Search results for: convolutional long short-term memory
6943 High-Capacity Image Steganography using Wavelet-based Fusion on Deep Convolutional Neural Networks
Authors: Amal Khalifa, Nicolas Vana Santos
Abstract:
Steganography has been known for centuries as an efficient approach for covert communication. Due to its popularity and ease of access, image steganography has attracted researchers to find secure techniques for hiding information within an innocent looking cover image. In this research, we propose a novel deep-learning approach to digital image steganography. The proposed method, DeepWaveletFusion, uses convolutional neural networks (CNN) to hide a secret image into a cover image of the same size. Two CNNs are trained back-to-back to merge the Discrete Wavelet Transform (DWT) of both colored images and eventually be able to blindly extract the hidden image. Based on two different image similarity metrics, a weighted gain function is used to guide the learning process and maximize the quality of the retrieved secret image and yet maintaining acceptable imperceptibility. Experimental results verified the high recoverability of DeepWaveletFusion which outperformed similar deep-learning-based methods.Keywords: deep learning, steganography, image, discrete wavelet transform, fusion
Procedia PDF Downloads 906942 Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)
Authors: Getaneh Berie Tarekegn, Li-Chia Tai
Abstract:
With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 476941 Investigate the Performance of SMA-FRP Composite Bars in Seismic Regions under Corrosion Conditions
Authors: Amirmozafar Benshams, Saman Shafeinejad, Mohammad Zaman Kabir, Farzad Hatami, Mohammadreza Khedmati, Mesbah Saybani
Abstract:
Steel bars has been used in concrete structures for more than one hundred years but lack of corrosion resistance of steel reinforcement has resulted in many structural failures. Fiber Reinforced Polymer (FRP) bar is an acceptable solution to replace steel to mitigate corrosion problem. Since FRP is a brittle material its use in seismic region has been a concern. FRP RC structures can be made ductile by employing a ductile material such as Shape Memory Alloy (SMA) at the plastic hinge region and FRP at the other regions on the other hand SMA is highly resistant to corrosion. Shape Memory Alloy has the unique ability to undergo large inelastic deformation and regain its initial shape through stress removal therefore utilizing composite SMA-FRP bars not only have good corrosion resistance but also have good performance in seismic region. The result show indicate that such composite SMA-FRP bars can substantially reduce the residual drift with adequate energy dissipation capacity during earthquake.Keywords: steel bar, shape memory alloy, FRP, corrosion
Procedia PDF Downloads 3916940 Improving Working Memory in School Children through Chess Training
Authors: Veena Easvaradoss, Ebenezer Joseph, Sumathi Chandrasekaran, Sweta Jain, Aparna Anna Mathai, Senta Christy
Abstract:
Working memory refers to a cognitive processing space where information is received, managed, transformed, and briefly stored. It is an operational process of transforming information for the execution of cognitive tasks in different and new ways. Many class room activities require children to remember information and mentally manipulate it. While the impact of chess training on intelligence and academic performance has been unequivocally established, its impact on working memory needs to be studied. This study, funded by the Cognitive Science Research Initiative, Department of Science & Technology, Government of India, analyzed the effect of one-year chess training on the working memory of children. A pretest–posttest with control group design was used, with 52 children in the experimental group and 50 children in the control group. The sample was selected from children studying in school (grades 3 to 9), which included both the genders. The experimental group underwent weekly chess training for one year, while the control group was involved in extracurricular activities. Working memory was measured by two subtests of WISC-IV INDIA. The Digit Span Subtest involves recalling a list of numbers of increasing length presented orally in forward and in reverse order, and the Letter–Number Sequencing Subtest involves rearranging jumbled alphabets and numbers presented orally following a given rule. Both tasks require the child to receive and briefly store information, manipulate it, and present it in a changed format. The Children were trained using Winning Moves curriculum, audio- visual learning method, hands-on- chess training and recording the games using score sheets, analyze their mistakes, thereby increasing their Meta-Analytical abilities. They were also trained in Opening theory, Checkmating techniques, End-game theory and Tactical principles. Pre equivalence of means was established. Analysis revealed that the experimental group had significant gains in working memory compared to the control group. The present study clearly establishes a link between chess training and working memory. The transfer of chess training to the improvement of working memory could be attributed to the fact that while playing chess, children evaluate positions, visualize new positions in their mind, analyze the pros and cons of each move, and choose moves based on the information stored in their mind. If working-memory’s capacity could be expanded or made to function more efficiently, it could result in the improvement of executive functions as well as the scholastic performance of the child.Keywords: chess training, cognitive development, executive functions, school children, working memory
Procedia PDF Downloads 2636939 The Effect of Costus igneus Extract on Learning and Memory in Normal and Diabetic Rats
