Search results for: data integrity
25472 Lennox-gastaut Syndrome Associated with Dysgenesis of Corpus Callosum
Authors: A. Bruce Janati, Muhammad Umair Khan, Naif Alghassab, Ibrahim Alzeir, Assem Mahmoud, M. Sammour
Abstract:
Rationale: Lennox-Gastaut syndrome(LGS) is an electro-clinical syndrome composed of the triad of mental retardation, multiple seizure types, and the characteristic generalized slow spike-wave complexes in the EEG. In this article, we report on two patients with LGS whose brain MRI showed dysgenesis of corpus callosum(CC). We review the literature and stress the role of CC in the genesis of secondary bilateral synchrony(SBS). Method: This was a clinical study conducted at King Khalid Hospital. Results: The EEG was consistent with LGS in patient 1 and unilateral slow spike-wave complexes in patient 2. The MRI showed hypoplasia of the splenium of CC in patient 1, and global hypoplasia of CC combined with Joubert syndrome in patient 2. Conclusion: Based on the data, we proffer the following hypotheses: 1-Hypoplasia of CC interferes with functional integrity of this structure. 2-The genu of CC plays a pivotal role in the genesis of secondary bilateral synchrony. 3-Electrodecremental seizures in LGS emanate from pacemakers generated in the brain stem, in particular the mesencephalon projecting abnormal signals to the cortex via thalamic nuclei. 4-Unilateral slow spike-wave complexes in the context of mental retardation and multiple seizure types may represent a variant of LGS, justifying neuroimaging studies.Keywords: EEG, Lennox-Gastaut syndrome, corpus callosum , MRI
Procedia PDF Downloads 44825471 A Survey of Semantic Integration Approaches in Bioinformatics
Authors: Chaimaa Messaoudi, Rachida Fissoune, Hassan Badir
Abstract:
Technological advances of computer science and data analysis are helping to provide continuously huge volumes of biological data, which are available on the web. Such advances involve and require powerful techniques for data integration to extract pertinent knowledge and information for a specific question. Biomedical exploration of these big data often requires the use of complex queries across multiple autonomous, heterogeneous and distributed data sources. Semantic integration is an active area of research in several disciplines, such as databases, information-integration, and ontology. We provide a survey of some approaches and techniques for integrating biological data, we focus on those developed in the ontology community.Keywords: biological ontology, linked data, semantic data integration, semantic web
Procedia PDF Downloads 45325470 Classification of Generative Adversarial Network Generated Multivariate Time Series Data Featuring Transformer-Based Deep Learning Architecture
Authors: Thrivikraman Aswathi, S. Advaith
Abstract:
As there can be cases where the use of real data is somehow limited, such as when it is hard to get access to a large volume of real data, we need to go for synthetic data generation. This produces high-quality synthetic data while maintaining the statistical properties of a specific dataset. In the present work, a generative adversarial network (GAN) is trained to produce multivariate time series (MTS) data since the MTS is now being gathered more often in various real-world systems. Furthermore, the GAN-generated MTS data is fed into a transformer-based deep learning architecture that carries out the data categorization into predefined classes. Further, the model is evaluated across various distinct domains by generating corresponding MTS data.Keywords: GAN, transformer, classification, multivariate time series
Procedia PDF Downloads 13525469 Generative AI: A Comparison of Conditional Tabular Generative Adversarial Networks and Conditional Tabular Generative Adversarial Networks with Gaussian Copula in Generating Synthetic Data with Synthetic Data Vault
Authors: Lakshmi Prayaga, Chandra Prayaga. Aaron Wade, Gopi Shankar Mallu, Harsha Satya Pola
Abstract:
Synthetic data generated by Generative Adversarial Networks and Autoencoders is becoming more common to combat the problem of insufficient data for research purposes. However, generating synthetic data is a tedious task requiring extensive mathematical and programming background. Open-source platforms such as the Synthetic Data Vault (SDV) and Mostly AI have offered a platform that is user-friendly and accessible to non-technical professionals to generate synthetic data to augment existing data for further analysis. The SDV also provides for additions to the generic GAN, such as the Gaussian copula. We present the results from two synthetic data sets (CTGAN data and CTGAN with Gaussian Copula) generated by the SDV and report the findings. The results indicate that the ROC and AUC curves for the data generated by adding the layer of Gaussian copula are much higher than the data generated by the CTGAN.Keywords: synthetic data generation, generative adversarial networks, conditional tabular GAN, Gaussian copula
Procedia PDF Downloads 8625468 Managing Shallow Gas for Offshore Platforms via Fit-For-Purpose Solutions: Case Study for Offshore Malaysia
Authors: Noorizal Huang, Christian Girsang, Mohamad Razi Mansoor
Abstract:
