Search results for: depression detection
3942 Attack Redirection and Detection using Honeypots
Authors: Chowduru Ramachandra Sharma, Shatunjay Rawat
Abstract:
A false positive state is when the IDS/IPS identifies an activity as an attack, but the activity is acceptable behavior in the system. False positives in a Network Intrusion Detection System ( NIDS ) is an issue because they desensitize the administrator. It wastes computational power and valuable resources when rules are not tuned properly, which is the main issue with anomaly NIDS. Furthermore, most false positives reduction techniques are not performed during the real-time of attempted intrusions; instead, they have applied afterward on collected traffic data and generate alerts. Of course, false positives detection in ‘offline mode’ is tremendously valuable. Nevertheless, there is room for improvement here; automated techniques still need to reduce False Positives in real-time. This paper uses the Snort signature detection model to redirect the alerted attacks to Honeypots and verify attacks.Keywords: honeypot, TPOT, snort, NIDS, honeybird, iptables, netfilter, redirection, attack detection, docker, snare, tanner
Procedia PDF Downloads 1563941 Preliminary Results on a Maximum Mean Discrepancy Approach for Seizure Detection
Authors: Boumediene Hamzi, Turky N. AlOtaiby, Saleh AlShebeili, Arwa AlAnqary
Abstract:
We introduce a data-driven method for seizure detection drawing on recent progress in Machine Learning. The method is based on embedding probability measures in a high (or infinite) dimensional reproducing kernel Hilbert space (RKHS) where the Maximum Mean Discrepancy (MMD) is computed. The MMD is metric between probability measures that are computed as the difference between the means of probability measures after being embedded in an RKHS. Working in RKHS provides a convenient, general functional-analytical framework for theoretical understanding of data. We apply this approach to the problem of seizure detection.Keywords: kernel methods, maximum mean discrepancy, seizure detection, machine learning
Procedia PDF Downloads 2383940 Strabismus Detection Using Eye Alignment Stability
Authors: Anoop T. R., Otman Basir, Robert F. Hess, Ben Thompson
Abstract:
Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. Currently, many children with strabismus remain undiagnosed until school entry because current automated screening methods have limited success in the preschool age range. A method for strabismus detection using eye alignment stability (EAS) is proposed. This method starts with face detection, followed by facial landmark detection, eye region segmentation, eye gaze extraction, and eye alignment stability estimation. Binarization and morphological operations are performed for segmenting the pupil region from the eye. After finding the EAS, its absolute value is used to differentiate the strabismic eye from the non-strabismic eye. If the value of the eye alignment stability is greater than a particular threshold, then the eyes are misaligned, and if its value is less than the threshold, the eyes are aligned. The method was tested on 175 strabismic and non-strabismic images obtained from Kaggle and Google Photos. The strabismic eye is taken as a positive class, and the non-strabismic eye is taken as a negative class. The test produced a true positive rate of 100% and a false positive rate of 7.69%.Keywords: strabismus, face detection, facial landmarks, eye segmentation, eye gaze, binarization
Procedia PDF Downloads 783939 Violence in the School Environment: When the Teenager Encounters the Threat of Depression
Authors: Ndje Ndje Mireille
Abstract:
For some years in Cameroon, there has been an increase in violence in schools. This violence has gone from verbal to physical, sometimes going as far as murder. At the centre of this violence, we find the student who is a teenager in the midst of both physical and psychological changes. The unpredictable transformations of his body, the unexpected emotions arrouse when he encouters someonelse, intrusion, shortcomings, boredom, loneliness and self-deception are the threats to which the teenager faces daily. From the psychopathological point of view, the greatest threat in adolesence is probably the depresive threat. During adolescence and for several resons, the subject is confronted with the self image. He displays certantity which sometimes hides great uncertaintity about what leads him to manifest some particular behaviours or undertake certain actions. Faced with aggressiveness twards those he confronts, he feels more or less guilt. This can lead a certain number of adolescents to feel heplessness faced to their vis-à-vis, faced to life. This helplessness is sometimes reinforced by the social, cultural and economic context in which they are. The teeneger then feels threatens by this depression which, when it reaches its extreme, it is manifested by the feeling that he can no longer do anything. Generally, the depressive threats manifest itself in defensive forms vis-à-vis with the depression itself. Reason why, it is indeed a threat and not a threshold already crossed. This threat often manifests itself in inappropriate forms of attack on one’s own body as seen in a number of repetitive risky behaviours. We also see teenegers confront peers and even adults through physical attacks and often go as far as murder. All these behaviours appears as an absurd way of attacking and at the same time confronting the feeling of remaining alive. This depressive threats can also be expressed in forms of attacks on an individual’s thinking abilities or more explicitely in the form of accademic downfall. The depressive threats does not sum up all the problems of adolescence, but, undoubtly represents currently, one of the deepest form of unease adolescents face.Keywords: violence, school, depression threats, adolescent, behavior
