. A modified exponential function can be used to fit the centerline velocity well. On the one hand, the results of this paper can provide verification for the numerical simulation of the bottom hole flow field. On the other hand, it also can provide an experimental basis for the hydraulic design of the drill bit.Keywords: oil and gas, hydraulic mechanic of drilling, PIV, bottom hole
Procedia PDF Downloads 2138726 Best Practical Technique to Drain Recoverable Oil from Unconventional Deep Libyan Oil Reservoir
Authors: Tarek Duzan, Walid Esayed
Abstract:
Fluid flow in porous media is attributed fundamentally to parameters that are controlled by depositional and post-depositional environments. After deposition, digenetic events can act negatively on the reservoir and reduce the effective porosity, thereby making the rock less permeable. Therefore, exploiting hydrocarbons from such resources requires partially altering the rock properties to improve the long-term production rate and enhance the recovery efficiency. In this study, we try to address, firstly, the phenomena of permeability reduction in tight sandstone reservoirs and illustrate the implemented procedures to investigate the problem roots; finally, benchmark the candidate solutions at the field scale and recommend the mitigation strategy for the field development plan. During the study, two investigations have been considered: subsurface analysis using ( PLT ) and Laboratory tests for four candidate wells of the interested reservoir. Based on the above investigations, it was obvious that the Production logging tool (PLT) has shown areas of contribution in the reservoir, which is considered very limited, considering the total reservoir thickness. Also, Alcohol treatment was the first choice to go with for the AA9 well. The well productivity has been relatively restored but not to its initial productivity. Furthermore, Alcohol treatment in the lab was effective and restored permeability in some plugs by 98%, but operationally, the challenge would be the ability to distribute enough alcohol in a wellbore to attain the sweep Efficiency obtained within a laboratory core plug. However, the Second solution, which is based on fracking wells, has shown excellent results, especially for those wells that suffered a high drop in oil production. It is suggested to frac and pack the wells that are already damaged in the Waha field to mitigate the damage and restore productivity back as much as possible. In addition, Critical fluid velocity and its effect on fine sand migration in the reservoir have to be well studied on core samples, and therefore, suitable pressure drawdown will be applied in the reservoir to limit fine sand migration.Keywords: alcohol treatment, post-depositional environments, permeability, tight sandstone
Procedia PDF Downloads 688725 PIV Measurements of the Instantaneous Velocities for Single and Two-Phase Flows in an Annular Duct
Authors: Marlon M. Hernández Cely, Victor E. C. Baptistella, Oscar M. H. Rodríguez
Abstract:
Particle Image Velocimetry (PIV) is a well-established technique in the field of fluid flow measurement and provides instantaneous velocity fields over global domains. It has been applied to external and internal flows and in single and two-phase flows. Regarding internal flow, works about the application of PIV in annular ducts are scanty. An experimental work is presented, where flow of water is studied in an annular duct of inner diameter of 60 mm and outer diameter of 155 mm and 10.5-m length, with the goal of obtaining detailed velocity measurements. Depending on the flow rates of water, it can be laminar, transitional or turbulent. In this study, the water flow rate was kept at three different values for the annular duct, allowing the analysis of one laminar and two turbulent flows. Velocity fields and statistic quantities of the turbulent flow were calculated.Keywords: PIV, annular duct, laminar, turbulence, velocity profile
Procedia PDF Downloads 3518724 Stabilizing Effect of Magnetic Field in a Thermally Modulated Porous Layer
Authors: M. Meenasaranya, S. Saravanan
Abstract:
Nonlinear stability analysis is carried out to determine the effect of surface temperature modulation in an infinite horizontal porous layer heated from below. The layer is saturated by an electrically conducting, viscous, incompressible and Newtonian fluid. The Brinkman model is used for momentum equation, and the Boussinesq approximation is invoked. The system is assumed to be bounded by rigid boundaries. The energy theory is implemented to find the global exponential stability region of the considered system. The results are analysed for arbitrary values of modulation frequency and amplitude. The existence of subcritical instability region is confirmed by comparing the obtained result with the known linear result. The vertical magnetic field is found to stabilize the system.Keywords: Brinkman model, energy method, magnetic field, surface temperature modulation
Procedia PDF Downloads 3958723 Analyzing the Effect of Design of Pipe in Shell and Tube Type Heat Exchanger by Measuring Its Heat Transfer Rate by Computation Fluid Dynamics and Thermal Approach