Authors: Shalini Adiga, Shashikant Chetty, Jisha, Shobha Kamath
Abstract:
Background: Moderate impairment of learning and memory has been observed in both type 1 and 2 diabetes mellitus in humans and experimental animals. A Change in glucose utilization and oxidative stress that occur in diabetes are considered the main reasons for cognitive dysfunction. Objective: Costus igneus (CI) which is known to possess hypoglycemic activity was evaluated in this study for its effect on learning and memory in normal and diabetic rats. Methods: Wistar rats were divided into control, CI-alcoholic extract treated normal (250 and 500mg/kg), diabetic control and CI-treated diabetic groups. CI treatment was continued for 4 weeks. For induction of diabetes, a single dose of streptozotocin was injected (30 mg/kg i.p). Entrance latency and time spent in the dark room during acquisition and at 24 and 48h after an aversive shock in a passive avoidance model was used as an index of learning and memory. Glutathione and malondialdehyde levels in brain and blood glucose were measured. Data was analysed using ANOVA. Results: During the three trials in exploration test, the diabetic control rats exhibited no significant change in entrance latency or in the total time spent in the dark compartment. During retention testing, the entrance latency of the diabetic treated groups was two times less at 24h and three times less at 48h after aversive stimulus as compared to diabetic rats. The normal drug-treated rats showed similar behaviour as the saline control. Treatment with CI significantly reduced the raised blood sugar and MDA levels of diabetic rats. Conclusion: Costus igneus prevented the cognitive dysfunction in diabetic rats which can be attributed to its antioxidant and antihyperglycemic activities.Keywords: Costus igneous, diabetes, learning and memory, cognitive dysfunction
Procedia PDF Downloads 3496938 Mobile Cloud Middleware: A New Service for Mobile Users
Authors: K. Akherfi, H. Harroud
Abstract:
Cloud Computing (CC) and Mobile Cloud Computing (MCC) have advanced rapidly the last few years. Today, MCC undergoes fast improvement and progress in terms of hardware (memory, embedded sensors, power consumption, touch screen, etc.) software (more and more sophisticated mobile applications) and transmission (higher data transmission rates achieved with different technologies such as 3Gs). This paper presents a review on the concept of CC and MCC. Then, it discusses what has been done regarding middleware in CC and MCC. Later, it shows the architecture of our proposed middleware along with its functionalities which will be provided to mobile clients in order to overcome the well-known problems (such as low battery power, slow CPU speed and, little memory etc.).Keywords: context-aware, cloud computing, middleware, mobile cloud computing
Procedia PDF Downloads 4486937 Filtering Momentum Life Cycles, Price Acceleration Signals and Trend Reversals for Stocks, Credit Derivatives and Bonds
Authors: Periklis Brakatsoulas
Abstract:
Recent empirical research shows a growing interest in investment decision-making under market anomalies that contradict the rational paradigm. Momentum is undoubtedly one of the most robust anomalies in the empirical asset pricing research and remains surprisingly lucrative ever since first documented. Although predominantly phenomena identified across equities, momentum premia are now evident across various asset classes. Yet few many attempts are made so far to provide traders a diversified portfolio of strategies across different assets and markets. Moreover, literature focuses on patterns from past returns rather than mechanisms to signal future price directions prior to momentum runs. The aim of this paper is to develop a diversified portfolio approach to price distortion signals using daily position data on stocks, credit derivatives, and bonds. An algorithm allocates assets periodically, and new investment tactics take over upon price momentum signals and across different ranking groups. We focus on momentum life cycles, trend reversals, and price acceleration signals. The main effort here concentrates on the density, time span and maturity of momentum phenomena to identify consistent patterns over time and measure the predictive power of buy-sell signals generated by these anomalies. To tackle this, we propose a two-stage modelling process. First, we generate forecasts on core macroeconomic drivers. Secondly, satellite models generate market risk forecasts using the core driver projections generated at the first stage as input. Moreover, using a combination of the ARFIMA and FIGARCH models, we examine the dependence of consecutive observations across time and portfolio assets since long memory behavior in volatilities of one market appears to trigger persistent volatility patterns across other markets. We believe that this is the first work that employs evidence of volatility transmissions among derivatives, equities, and bonds to identify momentum life cycle patterns.Keywords: forecasting, long memory, momentum, returns
Procedia PDF Downloads 1026936 Chinese Sentence Level Lip Recognition
Authors: Peng Wang, Tigang Jiang
Abstract:
The computer based lip reading method of different languages cannot be universal. At present, for the research of Chinese lip reading, whether the work on data sets or recognition algorithms, is far from mature. In this paper, we study the Chinese lipreading method based on machine learning, and propose a Chinese Sentence-level lip-reading network (CNLipNet) model which consists of spatio-temporal convolutional neural network(CNN), recurrent neural network(RNN) and Connectionist Temporal Classification (CTC) loss function. This model can map variable-length sequence of video frames to Chinese Pinyin sequence and is trained end-to-end. More over, We create CNLRS, a Chinese Lipreading Dataset, which contains 5948 samples and can be shared through github. The evaluation of CNLipNet on this dataset yielded a 41% word correct rate and a 70.6% character correct rate. This evaluation result is far superior to the professional human lip readers, indicating that CNLipNet performs well in lipreading.Keywords: lipreading, machine learning, spatio-temporal, convolutional neural network, recurrent neural network