Procedia PDF Downloads 833938 Outdoor Anomaly Detection with a Spectroscopic Line Detector
Authors: O. J. G. Somsen
Abstract:
One of the tasks of optical surveillance is to detect anomalies in large amounts of image data. However, if the size of the anomaly is very small, limited information is available to distinguish it from the surrounding environment. Spectral detection provides a useful source of additional information and may help to detect anomalies with a size of a few pixels or less. Unfortunately, spectral cameras are expensive because of the difficulty of separating two spatial in addition to one spectral dimension. We investigate the possibility of modifying a simpler spectral line detector for outdoor detection. This may be especially useful if the area of interest forms a line, such as the horizon. We use a monochrome CCD that also enables detection into the near infrared. A simple camera is attached to the setup to determine which part of the environment is spectrally imaged. Our preliminary results indicate that sensitive detection of very small targets is indeed possible. Spectra could be taken from the various targets by averaging columns in the line image. By imaging a set of lines of various width we found narrow lines that could not be seen in the color image but remained visible in the spectral line image. A simultaneous analysis of the entire spectra can produce better results than visual inspection of the line spectral image. We are presently developing calibration targets for spatial and spectral focusing and alignment with the spatial camera. This will present improved results and more use in outdoor applicationKeywords: anomaly detection, spectroscopic line imaging, image analysis, outdoor detection
Procedia PDF Downloads 4813937 Developing E-Psychological Instrument for an Effective Flood Victims' Mental Health Management
Authors: A. Nazilah
Abstract:
Floods are classified among sudden onset phenomenon and the highest natural disasters happen in Malaysia. Floods have a negative impact on mental health. Measuring the psychopathology symptoms among flood victims is an important step for intervention and treatment. However, there is a gap of a valid, reliable and an efficient instrument to measure flood victims' mental health, especially in Malaysia. This study aims to replicate the earlier studies of developing e-Psychological Instrument for Flood Victims (e-PIFV). The e-PIFV is a digital self-report inventory that has 84 items with 4 dimension scales namely stress, anxiety, depression, and trauma. Two replicated studies have been done to validate the instrument using expert judgment method. Results showed that content coefficient validity for each sub-scale of the instrument ranging from moderate to very strong validity. In study I, coefficient values of stress was 0.7, anxiety was 0.9, depression was 1.0, trauma was 0.6 and overall was 0.8. In study II, the coefficient values for two subscales and overall scale were increased. The coefficient value of stress was 0.8, anxiety was 0.9, depression was 1.0, trauma was 0.8 and overall was 0.9. This study supports the theoretical framework and provides practical implication in the field of clinical psychology and flood management.Keywords: developing e-psychological instrument, content validity, instrument, mental health management, flood victims, psychopathology, validity
Procedia PDF Downloads 1283936 Bayesian Prospective Detection of Small Area Health Anomalies Using Kullback Leibler Divergence
Authors: Chawarat Rotejanaprasert, Andrew Lawson
Abstract:
Early detection of unusual health events depends on the ability to detect rapidly any substantial changes in disease, thus facilitating timely public health interventions. To assist public health practitioners to make decisions, statistical methods are adopted to assess unusual events in real time. We introduce a surveillance Kullback-Leibler (SKL) measure for timely detection of disease outbreaks for small area health data. The detection methods are compared with the surveillance conditional predictive ordinate (SCPO) within the framework of Bayesian hierarchical Poisson modeling and applied to a case study of a group of respiratory system diseases observed weekly in South Carolina counties. Properties of the proposed surveillance techniques including timeliness and detection precision are investigated using a simulation study.Keywords: Bayesian, spatial, temporal, surveillance, prospective
Procedia PDF Downloads 3123935 Roof Material Detection Based on Object-Based Approach Using WorldView-2 Satellite Imagery
Authors: Ebrahim Taherzadeh, Helmi Z. M. Shafri, Kaveh Shahi
Abstract:
One of the most important tasks in urban area remote sensing is detection of impervious surface (IS), such as building roof and roads. However, detection of IS in heterogeneous areas still remains as one of the most challenging works. In this study, detection of concrete roof using an object-oriented approach was proposed. A new rule-based classification was developed to detect concrete roof tile. The proposed rule-based classification was applied to WorldView-2 image. Results showed that the proposed rule has good potential to predict concrete roof material from WorldView-2 images with 85% accuracy.Keywords: object-based, roof material, concrete tile, WorldView-2