Authors: Dhawal Ladani
Abstract:
Shell and tube type heat exchangers are predominantly used in heat exchange between two fluids and other applications. This paper projects the optimal design of the pipe used in the heat exchanger in such a way to minimize the vibration occurring in the pipe. Paper also consists of the comparison of the different design of the pipe to get the maximize the heat transfer rate by converting laminar flow into the turbulent flow. By the updated design the vibration in the pipe due to the flow is also decreased. Computational Fluid Dynamics and Thermal Heat Transfer analysis are done to justifying the result. Currently, the straight pipe is used in the shell and tube type of heat exchanger where as per the paper the pipe consists of the curvature along with the pipe. Hence, the heat transfer area is also increased and result in the increasing in heat transfer rate. Curvature type design is useful to create turbulence and minimizing the vibration, also. The result will give the output comparison of the effect of laminar flow and the turbulent flow in the heat exchange mechanism, as well as, inverse effect of the boundary layer in heat exchanger is also justified.Keywords: heat exchanger, heat transfer rate, laminar and turbulent effect, shell and tube
Procedia PDF Downloads 3078722 Mass Media Products Consumption Patterns in Rural South-South, Nigeria Communities
Authors: Inemesit Akpan Umoren, Aniekan James Akpan
Abstract:
Media practitioners and information managers have often erroneously operated on the premise that media messages are received as disseminated to the extent that audiences of whatever background assimilate the content uniformly. This does not subsist since media audiences are often segmented in terms of educational level, social category, place of residence, gender, among others. While those who are highly educated, live in urban areas and are of highest standing are more likely to have direct access to the media, those in the rural areas and of low education and standing, may not have direct or easy access. These, therefore, informed the study to establish the consumption patterns of mass media products by residents of rural communities in south-south, Nigeria. The study, which was anchored on the multi-step flow and social categories theories, adopted a survey research design and a sample of 383 using Mayer’s 1979 guide drawn from nine rural communities in the south-south, Nigeria states of Akwa Ibom, Rivers and Edo. Findings among others showed that while a negligible percentage is highly exposed to media messages of all types, a greater member depend on opinion leaders, social groups, drinking joints, among other such for filtered content. It was concluded that since rural or community media organizations are very vital in ensuring media content get to all audience without necessarily being passing through intermediaries. Among the recommendations was that information managers and media organizations should always have in mind the ruralites while packaging their contents even in the mainstream media.Keywords: consumption, media, media product, pattern
Procedia PDF Downloads 1448721 Computational Fluid Dynamics Analysis of Cyclone Separator Performance Using Discrete Phase Model
Authors: Sandeep Mohan Ahuja, Gulshan Kumar Jawa
Abstract:
Cyclone separators are crucial components in various industries tasked with efficiently separating particulate matter from gas streams. Achieving optimal performance hinges on a deep understanding of flow dynamics and particle behaviour within these separators. In this investigation, Computational Fluid Dynamics (CFD) simulations are conducted utilizing the Discrete Phase Model (DPM) to dissect the intricate flow patterns, particle trajectories, and separation efficiency within cyclone separators. The study delves into the influence of pivotal parameters like inlet velocity, particle size distribution, and cyclone geometry on separation efficiency. Through numerical simulations, a comprehensive comprehension of fluid-particle interaction phenomena within cyclone separators is attained, allowing for the assessment of solid collection efficiency across diverse operational conditions and geometrical setups. The insights gleaned from this study promise to advance our understanding of the complex interplay between fluid and particle within cyclone separators, thereby enabling optimization across a wide array of industrial applications. By harnessing the power of CFD simulations and the DPM, this research endeavours to furnish valuable insights for designing, operating, and evaluating the performance of cyclone separators, ultimately fostering greater efficiency and environmental sustainability within industrial processes.Keywords: cyclone separator, computational fluid dynamics, enhancing efficiency, discrete phase model
Procedia PDF Downloads 528720 Magnetic Field Induced Mechanical Behavior of Fluid Filled Carbon Nanotube Foam
Authors: Siva Kumar Reddy, Anwesha Mukherjee, Abha Misra
Abstract:
Excellent energy absorption capability in carbon nanotubes (CNT) is shown in their bulk structure that behaves like super compressible foam. Furthermore, a tunable mechanical behavior of CNT foam is achieved using several methods like changing the concentration of precursors, polymer impregnation, non covalent functionalization of CNT microstructure etc. Influence of magnetic field on compressive behavior of magnetic CNT demonstrated an enhanced peak stress and energy absorption capability, which does not require any surface and structural modification of the foam. This presentation discusses the mechanical behavior of micro porous CNT foam that is impregnated in magnetic field responsive fluid. Magnetic particles are dispersed in a nonmagnetic fluid so that alignment of both particles and CNT could play a crucial role in controlling the stiffness of the overall structure. It is revealed that the compressive behavior of CNT foam critically depends on the fluid viscosity as well as magnetic field intensity. Both peak Stress and energy absorption in CNT foam followed a power law behavior with the increase in the magnetic field intensity. However, in the absence of magnetic field, both peak stress and energy absorption capability of CNT foam presented a linear dependence on the fluid viscosity. Hence, this work demonstrates the role magnetic filed in controlling the mechanical behavior of the foams prepared at nanoscale.Keywords: carbon nanotubes, magnetic field, energy absorption capability and viscosity
Procedia PDF Downloads 3048719 Experimental and CFD Simulation of the Jet Pump for Air Bubbles Formation
Authors: L. Grinis, N. Lubashevsky, Y. Ostrovski
Abstract:
A jet pump is a type of pump that accelerates the flow of a secondary fluid (driven fluid) by introducing a motive fluid with high velocity into a converging-diverging nozzle. Jet pumps are also known as adductors or ejectors depending on the motivator phase. The ejector's motivator is of a gaseous nature, usually steam or air, while the educator's motivator is a liquid, usually water. Jet pumps are devices that use air bubbles and are widely used in wastewater treatment processes. In this work, we will discuss about the characteristics of the jet pump and the computational simulation of this device. To find the optimal angle and depth for the air pipe, so as to achieve the maximal air volumetric flow rate, an experimental apparatus was constructed to ascertain the best geometrical configuration for this new type of jet pump. By using 3D printing technology, a series of jet pumps was printed and tested whilst aspiring to maximize air flow rate dependent on angle and depth of the air pipe insertion. The experimental results show a major difference of up to 300% in performance between the different pumps (ratio of air flow rate to supplied power) where the optimal geometric model has an insertion angle of 600 and air pipe insertion depth ending at the center of the mixing chamber. The differences between the pumps were further explained by using CFD for better understanding the reasons that affect the airflow rate. The validity of the computational simulation and the corresponding assumptions have been proved experimentally. The present research showed high degree of congruence with the results of the laboratory tests. This study demonstrates the potential of using of the jet pump in many practical applications.Keywords: air bubbles, CFD simulation, jet pump, applications
Procedia PDF Downloads 2438718 Microwave-Assisted 3D Porous Graphene for Its Multi-Functionalities
Authors: Jung-Hwan Oh, Rajesh Kumar, Il-Kwon Oh
Abstract:
Porous graphene has extensive potential applications in variety of fields such as hydrogen storage, CO oxidation, gas separation, supercapacitors, fuel cells, nanoelectronics, oil adsorption, and so on. However, the generation of some carbon atoms vacancies for precise small holes have been not extensively studied to prevent the agglomerates of graphene sheets and to obtain porous graphene with high surface area. Recently, many research efforts have been presented to develop physical and chemical synthetic approaches for porous graphene. But physical method has very high cost of manufacture and chemical method consumes so many hours for porous graphene. Herein, we propose a porous graphene contained holes with atomic scale precision by embedding metal nano-particles through microwave irradiation for hydrogen storage and CO oxidation multi- functionalities. This proposed synthetic method is appropriate for fast and convenient production of three dimensional nanostructures, which have nanoholes on the graphene surface in consequence of microwave irradiation. The metal nanoparticles are dispersed quickly on the graphene surface and generated uniform nanoholes on the graphene nanosheets. The morphological and structural characterization of the porous graphene were examined by scanning electron microscopy (SEM), transmission scanning electron microscopy (TEM) and RAMAN spectroscopy, respectively. The metal nanoparticle-embedded porous graphene exhibits a microporous volume of 2.586cm3g-1 with an average pore radius of 0.75 nm. HR-TEM analysis was carried out to further characterize the microstructures. By investigating the RAMAN spectra, we can understand the structural changes of graphene. The results of this work demonstrate a possibility to produce a new class of porous graphene. Furthermore, the newly acquired knowledge for the diffusion into graphene can provide useful guidance for the development of the growth of nanostructure.Keywords: CO oxidation, hydrogen storage, nanocomposites, porous graphene