Procedia PDF Downloads 1286935 The Image of Saddam Hussein and Collective Memory: The Semiotics of Ba'ath Regime's Mural in Iraq (1980-2003)
Authors: Maryam Pirdehghan
Abstract:
During the Ba'ath Party's rule in Iraq, propaganda was utilized to justify and to promote Saddam Hussein's image in the collective memory as the greatest Arab leader. Consequently, urban walls were routinely covered with images of Saddam. Relying on these images, the regime aimed to provide a basis for evoking meanings in the public opinion, which would supposedly strengthen Saddam’s power and reconstruct facts to legitimize his political ideology. Nonetheless, Saddam was not always portrayed with common and explicit elements but in certain periods of his rule, the paintings depicted him in an unusual context, where various historical and contemporary elements were combined in a narrative background. Therefore, an understanding of the implied socio-political references of these elements is required to fully elucidate the impact of these images on forming the memory and collective unconscious of the Iraqi people. To obtain such understanding, one needs to address the following questions: a) How Saddam Hussein is portrayed in mural during his rule? b) What of elements and mythical-historical narratives are found in the paintings? c) Which Saddam's political views were subject to the collective memory through mural? Employing visual semiotics, this study reveals that during Saddam Hussein's regime, the paintings were initially simple portraits but gradually transformed into narrative images, characterized by a complex network of historical, mythical and religious elements. These elements demonstrate the transformation of a secular-nationalist politician into a Muslim ruler who tried to instill three major policies in domestic and international relations i.e. the arabization of Iraq, as well as the propagation of pan-arabism ideology (first period), the implementation of anti-Israel policy (second period) and the implementation of anti-American-British policy (last period).Keywords: Ba'ath Party, Saddam Hussein, mural, Iraq, propaganda, collective memory
Procedia PDF Downloads 3246934 Software Transactional Memory in a Dynamic Programming Language at Virtual Machine Level
Authors: Szu-Kai Hsu, Po-Ching Lin
Abstract:
As more and more multi-core processors emerge, traditional sequential programming paradigm no longer suffice. Yet only few modern dynamic programming languages can leverage such advantage. Ruby, for example, despite its wide adoption, only includes threads as a simple parallel primitive. The global virtual machine lock of official Ruby runtime makes it impossible to exploit full parallelism. Though various alternative Ruby implementations do eliminate the global virtual machine lock, they only provide developers dated locking mechanism for data synchronization. However, traditional locking mechanism error-prone by nature. Software Transactional Memory is one of the promising alternatives among others. This paper introduces a new virtual machine: GobiesVM to provide a native software transactional memory based solution for dynamic programming languages to exploit parallelism. We also proposed a simplified variation of Transactional Locking II algorithm. The empirical results of our experiments show that support of STM at virtual machine level enables developers to write straightforward code without compromising parallelism or sacrificing thread safety. Existing source code only requires minimal or even none modi cation, which allows developers to easily switch their legacy codebase to a parallel environment. The performance evaluations of GobiesVM also indicate the difference between sequential and parallel execution is significant.Keywords: global interpreter lock, ruby, software transactional memory, virtual machine
Procedia PDF Downloads 2856933 Drug-Drug Interaction Prediction in Diabetes Mellitus
Authors: Rashini Maduka, C. R. Wijesinghe, A. R. Weerasinghe
Abstract:
Drug-drug interactions (DDIs) can happen when two or more drugs are taken together. Today DDIs have become a serious health issue due to adverse drug effects. In vivo and in vitro methods for identifying DDIs are time-consuming and costly. Therefore, in-silico-based approaches are preferred in DDI identification. Most machine learning models for DDI prediction are used chemical and biological drug properties as features. However, some drug features are not available and costly to extract. Therefore, it is better to make automatic feature engineering. Furthermore, people who have diabetes already suffer from other diseases and take more than one medicine together. Then adverse drug effects may happen to diabetic patients and cause unpleasant reactions in the body. In this study, we present a model with a graph convolutional autoencoder and a graph decoder using a dataset from DrugBank version 5.1.3. The main objective of the model is to identify unknown interactions between antidiabetic drugs and the drugs taken by diabetic patients for other diseases. We considered automatic feature engineering and used Known DDIs only as the input for the model. Our model has achieved 0.86 in AUC and 0.86 in AP.Keywords: drug-drug interaction prediction, graph embedding, graph convolutional networks, adverse drug effects