Procedia PDF Downloads 4243934 Machine Learning Approach for Anomaly Detection in the Simulated Iec-60870-5-104 Traffic
Authors: Stepan Grebeniuk, Ersi Hodo, Henri Ruotsalainen, Paul Tavolato
Abstract:
Substation security plays an important role in the power delivery system. During the past years, there has been an increase in number of attacks on automation networks of the substations. In spite of that, there hasn’t been enough focus dedicated to the protection of such networks. Aiming to design a specialized anomaly detection system based on machine learning, in this paper we will discuss the IEC 60870-5-104 protocol that is used for communication between substation and control station and focus on the simulation of the substation traffic. Firstly, we will simulate the communication between substation slave and server. Secondly, we will compare the system's normal behavior and its behavior under the attack, in order to extract the right features which will be needed for building an anomaly detection system. Lastly, based on the features we will suggest the anomaly detection system for the asynchronous protocol IEC 60870-5-104.Keywords: Anomaly detection, IEC-60870-5-104, Machine learning, Man-in-the-Middle attacks, Substation security
Procedia PDF Downloads 3713933 Overview and Future Opportunities of Sarcasm Detection on Social Media Communications
Authors: Samaneh Nadali, Masrah Azrifah Azmi Murad, Nurfadhlina Mohammad Sharef
Abstract:
Sarcasm is a common phenomenon in social media which is a nuanced form of language for stating the opposite of what is implied. Due to the intentional ambiguity, analysis of sarcasm is a difficult task not only for a machine but even for a human. Although sarcasm detection has an important effect on sentiment, it is usually ignored in social media analysis because sarcasm analysis is too complicated. While there is a few systems exist which can detect sarcasm, almost no work has been carried out on a study and the review of the existing work in this area. This survey presents a nearly full image of sarcasm detection techniques and the related fields with brief details. The main contributions of this paper include the illustration of the recent trend of research in the sarcasm analysis and we highlight the gaps and propose a new framework that can be explored.Keywords: sarcasm detection, sentiment analysis, social media, sarcasm analysis
Procedia PDF Downloads 4583932 Developing Artificial Neural Networks (ANN) for Falls Detection
Authors: Nantakrit Yodpijit, Teppakorn Sittiwanchai
Abstract:
The number of older adults is rising rapidly. The world’s population becomes aging. Falls is one of common and major health problems in the elderly. Falls may lead to acute and chronic injuries and deaths. The fall-prone individuals are at greater risk for decreased quality of life, lowered productivity and poverty, social problems, and additional health problems. A number of studies on falls prevention using fall detection system have been conducted. Many available technologies for fall detection system are laboratory-based and can incur substantial costs for falls prevention. The utilization of alternative technologies can potentially reduce costs. This paper presents the new design and development of a wearable-based fall detection system using an Accelerometer and Gyroscope as motion sensors for the detection of body orientation and movement. Algorithms are developed to differentiate between Activities of Daily Living (ADL) and falls by comparing Threshold-based values with Artificial Neural Networks (ANN). Results indicate the possibility of using the new threshold-based method with neural network algorithm to reduce the number of false positive (false alarm) and improve the accuracy of fall detection system.Keywords: aging, algorithm, artificial neural networks (ANN), fall detection system, motion sensorsthreshold
Procedia PDF Downloads 4973931 Multiscale Edge Detection Based on Nonsubsampled Contourlet Transform
Authors: Enqing Chen, Jianbo Wang
Abstract:
It is well known that the wavelet transform provides a very effective framework for multiscale edges analysis. However, wavelets are not very effective in representing images containing distributed discontinuities such as edges. In this paper, we propose a novel multiscale edge detection method in nonsubsampled contourlet transform (NSCT) domain, which is based on the dominant multiscale, multidirection edge expression and outstanding edge location of NSCT. Through real images experiments, simulation results demonstrate that the proposed method is better than other edge detection methods based on Canny operator, wavelet and contourlet. Additionally, the proposed method also works well for noisy images.Keywords: edge detection, NSCT, shift invariant, modulus maxima
Procedia PDF Downloads 4903930 Comparison the Effectiveness of Pain Cognitive- Behavioral Therapy and Its Computerized Version on Reduction of Pain Intensity, Depression, Anger and Anxiety in Children with Cancer: A Randomized Controlled Trial
Authors: Najmeh Hamid, Vajiheh Hamedy , Zahra Rostamianasl
Abstract:
Background: Cancer is one of the medical problems that have been associated with pain. Moreover, the pain is combined with negative emotions such as anxiety, depression and anger. Poor pain management causes negative effects on the quality of life, which results in negative effects that continue a long time after the painful experiences. Objectives: The aim of this research was to compare the effectiveness of Common Cognitive Behavioral Therapy for Pain and its computerized version on the reduction of pain intensity, depression, anger and anxiety in children with cancer. Methods: The research method of this “Randomized Controlled Clinical Trial” was a pre, post-test and follow-up with a control group. In this research, we have examined the effectiveness of Common Cognitive Behavioral Therapy for Pain and its computerized version on the reduction of pain intensity, anxiety, depression and anger in children with cancer in Ahvaz. Two psychological interventions (cognitive behavioral therapy for pain and the computerized version) were compared with the control group. The sample consisted of 60 children aged 8 to 12 years old with different types of cancer at Shafa hospital in Ahwaz. According to the including and excluding criteria such as age, socioeconomic status, clinical diagnostic interview and other criteria, 60 subjects were selected. Then, randomly, 45 subjects were selected. The subjects were randomly divided into three groups of 15 (two experimental and one control group). The research instruments included Spielberger Anxiety Inventory (STAY-2) and International Pain Measurement Scale. The first experimental group received 6 sessions of cognitive-behavioral therapy for 6 weeks, and the second group was subjected to a computerized version of cognitive-behavioral therapy for 6 weeks, but the control group did not receive any interventions. For ethical considerations, a version of computerized cognitive-behavioral therapy was provided to them. After 6 weeks, all three groups were evaluated as post-test and eventually after a one-month follow-up. Results: The findings of this study indicated that both interventions could reduce the negative emotions (pain, anger, anxiety, depression) associated with cancer in children in comparison with a control group (p<0.0001). In addition, there were no significant differences between the two interventions (p<0.01). It means both interventions are useful for reducing the negative effects of pain and enhancing adjustment. Conclusion: we can use CBT in situations in which there is no access to psychologists and psychological services. In addition, it can be a useful alternative to conventional psychological interventions.Keywords: pain, children, psychological intervention, cancer, anger, anxiety, depression
Procedia PDF Downloads 803929 Implementation of Edge Detection Based on Autofluorescence Endoscopic Image of Field Programmable Gate Array
Authors: Hao Cheng, Zhiwu Wang, Guozheng Yan, Pingping Jiang, Shijia Qin, Shuai Kuang
Abstract:
Autofluorescence Imaging (AFI) is a technology for detecting early carcinogenesis of the gastrointestinal tract in recent years. Compared with traditional white light endoscopy (WLE), this technology greatly improves the detection accuracy of early carcinogenesis, because the colors of normal tissues are different from cancerous tissues. Thus, edge detection can distinguish them in grayscale images. In this paper, based on the traditional Sobel edge detection method, optimization has been performed on this method which considers the environment of the gastrointestinal, including adaptive threshold and morphological processing. All of the processes are implemented on our self-designed system based on the image sensor OV6930 and Field Programmable Gate Array (FPGA), The system can capture the gastrointestinal image taken by the lens in real time and detect edges. The final experiments verified the feasibility of our system and the effectiveness and accuracy of the edge detection algorithm.Keywords: AFI, edge detection, adaptive threshold, morphological processing, OV6930, FPGA
Procedia PDF Downloads 2303928 Detection of Nanotoxic Material Using DNA Based QCM
Authors: Juneseok You, Chanho Park, Kuehwan Jang, Sungsoo Na
Abstract:
Sensing of nanotoxic materials is strongly important, as their engineering applications are growing recently and results in that nanotoxic material can harmfully influence human health and environment. In current study we report the quartz crystal microbalance (QCM)-based, in situ and real-time sensing of nanotoxic-material by frequency shift. We propose the in situ detection of nanotoxic material of zinc oxice by using QCM functionalized with a taget-specific DNA. Since the mass of a target material is comparable to that of an atom, the mass change caused by target binding to DNA on the quartz electrode is so small that it is practically difficult to detect the ions at low concentrations. In our study, we have demonstrated the in-situ and fast detection of zinc oxide using the quartz crystal microbalance (QCM). The detection was derived from the DNA hybridization between the DNA on the quartz electrode. The results suggest that QCM-based detection opens a new avenue for the development of a practical water-testing sensor.Keywords: nanotoxic material, qcm, frequency, in situ sensing
Procedia PDF Downloads 4223927 The Role of Cultural Expectations in Emotion Regulation among Nepali Adolescents
Authors: Martha Berg, Megan Ramaiya, Andi Schmidt, Susanna Sharma, Brandon Kohrt
Abstract:
Nepali adolescents report tension and negative emotion due to perceived expectations of both academic and social achievement. These societal goals, which are internalized through early-life socialization, drive the development of self-regulatory processes such as emotion regulation. Emotion dysregulation is linked with adverse psychological outcomes such as depression, self-harm, and suicide, which are public health concerns for organizations working with Nepali adolescents. This study examined the relation among socialization, internalized cultural goals, and emotion regulation to inform interventions for reducing depression and suicide in this population. Participants included 102 students in grades 7 through 9 in a post-earthquake school setting in rural Kathmandu valley. All participants completed a tablet-based battery of quantitative measures, comprising transculturally adapted assessments of emotion regulation, depression, and self-harm/suicide ideation and behavior. Qualitative measures included two focus groups and semi-structured interviews with 22 students and 3 parents. A notable proportion of the sample reported depression symptoms in the past 2 weeks (68%), lifetime self-harm ideation (28%), and lifetime suicide attempts (13%). Students who lived with their nuclear family reported lower levels of difficulty than those who lived with more distant relatives (z=2.16, p=.03), which suggests a link between family environment and adolescent emotion regulation, potentially mediated by socialization and internalization of cultural goals. These findings call for further research into the aspects of nuclear versus extended family environments that shape the development of emotion regulation.Keywords: adolescent mental health, emotion regulation, Nepal, socialization
Procedia PDF Downloads 2743926 Study on the Experiences and Emotions Associated with Happiness among High School Students
Authors: Khishig-Undrakh Mijgee, Yerkyejan Amanbyek, Yilina, Bayarkhuu Agvaanbayar, Anudari Chingiskhuu
Abstract:
The study of happiness focuses on how people perceive their well-being, the ways they seek happiness, and the factors that affect their feelings of happiness, including self-esteem, depression, satisfaction, and the quality of life. Researchers also aim to explore the relationship between happiness, self-esteem, depression, satisfaction, and quality of life, with the goal of assessing people's sense of achievement. Happiness is strongly linked to an individual's sense of achievement and overall life satisfaction. In this article, we will discuss the findings of a study that examines the feelings of happiness and the factors that influence them among 562 high school students.Keywords: happiness, high school students, feelings of happiness, happiness level
Procedia PDF Downloads 543925 Detection of Epinephrine in Chicken Serum at Iron Oxide Screen Print Modified Electrode
Authors: Oluwole Opeyemi Dina, Saheed E. Elugoke, Peter Olutope Fayemi, Omolola E. Fayemi
Abstract:
This study presents the detection of epinephrine (EP) at Fe₃O₄ modified screen printed silver electrode (SPSE). The iron oxide (Fe₃O₄) nanoparticles were characterized with UV-visible spectroscopy, Fourier-Transform infrared spectroscopy (FT-IR) and Scanning electron microscopy (SEM) prior to the modification of the SPSE. The EP oxidation peak current (Iap) increased with an increase in the concentration of EP as well as the scan rate (from 25 - 400 mVs⁻¹). Using cyclic voltammetry (CV), the relationship between Iap and EP concentration was linear over a range of 3.8 -118.9 µM and 118.9-175 µM with a detection limit of 41.99 µM and 83.16 µM, respectively. Selective detection of EP in the presence of ascorbic acid was also achieved at this electrode.Keywords: screenprint electrode, iron oxide nanoparticle, epinephrine, serum, cyclic voltametry
Procedia PDF Downloads 1673924 Women's Sexual Experience in Pakistan: Associations of Patriarchy and Psychological Distress
Authors: Sana Tahir, Haya Fatimah
Abstract:
Sexuality is a social construct which is considered as the most confidential affair among individuals where women tend to refrain themselves more from sexually explicit behavior than men. Patriarchy has an elevated influence on the expression of female sexuality. While women’s sexual experiences are suppressed men are entitled to pleasure themselves according to their desire. The purpose of this study is to explore how the internalization of patriarchy affects women’s sexuality. Similarly, it was investigated how women sexuality is associated with psychological distress. The sample consisted of 100(age 20-40) married women. Participants were selected through a combination of convenient and snowball sampling. Women were asked to provide data regarding patriarchal beliefs, sexual awareness and DAS (depression, anxiety, and stress). Pearson Product Moment Correlation Analyze was conducted to examine the nature of the relationship between patriarchal beliefs, sexual awareness and psychological distress in married women. There is a significant negative relation between sexual awareness and patriarchal beliefs (r=-.391, p<.001). There also lies a significant negative relation between sexual awareness and depression, anxiety, stress (r=-.359, p<.001) (r=.301, p=.002) (r=-.221, p=.027). The results reveal that women with strong patriarchal beliefs have less sexual awareness in terms of sexual consciousness, sexual monitoring, sexual assertiveness and sexual appeal consciousness. Similarly, women with strong patriarchal beliefs and less sexual awareness have high levels of depression, anxiety, and stress.Keywords: female sexuality, patriarchy, psychological distress, sexual awareness