Shallow gas seepage was first spotted at a central processing platform offshore Malaysia in 2010, acknowledged as Platform T in this paper. Frequent monitoring of the gas seepage was performed through remotely operated vehicle (ROV) baseline survey and a comprehensive geophysical survey was conducted to understand the characteristics of the gas seepage and to ensure that the integrity of the foundation at Platform T was not compromised. The origin of the gas back then was unknown. A soil investigation campaign was performed in 2016 to study the origin of the gas seepage. Two boreholes were drilled; a composite borehole to 150m below seabed for the purpose of soil sampling and in-situ testing and a pilot hole to 155m below the seabed, which was later converted to a fit-for-purpose relief well as an alternate migration path for the gas. During the soil investigation campaign, dissipation tests were performed at several layers which were potentially the source or migration path for the gas. Five (5) soil samples were segregated for headspace test, to identify the gas type which subsequently can be used to identify the origin of the gas. Dissipation tests performed at four depth intervals indicates pore water pressure less than 20 % of the effective vertical stress and appear to continue decreasing if the test had not been stopped. It was concluded that a low to a negligible amount of excess pore pressure exist in clayey silt layers. Results from headspace test show presence of methane corresponding to the clayey silt layers as reported in the boring logs. The gas most likely comes from biogenic sources, feeding on organic matter in situ over a large depth range. It is unlikely that there are large pockets of gas in the soil due to its homogeneous clayey nature and the lack of excess pore pressure in other permeable clayey silt layers encountered. Instead, it is more likely that when pore water at certain depth encounters a more permeable path, such as a borehole, it rises up through this path due to the temperature gradient in the soil. As the water rises the pressure decreases, which could cause gases dissolved in the water to come out of solution and form bubbles. As a result, the gas will have no impact on the integrity of the foundation at Platform T. The fit-for-purpose relief well design as well as adopting headspace testing can be used to address the shallow gas issue at Platform T in a cost effective and efficient manners.Keywords: dissipation test, headspace test, excess pore pressure, relief well, shallow gas
Procedia PDF Downloads 27525467 Methods for Mitigating Corrosion Caused by Biogenic Sulfuric Acid in Sewerage Systems: State of the Art Review
Authors: M. Cortés, E. Vera, M. Avella
Abstract:
Corrosion is an imminent process in nature, which affects all types of materials. In sewerage systems, the corrosion process caused by microorganisms, also known as biogenic sulfuric acid attack, has been studied. This affects the structural integrity of the concrete drainage pipes and the sewage treatment plants. This article is a review of research which focuses on the study of how to reduce the production of hydrogen sulfide, how to improve the resistance of concrete through the use of additives and the implementation of antimicrobial techniques to reduce bacterial growth.Keywords: bactericides, biogenic sulfuric acid, corrosion, concrete, hydrogen sulphide, nano materials, zeolites
Procedia PDF Downloads 44625466 Caring for a Spinal Cord Injury Patient with Diabetic Nephropathy Receiving Hospice Palliative Care
Authors: Li-Ting Kung, Hui-Zhu Chen, Hsin-Tzu Lee, Wan-Yin Hsu
Abstract:
Patients with spinal cord injury combined with diabetic nephropathy may under a lot of painful conditions due to complications related to the illness itself or treatments, such as recurrent pressure ulcers, autonomic and peripheral neuropathy, as well as dialysis, for long term. This case report illustrated the nursing experience of transferring a spine cord injure patient who received hemodialysis due to adverse lifestyle-induced diabetic nephropathy to the hospice ward. Nursing care was provided in this patient from July 25th to August 30th, 2015. The tool of 'Gordon’s 11-item functional health assessment' and clinical observation, interviews as well as physical examination were used as data collections. Based on results of health assessment as above, the patient’s health problems were identified as the following: impaired skin integrity, chronic pain, and hopeless. Besides to relieve the symptom of pain due to disease or the treatment of hemodialysis and provide wound care, the first author also played a role to assist the patient to achieve his goal of receiving the hospice palliative care. Finally, with much effort of nurses to communicate with medical teams between the surgical and hospice wards, the patient was transferred to the hospice ward to have fulfilled his last wish of having a good death. We hope this nursing experience can be applied to other similar cases in the future.Keywords: diabetic nephropathy, hospice care, palliative care, spinal cord injury
Procedia PDF Downloads 15525465 A Privacy Protection Scheme Supporting Fuzzy Search for NDN Routing Cache Data Name