Procedia PDF Downloads 1006932 Case Studies in Three Domains of Learning: Cognitive, Affective, Psychomotor
Authors: Zeinabsadat Haghshenas
Abstract:
Bloom’s Taxonomy has been changed during the years. The idea of this writing is about the revision that has happened in both facts and terms. It also contains case studies of using cognitive Bloom’s taxonomy in teaching geometric solids to the secondary school students, affective objectives in a creative workshop for adults and psychomotor objectives in fixing a malfunctioned refrigerator lamp. There is also pointed to the important role of classification objectives in adult education as a way to prevent memory loss.Keywords: adult education, affective domain, cognitive domain, memory loss, psychomotor domain
Procedia PDF Downloads 4666931 The Effect of Bilingualism on Prospective Memory
Authors: Aslı Yörük, Mevla Yahya, Banu Tavat
Abstract:
It is well established that bilinguals outperform monolinguals on executive function tasks. However, the effects of bilingualism on prospective memory (PM), which also requires executive functions, have not been investigated vastly. This study aimed to compare bi and monolingual participants' PM performance in focal and non-focal PM tasks. Considering that bilinguals have greater executive function abilities than monolinguals, we predict that bilinguals’ PM performance would be higher than monolinguals on the non-focal PM task, which requires controlled monitoring processes. To investigate these predictions, we administered the focal and non-focal PM task and measured the PM and ongoing task performance. Forty-eight Turkish-English bilinguals residing in North Macedonia and forty-eight Turkish monolinguals living in Turkey between the ages of 18-30 participated in the study. They were instructed to remember responding to rarely appearing PM cues while engaged in an ongoing task, i.e., spatial working memory task. The focality of the task was manipulated by giving different instructions for PM cues. In the focal PM task, participants were asked to remember to press an enter key whenever a particular target stimulus appeared in the working memory task; in the non-focal PM task, instead of responding to a specific target shape, participants were asked to remember to press the enter key whenever the background color of the working memory trials changes to a specific color (yellow). To analyze data, we performed a 2 × 2 mixed factorial ANOVA with the task (focal versus non-focal) as a within-subject variable and language group (bilinguals versus monolinguals) as a between-subject variable. The results showed no direct evidence for a bilingual advantage in PM. That is, the group’s performance did not differ in PM accuracy and ongoing task accuracy. However, bilinguals were overall faster in the ongoing task, yet this was not specific to PM cue’s focality. Moreover, the results showed a reversed effect of PM cue's focality on the ongoing task performance. That is, both bi and monolinguals showed enhanced performance in the non-focal PM cue task. These findings raise skepticism about the literature's prevalent findings and theoretical explanations. Future studies should investigate possible alternative explanations.Keywords: bilingualism, executive functions, focality, prospective memory
Procedia PDF Downloads 1156930 The Convolution Recurrent Network of Using Residual LSTM to Process the Output of the Downsampling for Monaural Speech Enhancement
Authors: Shibo Wei, Ting Jiang
Abstract:
Convolutional-recurrent neural networks (CRN) have achieved much success recently in the speech enhancement field. The common processing method is to use the convolution layer to compress the feature space by multiple upsampling and then model the compressed features with the LSTM layer. At last, the enhanced speech is obtained by deconvolution operation to integrate the global information of the speech sequence. However, the feature space compression process may cause the loss of information, so we propose to model the upsampling result of each step with the residual LSTM layer, then join it with the output of the deconvolution layer and input them to the next deconvolution layer, by this way, we want to integrate the global information of speech sequence better. The experimental results show the network model (RES-CRN) we introduce can achieve better performance than LSTM without residual and overlaying LSTM simply in the original CRN in terms of scale-invariant signal-to-distortion ratio (SI-SNR), speech quality (PESQ), and intelligibility (STOI).Keywords: convolutional-recurrent neural networks, speech enhancement, residual LSTM, SI-SNR
Procedia PDF Downloads 2006929 Hybridization of Manually Extracted and Convolutional Features for Classification of Chest X-Ray of COVID-19
Authors: M. Bilal Ishfaq, Adnan N. Qureshi
Abstract:
COVID-19 is the most infectious disease these days, it was first reported in Wuhan, the capital city of Hubei in China then it spread rapidly throughout the whole world. Later on 11 March 2020, the World Health Organisation (WHO) declared it a pandemic. Since COVID-19 is highly contagious, it has affected approximately 219M people worldwide and caused 4.55M deaths. It has brought the importance of accurate diagnosis of respiratory diseases such as pneumonia and COVID-19 to the forefront. In this paper, we propose a hybrid approach for the automated detection of COVID-19 using medical imaging. We have presented the hybridization of manually extracted and convolutional features. Our approach combines Haralick texture features and convolutional features extracted from chest X-rays and CT scans. We also employ a minimum redundancy maximum relevance (MRMR) feature selection algorithm