Procedia PDF Downloads 3013923 Same-Day Detection Method of Salmonella Spp., Shigella Spp. and Listeria Monocytogenes with Fluorescence-Based Triplex Real-Time PCR
Authors: Ergun Sakalar, Kubra Bilgic
Abstract:
Faster detection and characterization of pathogens are the basis of the evoid from foodborne pathogens. Salmonella spp., Shigella spp. and Listeria monocytogenes are common foodborne bacteria that are among the most life-threatining. It is important to rapid and accurate detection of these pathogens to prevent food poisoning and outbreaks or to manage food chains. The present work promise to develop a sensitive, species specific and reliable PCR based detection system for simultaneous detection of Salmonella spp., Shigella spp. and Listeria monocytogenes. For this purpose, three genes were picked out, ompC for Salmonella spp., ipaH for Shigella spp. and hlyA for L. monocytogenes. After short pre-enrichment of milk was passed through a vacuum filter and bacterial DNA was exracted using commercially available kit GIDAGEN®(Turkey, İstanbul). Detection of amplicons was verified by examination of the melting temperature (Tm) that are 72° C, 78° C, 82° C for Salmonella spp., Shigella spp. and L. monocytogenes, respectively. The method specificity was checked against a group of bacteria strains, and also carried out sensitivity test resulting in under 10² CFU mL⁻¹ of milk for each bacteria strain. Our results show that the flourescence based triplex qPCR method can be used routinely to detect Salmonella spp., Shigella spp. and L. monocytogenes during the milk processing procedures in order to reduce cost, time of analysis and the risk of foodborne disease outbreaks.Keywords: evagreen, food-born bacteria, pathogen detection, real-time pcr
Procedia PDF Downloads 2443922 Latency-Based Motion Detection in Spiking Neural Networks
Authors: Mohammad Saleh Vahdatpour, Yanqing Zhang
Abstract:
Understanding the neural mechanisms underlying motion detection in the human visual system has long been a fascinating challenge in neuroscience and artificial intelligence. This paper presents a spiking neural network model inspired by the processing of motion information in the primate visual system, particularly focusing on the Middle Temporal (MT) area. In our study, we propose a multi-layer spiking neural network model to perform motion detection tasks, leveraging the idea that synaptic delays in neuronal communication are pivotal in motion perception. Synaptic delay, determined by factors like axon length and myelin insulation, affects the temporal order of input spikes, thereby encoding motion direction and speed. Overall, our spiking neural network model demonstrates the feasibility of capturing motion detection principles observed in the primate visual system. The combination of synaptic delays, learning mechanisms, and shared weights and delays in SMD provides a promising framework for motion perception in artificial systems, with potential applications in computer vision and robotics.Keywords: neural network, motion detection, signature detection, convolutional neural network
Procedia PDF Downloads 893921 Inverter IGBT Open–Circuit Fault Detection Using Park's Vectors Enhanced by Polar Coordinates
Authors: Bendiabdellah Azzeddine, Cherif Bilal Djamal Eddine
Abstract:
The three-phase power converter voltage structure is widely used in many power applications but its failure can lead to partial or total loss of control of the phase currents and can cause serious system malfunctions or even a complete system shutdown. To ensure continuity of service in all circumstances, effective and rapid techniques of detection and location of inverter fault is to be implemented. The present paper is dedicated to open-circuit fault detection in a three-phase two-level inverter fed induction motor. For detection purpose, the proposed contribution addresses the Park’s current vectors associated to a polar coordinates calculation tool to compute the exact value of the fault angle corresponding directly to the faulty IGBT switch. The merit of the proposed contribution is illustrated by experimental results.Keywords: diagnosis, detection, Park’s vectors, polar coordinates, open-circuit fault, inverter, IGBT switch
Procedia PDF Downloads 4023920 Comparative Analysis of Edge Detection Techniques for Extracting Characters
Authors: Rana Gill, Chandandeep Kaur
Abstract:
Segmentation of images can be implemented using different fundamental algorithms like edge detection (discontinuity based segmentation), region growing (similarity based segmentation), iterative thresholding method. A comprehensive literature review relevant to the study gives description of different techniques for vehicle number plate detection and edge detection techniques widely used on different types of images. This research work is based on edge detection techniques and calculating threshold on the basis of five edge operators. Five operators used are Prewitt, Roberts, Sobel, LoG and Canny. Segmentation of characters present in different type of images like vehicle number plate, name plate of house and characters on different sign boards are selected as a case study in this work. The proposed methodology has seven stages. The proposed system has been implemented using MATLAB R2010a. Comparison of all the five operators has been done on the basis of their performance. From the results it is found that Canny operators produce best results among the used operators and performance of different edge operators in decreasing order is: Canny>Log>Sobel>Prewitt>Roberts.Keywords: segmentation, edge detection, text, extracting characters