Authors: Feng Tao, Ma Jing, Guo Xian, Wang Jing
Abstract:
Named Data Networking (NDN) replaces IP address of traditional network with data name, and adopts dynamic cache mechanism. In the existing mechanism, however, only one-to-one search can be achieved because every data has a unique name corresponding to it. There is a certain mapping relationship between data content and data name, so if the data name is intercepted by an adversary, the privacy of the data content and user’s interest can hardly be guaranteed. In order to solve this problem, this paper proposes a one-to-many fuzzy search scheme based on order-preserving encryption to reduce the query overhead by optimizing the caching strategy. In this scheme, we use hash value to ensure the user’s query safe from each node in the process of search, so does the privacy of the requiring data content.Keywords: NDN, order-preserving encryption, fuzzy search, privacy
Procedia PDF Downloads 49025464 The Influence of Online Audience Response on Journalists
Authors: Raja Arslan Ahmad Khan
Abstract:
Audience feedback and data play an increasingly crucial role, particularly in the digital age. The advent of digital media and the digitalization of news have given rise to novel forms of audience feedback, markedly different from traditional channels. The engagement of online audiences challenges the conventional role of journalists, introducing a dynamic where audiences can wield both direct and indirect influence. This struggle between the audience and journalists is evident in their contributions and interactions. Media professionals are grappling with challenges such as derogatory remarks, hate speech, online harassment, audience hostility, and attacks from online audiences. The influence of online audiences extends to shaping journalists' daily routines and work practices. Consequently, this study seeks to analyze the impact of online audience feedback on journalists at a routine level within the Malaysian context. Employing a Hierarchy of Influence model as a theoretical framework, the study will utilize a quantitative approach with a snowball survey method. The study's findings aim to enhance our understanding of how online audiences influence journalists and their work practices, encompassing aspects like journalists' autonomy and integrity, editorial decision-making, performance and accountability, daily routines, work practices, as well as the psychological and emotional costs they bear. It's important to note that the study has limitations due to the use of the snowball survey method and its focus within the specific context of Malaysia, making it relatively small in scale.Keywords: online audiences, feedback, influence, journalists, Malaysia
Procedia PDF Downloads 7225463 Healthcare Big Data Analytics Using Hadoop
Authors: Chellammal Surianarayanan
Abstract:
Healthcare industry is generating large amounts of data driven by various needs such as record keeping, physician’s prescription, medical imaging, sensor data, Electronic Patient Record(EPR), laboratory, pharmacy, etc. Healthcare data is so big and complex that they cannot be managed by conventional hardware and software. The complexity of healthcare big data arises from large volume of data, the velocity with which the data is accumulated and different varieties such as structured, semi-structured and unstructured nature of data. Despite the complexity of big data, if the trends and patterns that exist within the big data are uncovered and analyzed, higher quality healthcare at lower cost can be provided. Hadoop is an open source software framework for distributed processing of large data sets across clusters of commodity hardware using a simple programming model. The core components of Hadoop include Hadoop Distributed File System which offers way to store large amount of data across multiple machines and MapReduce which offers way to process large data sets with a parallel, distributed algorithm on a cluster. Hadoop ecosystem also includes various other tools such as Hive (a SQL-like query language), Pig (a higher level query language for MapReduce), Hbase(a columnar data store), etc. In this paper an analysis has been done as how healthcare big data can be processed and analyzed using Hadoop ecosystem.Keywords: big data analytics, Hadoop, healthcare data, towards quality healthcare
Procedia PDF Downloads 41525462 Data Disorders in Healthcare Organizations: Symptoms, Diagnoses, and Treatments
Authors: Zakieh Piri, Shahla Damanabi, Peyman Rezaii Hachesoo
Abstract:
Introduction: Healthcare organizations like other organizations suffer from a number of disorders such as Business Sponsor Disorder, Business Acceptance Disorder, Cultural/Political Disorder, Data Disorder, etc. As quality in healthcare care mostly depends on the quality of data, we aimed to identify data disorders and its symptoms in two teaching hospitals. Methods: Using a self-constructed questionnaire, we asked 20 questions in related to quality and usability of patient data stored in patient records. Research population consisted of 150 managers, physicians, nurses, medical record staff who were working at the time of study. We also asked their views about the symptoms and treatments for any data disorders they mentioned in the questionnaire. Using qualitative methods we analyzed the answers. Results: After classifying the answers, we found six main data disorders: incomplete data, missed data, late data, blurred data, manipulated data, illegible data. The majority of participants believed in their important roles in treatment of data disorders while others believed in health system problems. Discussion: As clinicians have important roles in producing of data, they can easily identify symptoms and disorders of patient data. Health information managers can also play important roles in early detection of data disorders by proactively monitoring and periodic check-ups of data.Keywords: data disorders, quality, healthcare, treatment
Procedia PDF Downloads 43725461 Big Data and Analytics in Higher Education: An Assessment of Its Status, Relevance and Future in the Republic of the Philippines
Authors: Byron Joseph A. Hallar, Annjeannette Alain D. Galang, Maria Visitacion N. Gumabay
Abstract:
One of the unique challenges provided by the twenty-first century to Philippine higher education is the utilization of Big Data. The higher education system in the Philippines is generating burgeoning amounts of data that contains relevant data that can be used to generate the information and knowledge needed for accurate data-driven decision making. This study examines the status, relevance and future of Big Data and Analytics in Philippine higher education. The insights gained from the study may be relevant to other developing nations similarly situated as the Philippines.Keywords: big data, data analytics, higher education, republic of the philippines, assessment
Procedia PDF Downloads 35325460 Data Management and Analytics for Intelligent Grid
Authors: G. Julius P. Roy, Prateek Saxena, Sanjeev Singh
Abstract:
Power distribution utilities two decades ago would collect data from its customers not later than a period of at least one month. The origin of SmartGrid and AMI has subsequently increased the sampling frequency leading to 1000 to 10000 fold increase in data quantity. This increase is notable and this steered to coin the tern Big Data in utilities. Power distribution industry is one of the largest to handle huge and complex data for keeping history and also to turn the data in to significance. Majority of the utilities around the globe are adopting SmartGrid technologies as a mass implementation and are primarily focusing on strategic interdependence and synergies of the big data coming from new information sources like AMI and intelligent SCADA, there is a rising need for new models of data management and resurrected focus on analytics to dissect data into descriptive, predictive and dictatorial subsets. The goal of this paper is to is to bring load disaggregation into smart energy toolkit for commercial usage.Keywords: data management, analytics, energy data analytics, smart grid, smart utilities
Procedia PDF Downloads 78525459 Privacy Preserving Data Publishing Based on Sensitivity in Context of Big Data Using Hive
Authors: P. Srinivasa Rao, K. Venkatesh Sharma, G. Sadhya Devi, V. Nagesh
Abstract:
Privacy Preserving Data Publication is the main concern in present days because the data being published through the internet has been increasing day by day. This huge amount of data was named as Big Data by its size. This project deals the privacy preservation in the context of Big Data using a data warehousing solution called hive. We implemented Nearest Similarity Based Clustering (NSB) with Bottom-up generalization to achieve (v,l)-anonymity. (v,l)-Anonymity deals with the sensitivity vulnerabilities and ensures the individual privacy. We also calculate the sensitivity levels by simple comparison method using the index values, by classifying the different levels of sensitivity. The experiments were carried out on the hive environment to verify the efficiency of algorithms with Big Data. This framework also supports the execution of existing algorithms without any changes. The model in the paper outperforms than existing models.Keywords: sensitivity, sensitive level, clustering, Privacy Preserving Data Publication (PPDP), bottom-up generalization, Big Data
Procedia PDF Downloads 30025458 Design of Functional Safe Motor Control Systems in Automotive Applications
Authors: Jae-Woo Kim, Kyung-Jung Lee, Hyun-Sik Ahn
Abstract:
This paper presents a design methodology for the motor driven automotive subsystems with the consideration of the functional safety. There are many such modules in vehicles which use DC/AC motors for an electronic throttle control system, a motor driven power steering, a motor driven seat belt systems and for HVAC systems. The functional safety for the automotive electrical and electronic parts are standardized as ISO 26262, but the development procedure is very complex to be followed. We focus on the functional safe motor controller design process and show the designed motor controller hardware satisfies the required safety integrity level by using metric calculations with the safety mechanism.Keywords: AUTOSAR, MDPS, Simulink, software component