to reduce computational complexity and enhance classification performance. The proposed model is evaluated on four publicly available datasets, including Chest X-ray Pneumonia, COVID-19 Pneumonia, COVID-19 CTMaster, and VinBig data. The results demonstrate high accuracy and effectiveness, with 0.9925 on the Chest X-ray pneumonia dataset, 0.9895 on the COVID-19, Pneumonia and Normal Chest X-ray dataset, 0.9806 on the Covid CTMaster dataset, and 0.9398 on the VinBig dataset. We further evaluate the effectiveness of the proposed model using ROC curves, where the AUC for the best-performing model reaches 0.96. Our proposed model provides a promising tool for the early detection and accurate diagnosis of COVID-19, which can assist healthcare professionals in making informed treatment decisions and improving patient outcomes. The results of the proposed model are quite plausible and the system can be deployed in a clinical or research setting to assist in the diagnosis of COVID-19.Keywords: COVID-19, feature engineering, artificial neural networks, radiology images
Procedia PDF Downloads 756928 Performance Assessment of a Variable-Flux Permanent-Magnet Memory Motor
Authors: Michel Han, Christophe Besson, Alain Savary, Yvan Becher
Abstract:
The variable flux permanent magnet synchronous motor (VF-PMSM), also called "Memory Motor", is a new generation of motor capable of modifying the magnetization state with short pulses of current during operation or standstill. The impact of such operation is the expansion of the operating range in the torque-speed characteristic and an improvement in energy efficiency at high-speed in comparison to conventional permanent magnet synchronous machines (PMSMs). This paper reviews the operating principle and the unique features of the proposed memory motor. The benefits of this concept are highlighted by comparing the performance of the rotor of the VF-PMSM to that of two PM rotors that are typically found in the industry. The investigation emphasizes the properties of the variable magnetization and presents the comparison of the torque-speed characteristic with the capability of loss reduction in a VF-PMSM by means of experimental results, especially when tests are conducted under identical conditions for each rotor (same stator, same inverter and same experimental setup). The experimental results demonstrated that the VF-PMSM gives an additional degree of freedom to optimize the efficiency over a wide speed range. Thus, with a design easy to manufacture and with the possibility of controlling the magnetization and the demagnetization of the magnets during operations, the VF-PMSM can be interesting for various applications.Keywords: efficiency, magnetization state, memory motors, performances, permanent-magnet, synchronous machine, variable-flux, variable magnetization, wide speed application
Procedia PDF Downloads 1926927 Role of Maternal Astaxanthin Supplementation on Brain Derived Neurotrophic Factor and Spatial Learning Behavior in Wistar Rat Offspring’s
Authors: K. M. Damodara Gowda
Abstract:
Background: Maternal health and nutrition are considered as the predominant factors influencing brain functional development. If the mother is free of illness and genetic defects, maternal nutrition would be one of the most critical factors affecting the brain development. Calorie restrictions cause significant impairment in spatial learning ability and the levels of Brain Derived Neurotrophic Factor (BDNF) in rats. But, the mechanism by which the prenatal under-nutrition leads to impairment in brain learning and memory function is still unclear. In the present study, prenatal Astaxanthin supplementation on BDNF level, spatial learning and memory performance in the offspring’s of normal, calorie restricted and Astaxanthin supplemented rats was investigated. Methodology: The rats were administered with 6mg and 12 mg of astaxanthin /kg bw for 21 days following which acquisition and retention of spatial memory was tested in a partially-baited eight arm radial maze. The BDNF level in different regions of the brain (cerebral cortex, hippocampus and cerebellum) was estimated by ELISA method. Results: Calorie restricted animals treated with astaxanthin made significantly more correct choices (P < 0.05), and fewer reference memory errors (P < 0.05) on the tenth day of training compared to offsprings of calorie restricted animals. Calorie restricted animals treated with astaxanthin also made significantly higher correct choices (P < 0.001) than untreated calorie restricted animals in a retention test 10 days after the training period. The mean BDNF level in cerebral cortex, Hippocampus and cerebellum in Calorie restricted animals treated with astaxanthin didnot show significant variation from that of control animals. Conclusion: Findings of the study indicated that memory and learning was impaired in the offspring’s of calorie restricted rats which was effectively modulated by astaxanthin at the dosage of 12 mg/kg body weight. In the same way the BDNF level at cerebral cortex, Hippocampus and Cerebellum was also declined in the offspring’s of calorie restricted animals, which was also found to be effectively normalized by astaxanthin.Keywords: calorie restiction, learning, Memory, Cerebral cortex, Hippocampus, Cerebellum, BDNF, Astaxanthin
Procedia PDF Downloads 2326926 The Impact of Two Factors on EFL Learners' Fluency
Authors: Alireza Behfar, Mohammad Mahdavi
Abstract:
Nowadays, in the light of progress in the world of science, technology and communications, mastery of learning international languages is a sure and needful matter. In learning any language as a second language, progress and achieving a desirable level in speaking is indeed important for approximately all learners. In this research, we find out how preparation can influence L2 learners' oral fluency with respect to individual differences in working memory capacity. The participants consisted of sixty-one advanced L2 learners including MA students of TEFL at Isfahan University as well as instructors teaching English at Sadr Institute in Isfahan. The data collection consisted of two phases: A working memory test (reading span test) and a picture description task, with a one-month interval between the two tasks. Speaking was elicited through speech generation task in which the individuals were asked to discuss four topics emerging in two pairs. The two pairs included one simple and one complex topic and was accompanied by planning time and without any planning time respectively. Each topic was accompanied by several relevant pictures. L2 fluency was assessed based on preparation. The data were then analyzed in terms of the number of syllables, the number of silent pauses, and the mean length of pauses produced per minute. The study offers implications for strategies to improve learners’ both fluency and working memory.Keywords: two factors, fluency, working memory capacity, preparation, L2 speech production reading span test picture description
Procedia PDF Downloads 2306925 Effect of Monotonically Decreasing Parameters on Margin Softmax for Deep Face Recognition
Authors: Umair Rashid
Abstract:
Normally softmax loss is used as the supervision signal in face recognition (FR) system, and it boosts the separability of features. In the last two years, a number of techniques have been proposed by reformulating the original softmax loss to enhance the discriminating power of Deep Convolutional Neural Networks (DCNNs) for FR system. To learn angularly discriminative features Cosine-Margin based softmax has been adjusted as monotonically decreasing angular function, that is the main challenge for angular based softmax. On that issue, we propose monotonically decreasing element for Cosine-Margin based softmax and also, we discussed the effect of different monotonically decreasing parameters on angular Margin softmax for FR system. We train the model on publicly available dataset CASIA- WebFace via our proposed monotonically decreasing parameters for cosine function and the tests on YouTube Faces (YTF, Labeled Face in the Wild (LFW), VGGFace1 and VGGFace2 attain the state-of-the-art performance.Keywords: deep convolutional neural networks, cosine margin face recognition, softmax loss, monotonically decreasing parameter
Procedia PDF Downloads 1016924 Neuroplasticity in Language Acquisition in English as Foreign Language Classrooms
Authors: Sabitha Rahim
Abstract:
In the context of teaching vocabulary of English as Foreign Language (EFL), the confluence of memory and retention is one of the most significant factors in students' language acquisition. The progress of students engaged in foreign language acquisition is often stymied by vocabulary attrition, which leads to learners' lack of confidence and motivation. However, among other factors, little research has investigated the importance of neuroplasticity in Foreign Language acquisition and how underused neural pathways lead to the loss of plasticity, thereby affecting the learners’ vocabulary retention and motivation. This research explored the effect of enhancing vocabulary acquisition of EFL students in the Foundation Year at King Abdulaziz University through various methods and neuroplasticity exercises that reinforced their attention, motivation, and engagement. It analyzed the results to determine if stimulating the brain of EFL learners by various physical and mental activities led to the improvement in short and long term memory in vocabulary retention. The main data collection methods were student surveys, assessment records of teachers, student achievement test results, and students' follow-up interviews. A key implication of this research is for the institutions to consider having multiple varieties of student activities promoting brain plasticity within the classrooms as an effective tool for foreign language acquisition. Building awareness among the faculty and adapting the curriculum to include activities that promote brain plasticity ensures an enhanced learning environment and effective language acquisition in EFL classrooms.Keywords: language acquisition, neural paths, neuroplasticity, vocabulary attrition
Procedia PDF Downloads 1756923 Between Dark and Light: The Construction and the Exclusion of Memory of Prison Heritage in Post-Soviet Period
Authors: Guo Cyuan Deng
Abstract:
This study represents how the Soviet-occupied dark memory in Baltic countries were interpreted and represented by examining the way of management of prison heritage. Based on the formulation of a dark-tourism spectrum which Philip Stone proposed, the Patarei prison in Estonia and the Karosta prison in Latvia are compared, and it is thought that both prisons, which had experienced similar colonial history, face different tourism operation in the present. The former is being run by NGO and remain the situation of “empty" by art intervening. However, the Estonia government attempt to get the operation of museum and transform it to anti-Soviet museum in order show national identity. By contrast, the latter is being managed by private company, whom transformed the prison to "dark fun factories" by entertainment activities in order to private capital accumulation. Moreover, it is not only indicated that both prisons exclude the minority's memory, but also the flaws of dark-tourism spectrum which divide the dark and light are discussed. Finally, given the nature and function of dark heritage, the concept "le métro" is used to supplement Stone's spectrum.Keywords: dark tourism, prison heritage, Post-Soviet, Baltic countries, national identities