Procedia PDF Downloads 3728717 Drug Delivery to Solid Tumor: Effect of Dynamic Capillary Network Induced by Tumor
Authors: Mostafa Sefidgar, Kaamran Raahemifar, Hossein Bazmara, Madjid Soltani
Abstract:
The computational methods provide condition for investigation related to the process of drug delivery, such as convection and diffusion of drug in extracellular matrices, and drug extravasation from microvascular. The information of this process clarifies the mechanisms of drug delivery from the injection site to absorption by a solid tumor. In this study, an advanced numerical method is used to solve fluid flow and solute transport equations simultaneously to show how capillary network structure induced by tumor affects drug delivery. The effect of heterogeneous capillary network induced by tumor on interstitial fluid flow and drug delivery is investigated by this multi scale method. The sprouting angiogenesis model is used for generating capillary network induced by tumor. Fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network and fluid flow in normal and tumor tissues. The Starling’s law is used for closing this system of equations and coupling the intravascular and extravascular flows. Finally, convection-diffusion-reaction equation is used to simulate drug delivery. The dynamic approach which changes the capillary network structure based on signals sent by hemodynamic and metabolic stimuli is used in this study for more realistic assumption. The study indicates that drug delivery to solid tumors depends on the tumor induced capillary network structure. The dynamic approach generates the irregular capillary network around the tumor and predicts a higher interstitial pressure in the tumor region. This elevated interstitial pressure with irregular capillary network leads to a heterogeneous distribution of drug in the tumor region similar to in vivo observations. The investigation indicates that the drug transport properties have a significant role against the physiological barrier of drug delivery to a solid tumor.Keywords: solid tumor, physiological barriers to drug delivery, angiogenesis, microvascular network, solute transport
Procedia PDF Downloads 3128716 Sound Quality Analysis of Sloshing Noise from a Rectangular Tank
Authors: Siva Teja Golla, B. Venkatesham
Abstract:
The recent technologies in hybrid and high-end cars have subsided the noise from major sources like engines and transmission systems. This resulted in the unmasking of the previously subdued noises. These noises are becoming noticeable to the passengers, causing annoyance to them and affecting the perceived quality of the vehicle. Sloshing in the fuel tank is one such source of noise. Sloshing occurs due to the excitations undergone by the fuel tank due to the vehicle's movement. Sloshing noise occurs due to the interaction of the fluid with the surrounding tank walls or with the fluid itself. The noise resulting from the interaction of the fluid with the structure is ‘Hit noise’, and the noise due to fluid-fluid interaction is ‘Splash noise’. The type of interactions the fluid undergoes inside the tank, and the type of noise generated depends on a variety of factors like the fill level of the tank, type of fluid, presence of objects like baffles inside the tank, type and strength of the excitation, etc. There have been studies done to understand the effect of each of these parameters on the generation of different types of sloshing noises. But little work is done in the psychoacoustic aspect of these sounds. The psychoacoustic study of the sloshing noises gives an understanding of the level of annoyance it can cause to the passengers and helps in taking necessary measures to address it. In view of this, the current paper focuses on the calculation of the psychoacoustic parameters like loudness, sharpness, roughness and fluctuation strength for the sloshing noise. As the noise generation mechanisms for the hit and splash noises are different, these parameters are calculated separately for them. For this, the fluid flow regimes that predominantly cause the hit-and-splash noises are to be separately emulated inside the tank. This is done through a reciprocating test rig, which imposes reciprocating excitation to a rectangular tank filled with the fluid. By varying the frequency of excitation, the fluid flow regimes with the predominant generation of hit-and-splash noises can be separately created inside the tank. These tests are done in a quiet room and the noise generated is captured using microphones and is used for the calculation of psychoacoustic parameters of the sloshing noise. This study also includes the effect of fill level and the presence of baffles inside the tank on these parameters.Keywords: sloshing, hit noise, splash noise, sound quality