Procedia PDF Downloads 4263919 A Dynamic Ensemble Learning Approach for Online Anomaly Detection in Alibaba Datacenters
Authors: Wanyi Zhu, Xia Ming, Huafeng Wang, Junda Chen, Lu Liu, Jiangwei Jiang, Guohua Liu
Abstract:
Anomaly detection is a first and imperative step needed to respond to unexpected problems and to assure high performance and security in large data center management. This paper presents an online anomaly detection system through an innovative approach of ensemble machine learning and adaptive differentiation algorithms, and applies them to performance data collected from a continuous monitoring system for multi-tier web applications running in Alibaba data centers. We evaluate the effectiveness and efficiency of this algorithm with production traffic data and compare with the traditional anomaly detection approaches such as a static threshold and other deviation-based detection techniques. The experiment results show that our algorithm correctly identifies the unexpected performance variances of any running application, with an acceptable false positive rate. This proposed approach has already been deployed in real-time production environments to enhance the efficiency and stability in daily data center operations.Keywords: Alibaba data centers, anomaly detection, big data computation, dynamic ensemble learning
Procedia PDF Downloads 2033918 Biostratigraphy of Neogene and Quaternary Deposits of the West Turkmen Depression
Authors: Arzu Javadova
Abstract:
The complex of sedimentary deposits that make up the West Turkmen Basin is almost completely hidden under the Quaternary formations. The most ancient deposits emerging on the surface in some places are the deposits of the Red Color Suite of the Pliocene. Miocene deposits are exposed only at the Western end of the Kopet Dag. The main object of stratigraphic, including micropaleontological studies, were the deposits of the Quaternary and Pliocene forming marine and coastal structures. The identified stratigraphic units have certain characteristic Ostracod complexes. The fauna of the Ostracod acquires special significance in the stratification of Neogene and Quaternary deposits. Ostracods of the Neogene, Pliocene and Quaternary deposits of the West Turkmen depression are represented by a large part of the species common in the corresponding deposits of Azerbaijan and Iran.Keywords: neogene, quaternary, turkmenistan, south caspian basin, ostracoda, foraminifera, biostratigraphy, paleontology
Procedia PDF Downloads 633917 Depression among Pregnant Women with Husbands Abroad during the Pregnancy
Authors: Usama Bin Zubair, Syed Azhar Ali
Abstract:
Introduction: Depression is emerging as a major public health problem in all parts of the world. Developing countries have a unique socioeconomic structure that affects the lives of its inhabitants in several ways. Going abroad for employment is one of the common social problems which have been faced by young males in developing countries. This included both highly qualified individuals as well as the labor class. Objective: To determine the difference in the presence of depressive symptoms among pregnant women with husbands living abroad and those with husbands living with them in Azad Jammu and Kashmir. Methods: The sample population comprised of pregnant women reporting for an antenatal checkup at Amna hospital Rawalakot. Cases constituted the pregnant women with husbands living abroad while controls were the pregnant women with husbands living with them. Patient health questionnaire-9 (PHQ-9) was used to record the presence and severity of depressive symptoms. Age, gestation, parity, rural or urban origin, education, level of family income, daily contact hours on the telephone or what’s app, previous pregnancy loss or complications, number of years abroad and visits to home per year were associated with the presence of depressive symptoms. Findings: The mean age of the study participants was 29.73 ±5.395 years. Sixty-six had significant depression in the case group, while 14 had in the control group (p-value<0.001). Education and rural background had a significant difference between the case and the control group. Less number of visits per year of the husband was strongly linked with the presence of depressive symptoms among the cases. Conclusion: Pregnant women with husbands abroad were found more prone to develop depressive symptoms as compared to those with husbands living with them. Special attention should be paid to the women whose husband had a lesser number of visits to the country.Keywords: depression, pregnancy, lack of support, war zone
Procedia PDF Downloads 1253916 Medical Image Watermark and Tamper Detection Using Constant Correlation Spread Spectrum Watermarking
Authors: Peter U. Eze, P. Udaya, Robin J. Evans
Abstract:
Data hiding can be achieved by Steganography or invisible digital watermarking. For digital watermarking, both accurate retrieval of the embedded watermark and the integrity of the cover image are important. Medical image security in Teleradiology is one of the applications where the embedded patient record needs to be extracted with accuracy as well as the medical image integrity verified. In this research paper, the Constant Correlation Spread Spectrum digital watermarking for medical image tamper detection and accurate embedded watermark retrieval is introduced. In the proposed method, a watermark bit from a patient record is spread in a medical image sub-block such that the correlation of all watermarked sub-blocks with a spreading code, W, would have a constant value, p. The constant correlation p, spreading code, W and the size of the sub-blocks constitute the secret key. Tamper detection is achieved by flagging any sub-block whose correlation value deviates by more than a small value, ℇ, from p. The major features of our new scheme include: (1) Improving watermark detection accuracy for high-pixel depth medical images by reducing the Bit Error Rate (BER) to Zero and (2) block-level tamper detection in a single computational process with simultaneous watermark detection, thereby increasing utility with the same computational cost.Keywords: Constant Correlation, Medical Image, Spread Spectrum, Tamper Detection, Watermarking
Procedia PDF Downloads 1973915 Eating Disorders and Eating Behaviors in Morbid Obese Women with and without Type 2 Diabetes
Authors: Azadeh Mottaghi, Zeynab Shakeri
Abstract:
Background: Eating disorders (ED) are group of psychological disorders that significantly impair physical health and psychosocial function. EDconsists wide range of morbidity such as loss of eating control, binge eating disorder(BED), night eating syndrome (NES), and bulimia nervosa. Eating behavior is a wide range term that includes food choices, eating patterns, eating problems. In this study, current knowledge will be discussed aboutcomparison of eating disorders and eating behaviors in morbid obese women with and without type 2 diabetes. Methods: 231 womenwith morbid obesity were included in the study.Loss of eating control, Binge eating disorder and Bulimia nervosa, Night eating syndrome, and eating behaviors and psychosocial factorswere assessed. SPSS version 20 was used for statistical analysis. A p-value of <0.05 was considered significant. Results: There was a significant difference between women with and without diabetes in case of binge eating disorder (76.3% vs. 47.3%, p=0.001). Women with the least Interpersonal support evaluation list (ISEL) scores had a higher risk of eating disorders, and it is more common among diabetics (29.31% vs. 30.45%, p= 0.050). There was no significant difference between depression level and BDI score among women with or without diabetes. Although 38.5% (n=56) of women with diabetes and 50% (n=71) of women without diabetes had minimal depression. The logistic regression model has shown that women without diabetes had lower odds of exhibiting BED (OR=0.28, 95% CI 0.142-0.552).Women with and without diabetes with high school degree (OR=5.54, 95% CI 2.46-9.45, P= 0.0001 & OR=6.52, 95% CI 3.15-10.56, respectively) and moderate depression level (OR=2.03, 95% CI 0.98-3.95 & OR=3.12, 95% CI 2.12-4.56, P= 0.0001) had higher odds of BED. Conclusion: The result of the present study shows that the odds of BED was lower in non-diabetic women with morbid obesity. Women with morbid obesity who had high school degree and moderate depression level had more odds for BED.Keywords: eating disorders binge eating disorder, night eating syndrome, bulimia nervosa, morbid obesity
Procedia PDF Downloads 1373914 A Microfluidic Biosensor for Detection of EGFR 19 Deletion Mutation Targeting Non-Small Cell Lung Cancer on Rolling Circle Amplification
Authors: Ji Su Kim, Bo Ram Choi, Ju Yeon Cho, Hyukjin Lee
Abstract:
Epidermal growth factor receptor (EGFR) 19 deletion mutation gene is over-expressed in carcinoma patient. EGFR 19 deletion mutation is known as typical biomarker of non-small cell lung cancer (NSCLC), which one section in the coding exon 19 of EGFR is deleted. Therefore, there have been many attempts over the years to detect EGFR 19 deletion mutation for replacing conventional diagnostic method such as PCR and tissue biopsy. We developed a simple and facile detection platform based on Rolling Circle Amplification (RCA), which provides highly amplified products in isothermal amplification of the ligated DNA template. Limit of detection (~50 nM) and a faster detection time (~30 min) could be achieved by introducing RCA.Keywords: EGFR19, cancer, diagnosis, rolling circle amplification (RCA), hydrogel
Procedia PDF Downloads 2553913 Feedforward Neural Network with Backpropagation for Epilepsy Seizure Detection
Authors: Natalia Espinosa, Arthur Amorim, Rudolf Huebner
Abstract:
Epilepsy is a chronic neural disease and around 50 million people in the world suffer from this disease, however, in many cases, the individual acquires resistance to the medication, which is known as drug-resistant epilepsy, where a detection system is necessary. This paper showed the development of an automatic system for seizure detection based on artificial neural networks (ANN), which are common techniques of machine learning. Discrete Wavelet Transform (DWT) is used for decomposing electroencephalogram (EEG) signal into main brain waves, with these frequency bands is extracted features for training a feedforward neural network with backpropagation, finally made a pattern classification, seizure or non-seizure. Obtaining 95% accuracy in epileptic EEG and 100% in normal EEG.Keywords: Artificial Neural Network (ANN), Discrete Wavelet Transform (DWT), Epilepsy Detection , Seizure.
Procedia PDF Downloads 226