Procedia PDF Downloads 41625457 A Fuzzy Kernel K-Medoids Algorithm for Clustering Uncertain Data Objects
Authors: Behnam Tavakkol
Abstract:
Uncertain data mining algorithms use different ways to consider uncertainty in data such as by representing a data object as a sample of points or a probability distribution. Fuzzy methods have long been used for clustering traditional (certain) data objects. They are used to produce non-crisp cluster labels. For uncertain data, however, besides some uncertain fuzzy k-medoids algorithms, not many other fuzzy clustering methods have been developed. In this work, we develop a fuzzy kernel k-medoids algorithm for clustering uncertain data objects. The developed fuzzy kernel k-medoids algorithm is superior to existing fuzzy k-medoids algorithms in clustering data sets with non-linearly separable clusters.Keywords: clustering algorithm, fuzzy methods, kernel k-medoids, uncertain data
Procedia PDF Downloads 21925456 Democracy Bytes: Interrogating the Exploitation of Data Democracy by Radical Terrorist Organizations
Authors: Nirmala Gopal, Sheetal Bhoola, Audecious Mugwagwa
Abstract:
This paper discusses the continued infringement and exploitation of data by non-state actors for destructive purposes, emphasizing radical terrorist organizations. It will discuss how terrorist organizations access and use data to foster their nefarious agendas. It further examines how cybersecurity, designed as a tool to curb data exploitation, is ineffective in raising global citizens' concerns about how their data can be kept safe and used for its acquired purpose. The study interrogates several policies and data protection instruments, such as the Data Protection Act, Cyber Security Policies, Protection of Personal Information(PPI) and General Data Protection Regulations (GDPR), to understand data use and storage in democratic states. The study outcomes point to the fact that international cybersecurity and cybercrime legislation, policies, and conventions have not curbed violations of data access and use by radical terrorist groups. The study recommends ways to enhance cybersecurity and reduce cyber risks using democratic principles.Keywords: cybersecurity, data exploitation, terrorist organizations, data democracy
Procedia PDF Downloads 20725455 Healthcare Data Mining Innovations
Authors: Eugenia Jilinguirian
Abstract:
In the healthcare industry, data mining is essential since it transforms the field by collecting useful data from large datasets. Data mining is the process of applying advanced analytical methods to large patient records and medical histories in order to identify patterns, correlations, and trends. Healthcare professionals can improve diagnosis accuracy, uncover hidden linkages, and predict disease outcomes by carefully examining these statistics. Additionally, data mining supports personalized medicine by personalizing treatment according to the unique attributes of each patient. This proactive strategy helps allocate resources more efficiently, enhances patient care, and streamlines operations. However, to effectively apply data mining, however, and ensure the use of private healthcare information, issues like data privacy and security must be carefully considered. Data mining continues to be vital for searching for more effective, efficient, and individualized healthcare solutions as technology evolves.Keywords: data mining, healthcare, big data, individualised healthcare, healthcare solutions, database
Procedia PDF Downloads 7025454 Summarizing Data Sets for Data Mining by Using Statistical Methods in Coastal Engineering
Authors: Yunus Doğan, Ahmet Durap
Abstract:
Coastal regions are the one of the most commonly used places by the natural balance and the growing population. In coastal engineering, the most valuable data is wave behaviors. The amount of this data becomes very big because of observations that take place for periods of hours, days and months. In this study, some statistical methods such as the wave spectrum analysis methods and the standard statistical methods have been used. The goal of this study is the discovery profiles of the different coast areas by using these statistical methods, and thus, obtaining an instance based data set from the big data to analysis by using data mining algorithms. In the experimental studies, the six sample data sets about the wave behaviors obtained by 20 minutes of observations from Mersin Bay in Turkey and converted to an instance based form, while different clustering techniques in data mining algorithms were used to discover similar coastal places. Moreover, this study discusses that this summarization approach can be used in other branches collecting big data such as medicine.Keywords: clustering algorithms, coastal engineering, data mining, data summarization, statistical methods
Procedia PDF Downloads 36425453 Seal and Heal Miracle Ointment: Effects of Cryopreserved and Lyophilized Amniotic Membrane on Experimentally Induced Diabetic Balb/C Mice
Authors: Elizalde D. Bana
Abstract:
Healing restores continuity and form through cell replication; hence, conserving structural integrity. In response to the worldwide pressing problem of chronic wounds in the healthcare delivery system, the researcher aims to provide effective intervention to preserve the structural integrity of the person. The wound healing effects of cryopreserved and lyophilized amniotic membrane (AM) of a term fetus embedded into two (2) concentrations (1.5 % and 1.0 %) of absorption-based ointment has been evaluated in vivo using the excision wound healing model 1x1 cm size. The total protein concentration in full term fetus was determined by the Biuret and Bradford methods, which are based on UV-visible spectroscopy. The percentages of protein presence in 9.5 mg (Mass total sample) of Amniotic membrane ranges between 14.77 – 14.46 % in Bradford method, while slightly lower to 13.78 – 13.80 % concentration in Biuret method, respectively. Bradford method evidently showed higher sensitivity for proteins than Biuret test. Overall, the amniotic membrane is composed principally of proteins in which a copious amount of literature substantially proved its healing abilities. After which, an area of 1 cm by 1 cm skin tissue was excised to its full thickness from the dorsolateral aspect of the isogenic mice and was applied twice a day with the ointment formulation having two (2) concentrations for the diabetic group and non-diabetic group. The wounds of each animal were left undressed and its area was measured every other day by a standard measurement formula from day 2,4,6,8,10,12 and 14. By the 14th day, the ointment containing 1.5 % of AM in absorption-based ointment applied to non-diabetic and diabetic group showed 100 % healing. The wound areas in the animals treated with the standard antibiotic, Mupirocin Ointment (Brand X) showed a 100% healing by the 14th day but with traces of scars, indicating that AM prepared from cryopreservation and lyophilization, at that given concentration, had a better wound healing property than the standard antibiotic. Four (4) multivariate tests were used which showed a significant interaction between days and treatments, meaning that the ointments prepared in two differing concentrations and induced in different groups of the mice had a significant effect on the percent of contraction over time. Furthermore, the evaluations of its effectiveness to wound healing were all significant although in differing degrees. It is observed that the higher the concentrations of amniotic membrane, the more effective are the results.Keywords: wounds, healing, amniotic membrane ointments, biomedical, stem cell
Procedia PDF Downloads 30425452 Constructions of Linear and Robust Codes Based on Wavelet Decompositions
Authors: Alla Levina, Sergey Taranov
Abstract:
The classical approach to the providing noise immunity and integrity of information that process in computing devices and communication channels is to use linear codes. Linear codes have fast and efficient algorithms of encoding and decoding information, but this codes concentrate their detect and correct abilities in certain error configurations. To protect against any configuration of errors at predetermined probability can robust codes. This is accomplished by the use of perfect nonlinear and almost perfect nonlinear functions to calculate the code redundancy. The paper presents the error-correcting coding scheme using biorthogonal wavelet transform. Wavelet transform applied in various fields of science. Some of the wavelet applications are cleaning of signal from noise, data compression, spectral analysis of the signal components. The article suggests methods for constructing linear codes based on wavelet decomposition. For developed constructions we build generator and check matrix that contain the scaling function coefficients of wavelet. Based on linear wavelet codes we develop robust codes that provide uniform protection against all errors. In article we propose two constructions of robust code. The first class of robust code is based on multiplicative inverse in finite field. In the second robust code construction the redundancy part is a cube of information part. Also, this paper investigates the characteristics of proposed robust and linear codes.Keywords: robust code, linear code, wavelet decomposition, scaling function, error masking probability
Procedia PDF Downloads 49225451 Access to Health Data in Medical Records in Indonesia in Terms of Personal Data Protection Principles: The Limitation and Its Implication
Authors: Anny Retnowati, Elisabeth Sundari
Abstract:
This research aims to elaborate the meaning of personal data protection principles on patient access to health data in medical records in Indonesia and its implications. The method uses normative legal research by examining health law in Indonesia regarding the patient's right to access their health data in medical records. The data will be analysed qualitatively using the interpretation method to elaborate on the limitation of the meaning of personal data protection principles on patients' access to their data in medical records. The results show that patients only have the right to obtain copies of their health data in medical records. There is no right to inspect directly at any time. Indonesian health law limits the principle of patients' right to broad access to their health data in medical records. This restriction has implications for the reduction of personal data protection as part of human rights. This research contribute to show that a limitaion of personal data protection may abuse the human rights.Keywords: access, health data, medical records, personal data, protection