Procedia PDF Downloads 298715 Connecting Lives Inside and Outside the Classroom: Why and How to Implement Technology in the Language Learning Classroom
Authors: Geoffrey Sinha
Abstract:
This paper is primarily addressed to teachers who stand on the threshold of bringing technology and new media into their classrooms. Technology and new media, such as smart phones and tablets have changed the face of communication in general and of language teaching more specifically. New media has widespread appeal among young people in particular, so it is in the teacher’s best interests to bring new media into their lessons. It is the author’s firm belief that technology will never replace the teacher, but it is without question that the twenty-first century teacher must employ technology and new media in some form, or run the risk of failure. The level that one chooses to incorporate new media within their class is entirely in their hands.Keywords: new media, social media, technology, education, language learning
Procedia PDF Downloads 3338714 Numerical Investigation of Multiphase Flow in Pipelines
Authors: Gozel Judakova, Markus Bause
Abstract:
We present and analyze reliable numerical techniques for simulating complex flow and transport phenomena related to natural gas transportation in pipelines. Such kind of problems are of high interest in the field of petroleum and environmental engineering. Modeling and understanding natural gas flow and transformation processes during transportation is important for the sake of physical realism and the design and operation of pipeline systems. In our approach a two fluid flow model based on a system of coupled hyperbolic conservation laws is considered for describing natural gas flow undergoing hydratization. The accurate numerical approximation of two-phase gas flow remains subject of strong interest in the scientific community. Such hyperbolic problems are characterized by solutions with steep gradients or discontinuities, and their approximation by standard finite element techniques typically gives rise to spurious oscillations and numerical artefacts. Recently, stabilized and discontinuous Galerkin finite element techniques have attracted researchers’ interest. They are highly adapted to the hyperbolic nature of our two-phase flow model. In the presentation a streamline upwind Petrov-Galerkin approach and a discontinuous Galerkin finite element method for the numerical approximation of our flow model of two coupled systems of Euler equations are presented. Then the efficiency and reliability of stabilized continuous and discontinous finite element methods for the approximation is carefully analyzed and the potential of the either classes of numerical schemes is investigated. In particular, standard benchmark problems of two-phase flow like the shock tube problem are used for the comparative numerical study.Keywords: discontinuous Galerkin method, Euler system, inviscid two-fluid model, streamline upwind Petrov-Galerkin method, twophase flow
Procedia PDF Downloads 3298713 Influence of the Flow Rate Ratio in a Jet Pump on the Size of Air Bubbles
Authors: L. Grinis, N. Lubashevsky, Y. Ostrovski
Abstract:
In waste water treatment processes, aeration introduces air into a liquid. In these systems, air is introduced by different devices submerged in the waste water. Smaller bubbles result in more bubble surface area per unit of volume and higher oxygen transfer efficiency. Jet pumps are devices that use air bubbles and are widely used in waste water treatment processes. The principle of jet pumps is their ability to transfer energy of one fluid, called primary or motive, into a secondary fluid or gas. These pumps have no moving parts and are able to work in remote areas under extreme conditions. The objective of this work is to study experimentally the characteristics of the jet pump and the size of air bubbles in the laboratory water tank. The effect of flow rate ratio on pump performance is investigated in order to have a better understanding about pump behavior under various conditions, in order to determine the efficiency of receiving air bubbles different sizes. The experiments show that we should take care when increasing the flow rate ratio while seeking to decrease bubble size in the outlet flow. This study will help improve and extend the use of the jet pump in many practical applications.Keywords: jet pump, air bubbles size, retention time, waste water
Procedia PDF Downloads 3078712 Observation of the Flow Behavior for a Rising Droplet in a Mini-Slot
Authors: H. Soltani, J. Hadfield, M. Redmond, D. S. Nobes
Abstract:
The passage of oil droplets through a vertical mini-slot were investigated in this study. Oil-in-water emulsion can undergo coalescence of finer oil droplets forming droplets of a size that need to be considered individually. This occurs in a number of industrial processes and has important consequences at a scale where both body and surfaces forces are relevant. In the study, two droplet diameters of smaller than the slot width and a relatively larger diameter where the oil droplet can interact directly with the slot wall were generated. To monitor fluid motion, a particle shadow velocimetry (PSV) imaging technique was used to study fluid flow motion inside and around a single oil droplet rising in a net co-flow. The droplet was a transparent canola oil and the surrounding working fluid was glycerol, adjusted to allow a matching of refractive index between the two fluids. Particles seeded in both fluids were observed with the PSV system allowing the capture of the velocity field both within the droplet and in the surrounds. The effect of droplet size on the droplet internal circulation was observed. Part of the study was related the potential generation of flow structures, such as von Karman vortex shedding already observed in rising droplets in infinite reservoirs and their interaction with the mini-channel. Results show that two counter-rotating vortices exist inside the droplets as they pass through slot. The vorticity map analysis shows that the droplet of relatively larger size has a stronger internal circulation.Keywords: rising droplet, rectangular orifice, particle shadow velocimetry, match refractive index
Procedia PDF Downloads 1718711 Numerical Solution to Coupled Heat and Moisture Diffusion in Bio-Sourced Composite Materials
Authors: Mnasri Faiza, El Ganaoui Mohammed, Khelifa Mourad, Gabsi Slimane
Abstract:
The main objective of this paper is to describe the hydrothermal behavior through porous material of construction due to temperature gradient. The construction proposed a bi-layer structure which composed of two different materials. The first is a bio-sourced panel named IBS-AKU (inertia system building), the second is the Neopor material. This system (IBS-AKU Neopor) is developed by a Belgium company (Isohabitat). The study suggests a multi-layer structure of the IBS-AKU panel in one dimension. A numerical method was proposed afterwards, by using the finite element method and a refined mesh area to strong gradients. The evolution of temperature fields and the moisture content has been processed.Keywords: heat transfer, moisture diffusion, porous media, composite IBS-AKU, simulation
Procedia PDF Downloads 5068710 One-Step Synthesis of Titanium Dioxide Porous Microspheres by Picosecond Pulsed Laser Welding
Authors: Huiwu Yu, Xiangyou Li, Xiaoyan Zeng
Abstract:
Porous spheres have been widely used in many fields due to their attractive features. In this work, an approach for fabricating porous spheres of nanoparticles was presented, in which the nanoparticles were welded together to form micro spheres by simply irradiating the nanoparticles in liquid medium by a picosecond laser. As an example, anatase titanium dioxide was chosen as a typical material on account of its metastability. The structure and morphologies of the products were characterised by X-ray diffraction (XRD), scanning electron microscope (SEM), Raman, and high-resolution transmission electron microscopy (HRTEM), respectively. The results showed that, anatase titanium dioxide micro spheres (2-10 μm) with macroporous (10-100 nm) were prepared from nano-anatase titanium dioxide nanoparticles (10-100 nm). The formation process of polycrystalline anatase titanium dioxide microspheres was investigated with different liquid mediums and the input laser fluences. Thus, this facile laser irradiation approach might provide a way for the fabrication of porous microspheres without phase-transition.Keywords: titanium dioxide, porous microspheres, picosecond laser, nano-welding
Procedia PDF Downloads 3058709 CFD Simulation and Investigation of Critical Two-Phase Flow Rate in Wellhead Choke
Authors: Alireza Rafie Boldaji, Ahmad Saboonchi
Abstract:
Chokes are commonly used in oil and gas production systems. A choke is a restriction basically designed to control flow rates of oil and gas wells, to prevent the downstream disturbances from propagating upstream (critical flow), and to protect the surface equipment facilities against slugging at high flowing pressures. There are different methods to calculate the multiphase flow rate, one of the multiphase flow measurement methods is the separation and measurement by on¬e-phaseFlow meter, another common method is the use of movable separator, their operations are very labor-intensive and costly. The current method used is based on the flow differential pressure on both sides of choke. Three groups of correlations describing two-phase flow through wellhead chokes were examined. The first group involved simple empirical equations similar to those of Gilbert, the second group comprised derived equations of two-phase flow incorporating PVT properties, and third group is computational method. In the article we calculate the flow of oil and gas through choke with simulation of this two phase flow bye computational fluid dynamic method, we use Ansys- fluent for this simulation and finally compared results of computational simulation whit empirical equations, the results show good agreement between experimental and numerical results.Keywords: CFD, two-phase, choke, critical
Procedia PDF Downloads 2778708 Conjugate Heat Transfer Analysis of a Combustion Chamber using ANSYS Computational Fluid Dynamics to Estimate the Thermocouple Positioning in a Chamber Wall
Authors: Muzna Tariq, Ihtzaz Qamar
Abstract:
In most engineering cases, the working temperatures inside a combustion chamber are high enough that they lie beyond the operational range of thermocouples. Furthermore, design and manufacturing limitations restrict the use of internal thermocouples in many applications. Heat transfer inside a combustion chamber is caused due to interaction of the post-combustion hot fluid with the chamber wall. Heat transfer that involves an interaction between the fluid and solid is categorized as Conjugate Heat Transfer (CHT). Therefore, to satisfy the needs of CHT, CHT Analysis is performed by using ANSYS CFD tool to estimate theoretically precise thermocouple positions at the combustion chamber wall where excessive temperatures (beyond thermocouple range) can be avoided. In accordance with these Computational Fluid Dynamics (CFD) results, a combustion chamber is designed, and a prototype is manufactured with multiple thermocouple ports positioned at the specified distances so that the temperature of hot gases can be measured on the chamber wall where the temperatures do not exceed the thermocouple working range.Keywords: computational fluid dynamics, conduction, conjugate heat transfer, convection, fluid flow, thermocouples
Procedia PDF Downloads 1478707 Internet Media and Public: A Report of a Mutual Deception
Authors: Safet Zejnullahu
Abstract:
The relationship between the public and media is more than meaningful. It has been a topic of discussion as early as the birth of the media. The 'magic box' called radio adapted and transformed by following the tastes and interests of the public. Television went a step further by complementing the magic sound of the magic box with photos/images. Newspapers informed the reader, but from time to time, they also provided them the room to express their opinions. The media-public report in the traditional media is a report of a mutual respect. Today, the report between media and public should be well defined. The goal of this paper is to analyze the history of the media-public relationship, with a special emphasis on the analysis of this relationship in media of the internet time. This paper seeks to prove that the internet media has created a completely new and thus far unknown relationship between the media and public. Through research, which includes an analysis of the media in Kosovo and Albania, it will be proven that the media of the internet time has elevated this relationship to a new level, with many unknowns in terms of the functioning and role of the media. The results and findings of the paper are related to the conclusion that from the relationship in which the roles of the media and the public are known, nowadays, this relationship goes beyond the known principle and rules and is more defined as a relationship of mutual deception. The media goes beyond the line of the humility of the public, and the public seeks to direct the content of the media. The media-public report in the internet-media is a report based on mutual attempt for fraud.Keywords: media, public, report, humility, direction
Procedia PDF Downloads 1758706 Numerical Investigation of a New Two-Fluid Model for Semi-Dilute Polymer Solutions
Authors: Soroush Hooshyar, Mohamadali Masoudian, Natalie Germann
Abstract:
Many soft materials such as polymer solutions can develop localized bands with different shear rates, which are known as shear bands. Using the generalized bracket approach of nonequilibrium thermodynamics, we recently developed a new two-fluid model to study shear banding for semi-dilute polymer solutions. The two-fluid approach is an appropriate means for describing diffusion processes such as Fickian diffusion and stress-induced migration. In this approach, it is assumed that the local gradients in concentration and, if accounted for, also stress generate a nontrivial velocity difference between the components. Since the differential velocity is treated as a state variable in our model, the implementation of the boundary conditions arising from the derivative diffusive terms is straightforward. Our model is a good candidate for benchmark simulations because of its simplicity. We analyzed its behavior in cylindrical Couette flow, a rectilinear channel flow, and a 4:1 planar contraction flow. The latter problem was solved using the OpenFOAM finite volume package and the impact of shear banding on the lip and salient vortices was investigated. For the other smooth geometries, we employed a standard Chebyshev pseudospectral collocation method. The results showed that the steady-state solution is unique with respect to initial conditions, deformation history, and the value of the diffusivity constant. However, smaller the value of the diffusivity constant is, the more time it takes to reach the steady state.Keywords: nonequilibrium thermodynamics, planar contraction, polymer solutions, shear banding, two-fluid approach
Procedia PDF Downloads 332