Procedia PDF Downloads 9625450 Conceptualizing the Knowledge to Manage and Utilize Data Assets in the Context of Digitization: Case Studies of Multinational Industrial Enterprises
Authors: Martin Böhmer, Agatha Dabrowski, Boris Otto
Abstract:
The trend of digitization significantly changes the role of data for enterprises. Data turn from an enabler to an intangible organizational asset that requires management and qualifies as a tradeable good. The idea of a networked economy has gained momentum in the data domain as collaborative approaches for data management emerge. Traditional organizational knowledge consequently needs to be extended by comprehensive knowledge about data. The knowledge about data is vital for organizations to ensure that data quality requirements are met and data can be effectively utilized and sovereignly governed. As this specific knowledge has been paid little attention to so far by academics, the aim of the research presented in this paper is to conceptualize it by proposing a “data knowledge model”. Relevant model entities have been identified based on a design science research (DSR) approach that iteratively integrates insights of various industry case studies and literature research.Keywords: data management, digitization, industry 4.0, knowledge engineering, metamodel
Procedia PDF Downloads 35825449 A Proposal for Systematic Mapping Study of Software Security Testing, Verification and Validation
Authors: Adriano Bessa Albuquerque, Francisco Jose Barreto Nunes
Abstract:
Software vulnerabilities are increasing and not only impact services and processes availability as well as information confidentiality, integrity and privacy, but also cause changes that interfere in the development process. Security test could be a solution to reduce vulnerabilities. However, the variety of test techniques with the lack of real case studies of applying tests focusing on software development life cycle compromise its effective use. This paper offers an overview of how a Systematic Mapping Study (MS) about security verification, validation and test (VVT) was performed, besides presenting general results about this study.Keywords: software test, software security verification validation and test, security test institutionalization, systematic mapping study
Procedia PDF Downloads 41325448 A Study on the Non-Destructive Test Characterization of Carbon Fiber Reinforced Plastics Using Thermo-Graphic Camera
Authors: Hee Jae Shin, In Pyo Cha, Min Sang Lee, Hyun Kyung Yoon, Tae Ho Kim, Yoon Sun Lee, Lee Ku Kwac, Hong Gun Kim
Abstract:
Non-destructive testing and evaluation techniques for assessing the integrity of composite structures are essential to both reduce manufacturing costs and out of service time of transport means due to maintenance. In this study, Analyze into non-destructive test characterization of carbon fiber reinforced plastics(CFRP) internal and external defects using thermo-graphic camera and transient thermography method. non-destructive testing were characterized by defect size(∅8,∅10,∅12,∅14) and depth(1.2mm,2.4mm).Keywords: Non-Destructive Test (NDT), thermal characteristic, thermographic camera, Carbon Fiber Reinforced Plastics(CFRP).
Procedia PDF Downloads 53725447 Analysis and Forecasting of Bitcoin Price Using Exogenous Data
Authors: J-C. Leneveu, A. Chereau, L. Mansart, T. Mesbah, M. Wyka
Abstract:
Extracting and interpreting information from Big Data represent a stake for years to come in several sectors such as finance. Currently, numerous methods are used (such as Technical Analysis) to try to understand and to anticipate market behavior, with mixed results because it still seems impossible to exactly predict a financial trend. The increase of available data on Internet and their diversity represent a great opportunity for the financial world. Indeed, it is possible, along with these standard financial data, to focus on exogenous data to take into account more macroeconomic factors. Coupling the interpretation of these data with standard methods could allow obtaining more precise trend predictions. In this paper, in order to observe the influence of exogenous data price independent of other usual effects occurring in classical markets, behaviors of Bitcoin users are introduced in a model reconstituting Bitcoin value, which is elaborated and tested for prediction purposes.Keywords: big data, bitcoin, data mining, social network, financial trends, exogenous data, global economy, behavioral finance
Procedia PDF Downloads 35825446 Numerical Simulation of Truck Collision with Road Blocker
Authors: Engin Metin Kaplan, Kemal Yaman
Abstract:
In this study, the crash of a medium heavy vehicle onto a designed Road blocker (vehicle barrier) is studied numerically. Structural integrity of the Road blocker is studied by nonlinear dynamic methods under the loading conditions which are defined in the standards. NASTRAN® and LS-DYNA® which are commercial software are used to solve the problem. Outer geometry determination, alignment of the inner part and material properties of the road blocker are studied linearly to yield design parameters. Best design parameters are determined to achieve the most structurally optimized road blocker. Strain and stress values of the vehicle barrier are obtained by solving the partial differential equations.Keywords: vehicle barrier, truck collision, road blocker, crash analysis
Procedia PDF Downloads 47925445 Role of Zinc Adminstration in Improvement of Faltering Growth in Egyption Children at Risk of Environmental Enteric Dysfunction
Authors: Ghada Mahmoud El Kassas, Maged Atta El Wakeel
Abstract:
Background: Environmental enteric dysfunction (EED) is impending trouble that flared up in the last decades to be pervasive in infants and children. EED is asymptomatic villous atrophy of the small bowel that is prevalent in the developing world and is associated with altered intestinal function and integrity. Evidence has suggested that supplementary zinc might ameliorate this damage by reducing gastrointestinal inflammation and may also benefit cognitive development. Objective: We tested whether zinc supplementation improves intestinal integrity, growth, and cognitive function in stunted children predicted to have EED. Methodology: This case–control prospective interventional study was conducted on 120 Egyptian Stunted children aged 1-10 years who recruited from the Nutrition clinic, the National research center, and 100 age and gender-matched healthy children as controls. At the primary phase of the study, Full history taking, clinical examination, and anthropometric measurements were done. Standard deviation score (SDS) for all measurements were calculated. Serum markers as Zonulin, Endotoxin core antibody (EndoCab), highly sensitive C-reactive protein (hsCRP), alpha1-acid glycoprotein (AGP), Tumor necrosis factor (TNF), and fecal markers such as myeloperoxidase (MPO), neopterin (NEO), and alpha-1-anti-trypsin (AAT) (as predictors of EED) were measured. Cognitive development was assessed (Bayley or Wechsler scores). Oral zinc at a dosage of 20 mg/d was supplemented to all cases and followed up for 6 months, after which the 2ry phase of the study included the previous clinical, laboratory, and cognitive assessment. Results: Serum and fecal inflammatory markers were significantly higher in cases compared to controls. Zonulin (P < 0.01), (EndoCab) (P < 0.001) and (AGP) (P < 0.03) markedly decreased in cases at the end of 2ry phase. Also (MPO), (NEO), and (AAT) showed a significant decline in cases at the end of the study (P < 0.001 for all). A significant increase in mid-upper arm circumference (MUAC) (P < 0.01), weight for age z-score, and skinfold thicknesses (P< 0.05 for both) was detected at end of the study, while height was not significantly affected. Cases also showed significant improvement of cognitive function at phase 2 of the study. Conclusion: Intestinal inflammatory state related to EED showed marked recovery after zinc supplementation. As a result, anthropometric and cognitive parameters showed obvious improvement with zinc supplementation.Keywords: stunting, cognitive function, environmental enteric dysfunction, zinc
Procedia PDF Downloads 19325444 On the Combination of Patient-Generated Data with Data from a Secure Clinical Network Environment: A Practical Example
Authors: Jeroen S. de Bruin, Karin Schindler, Christian Schuh
Abstract:
With increasingly more mobile health applications appearing due to the popularity of smartphones, the possibility arises that these data can be used to improve the medical diagnostic process, as well as the overall quality of healthcare, while at the same time lowering costs. However, as of yet there have been no reports of a successful combination of patient-generated data from smartphones with data from clinical routine. In this paper, we describe how these two types of data can be combined in a secure way without modification to hospital information systems, and how they can together be used in a medical expert system for automatic nutritional classification and triage.Keywords: mobile health, data integration, expert systems, disease-related malnutrition
Procedia PDF Downloads 47925443 The Prospects of Leveraging (Big) Data for Accelerating a Just Sustainable Transition around Different Contexts
Authors: Sombol Mokhles
Abstract:
This paper tries to show the prospects of utilising (big)data for enabling just the transition of diverse cities. Our key purpose is to offer a framework of applications and implications of utlising (big) data in comparing sustainability transitions across different cities. Relying on the cosmopolitan comparison, this paper explains the potential application of (big) data but also its limitations. The paper calls for adopting a data-driven and just perspective in including different cities around the world. Having a just and inclusive approach at the front and centre ensures a just transition with synergistic effects that leave nobody behind.Keywords: big data, just sustainable transition, cosmopolitan city comparison, cities
Procedia PDF Downloads 102