Procedia PDF Downloads 3066922 Memory Types in Hemodialysis (HD) Patients; A Study Based on Hemodialysis Duration, Zahedan: South East of Iran
Authors: Behnoush Sabayan, Ali Alidadi, Saeid Ebarhimi, N. M. Bakhshani
Abstract:
Hemodialysis (HD) patients are at a high risk of atherosclerotic and vascular disease; also little information is available for the HD impact on brain structure of these patients. We studied the brain abnormalities in HD patients. The aim of this study was to investigate the effect of long term HD on brain structure of HD patients. Non-contrast MRI was used to evaluate imaging findings. Our study included 80 HD patients of whom 39 had less than six months of HD and 41 patients had a history of HD more than six months. The population had a mean age of 51.60 years old and 27.5% were female. According to study, HD patients who have been hemodialyzed for a long time (median time of HD was up to 4 years) had small vessel ischemia than the HD patients who underwent HD for a shorter term, which the median time was 3 to 5 months. Most of the small vessel ischemia was located in pre-ventricular, subcortical and white matter (1.33± .471, 1.23± .420 and 1.39±.490). However, the other brain damages like: central pons abnormality, global brain atrophy, thinning of corpus callosum and frontal lobe atrophy were found (P<0.01). The present study demonstrated that HD patients who were under HD for a longer time had small vessel ischemia and we conclude that this small vessel ischemia might be a causative mechanism of brain atrophy in chronic hemodialysis patients. However, additional researches are needed in this area.Keywords: Hemodialysis Patients, Duration of Hemodialysis, MRI, Zahedan
Procedia PDF Downloads 2136921 Effects of Intracerebroventricular Injection of Ghrelin and Aerobic Exercise on Passive Avoidance Memory and Anxiety in Adult Male Wistar Rats
Authors: Mohaya Farzin, Parvin Babaei, Mohammad Rostampour
Abstract:
Ghrelin plays a considerable role in important neurological effects related to food intake and energy homeostasis. As was found, regular physical activity may make available significant improvements to cognitive functions in various behavioral situations. Anxiety is one of the main concerns of the modern world, affecting millions of individuals’ health. There are contradictory results regarding ghrelin's effects on anxiety-like behavior, and the plasma level of this peptide is increased during physical activity. Here we aimed to evaluate the coincident effects of exogenous ghrelin and aerobic exercise on anxiety-like behavior and passive avoidance memory in Wistar rats. Forty-five male Wistar rats (250 ± 20 g) were divided into 9 groups (n=5) and received intra-hippocampal injections of 3.0 nmol ghrelin and performed aerobic exercise training for 8 weeks. Control groups received the same volume of saline and diazepam as negative and positive control groups, respectively. Learning and memory were estimated using a shuttle box apparatus, and anxiety-like behavior was recorded by an elevated plus-maze test (EPM). Data were analyzed by ANOVA test, and p<0.05 was considered significant. Our findings showed that the combined effect of ghrelin and aerobic exercise improves the acquisition, consolidation, and retrieval of passive avoidance memory in Wistar rats. Furthermore, it is supposed that the ghrelin receiving group spent less time in open arms and fewer open arms entries compared with the control group (p<0.05). However, exercising Wistar rats spent more time in the open arm zone in comparison with the control group (p<0.05). The exercise + Ghrelin administration established reduced anxiety (p<0.05). The results of this study demonstrate that aerobic exercise contributes to an increase in the endogenous production of ghrelin, and physical activity alleviates anxiety-related behaviors induced by intra-hippocampal injection of ghrelin. In general, exercise and ghrelin can reduce anxiety and improve memory.Keywords: anxiety, ghrelin, aerobic exercise, learning, passive avoidance memory
Procedia PDF Downloads 1196920 Deep-Learning to Generation of Weights for Image Captioning Using Part-of-Speech Approach
Authors: Tiago do Carmo Nogueira, Cássio Dener Noronha Vinhal, Gélson da Cruz Júnior, Matheus Rudolfo Diedrich Ullmann
Abstract:
Generating automatic image descriptions through natural language is a challenging task. Image captioning is a task that consistently describes an image by combining computer vision and natural language processing techniques. To accomplish this task, cutting-edge models use encoder-decoder structures. Thus, Convolutional Neural Networks (CNN) are used to extract the characteristics of the images, and Recurrent Neural Networks (RNN) generate the descriptive sentences of the images. However, cutting-edge approaches still suffer from problems of generating incorrect captions and accumulating errors in the decoders. To solve this problem, we propose a model based on the encoder-decoder structure, introducing a module that generates the weights according to the importance of the word to form the sentence, using the part-of-speech (PoS). Thus, the results demonstrate that our model surpasses state-of-the-art models.Keywords: gated recurrent units, caption generation, convolutional neural network, part-of-speech
Procedia PDF Downloads 1026919 Global Mittag-Leffler Stability of Fractional-Order Bidirectional Associative Memory Neural Network with Discrete and Distributed Transmission Delays
Authors: Swati Tyagi, Syed Abbas
Abstract:
Fractional-order Hopfield neural networks are generally used to model the information processing among the interacting neurons. To show the constancy of the processed information, it is required to analyze the stability of these systems. In this work, we perform Mittag-Leffler stability for the corresponding Caputo fractional-order bidirectional associative memory (BAM) neural networks with various time-delays. We derive sufficient conditions to ensure the existence and uniqueness of the equilibrium point by using the theory of topological degree theory. By applying the fractional Lyapunov method and Mittag-Leffler functions, we derive sufficient conditions for the global Mittag-Leffler stability, which further imply the global asymptotic stability of the network equilibrium. Finally, we present two suitable examples to show the effectiveness of the obtained results.Keywords: bidirectional associative memory neural network, existence and uniqueness, fractional-order, Lyapunov function, Mittag-Leffler stability
Procedia PDF Downloads 3636918 A Comparison of Convolutional Neural Network Architectures for the Classification of Alzheimer’s Disease Patients Using MRI Scans
Authors: Tomas Premoli, Sareh Rowlands
Abstract:
In this study, we investigate the impact of various convolutional neural network (CNN) architectures on the accuracy of diagnosing Alzheimer’s disease (AD) using patient MRI scans. Alzheimer’s disease is a debilitating neurodegenerative disorder that affects millions worldwide. Early, accurate, and non-invasive diagnostic methods are required for providing optimal care and symptom management. Deep learning techniques, particularly CNNs, have shown great promise in enhancing this diagnostic process. We aim to contribute to the ongoing research in this field by comparing the effectiveness of different CNN architectures and providing insights for future studies. Our methodology involved preprocessing MRI data, implementing multiple CNN architectures, and evaluating the performance of each model. We employed intensity normalization, linear registration, and skull stripping for our preprocessing. The selected architectures included VGG, ResNet, and DenseNet models, all implemented using the Keras library. We employed transfer learning and trained models from scratch to compare their effectiveness. Our findings demonstrated significant differences in performance among the tested architectures, with DenseNet201 achieving the highest accuracy of 86.4%. Transfer learning proved to be helpful in improving model performance. We also identified potential areas for future research, such as experimenting with other architectures, optimizing hyperparameters, and employing fine-tuning strategies. By providing a comprehensive analysis of the selected CNN architectures, we offer a solid foundation for future research in Alzheimer’s disease diagnosis using deep learning techniques. Our study highlights the potential of CNNs as a valuable diagnostic tool and emphasizes the importance of ongoing research to develop more accurate and effective models.Keywords: Alzheimer’s disease, convolutional neural networks, deep learning, medical imaging, MRI
Procedia PDF Downloads 736917 LGG Architecture for Brain Tumor Segmentation Using Convolutional Neural Network
Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan
Abstract:
The most aggressive form of brain tumor is called glioma. Glioma is kind of tumor that arises from glial tissue of the brain and occurs quite often. A fully automatic 2D-CNN model for brain tumor segmentation is presented in this paper. We performed pre-processing steps to remove noise and intensity variances using N4ITK and standard intensity correction, respectively. We used Keras open-source library with Theano as backend for fast implementation of CNN model. In addition, we used BRATS 2015 MRI dataset to evaluate our proposed model. Furthermore, we have used SimpleITK open-source library in our proposed model to analyze images. Moreover, we have extracted random 2D patches for proposed 2D-CNN model for efficient brain segmentation. Extracting 2D patched instead of 3D due to less dimensional information present in 2D which helps us in reducing computational time. Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.77 for complete, 0.76 for core, 0.77 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.Keywords: brain tumor segmentation, convolutional neural networks, deep learning, LGG
Procedia PDF Downloads 1826916 An Overview on the Effectiveness of Brand Mascot and Celebrity Endorsement
Authors: Isari Pairoa, Proud Arunrangsiwed
Abstract:
Celebrity and brand mascot endorsement have been explored for more than three decades. Both endorsers can effectively transfer their reputation to corporate image and can influence the customers to purchase the product. However, there was little known about the mediators between the level of endorsement and its effect on buying behavior. The objective of the current study is to identify the gab of the previous studies and to seek possible mediators. It was found that consumer’s memory and identification are the mediators, of source credibility and endorsement effect. A future study should confirm the model of endorsement, which was established in the current study.Keywords: product endorsement, memory, identification theory, source credibility, unintentional effect
Procedia PDF Downloads 2276915 Neuropsychological Deficits in Drug-Resistant Epilepsy
Authors: Timea Harmath-Tánczos
Abstract:
Drug-resistant epilepsy (DRE) is defined as the persistence of seizures despite at least two syndrome-adapted antiseizure drugs (ASD) used at efficacious daily doses. About a third of patients with epilepsy suffer from drug resistance. Cognitive assessment has a crucial role in the diagnosis and clinical management of epilepsy. Previous studies have addressed the clinical targets and indications for measuring neuropsychological functions; best to our knowledge, no studies have examined it in a Hungarian therapy-resistant population. To fill this gap, we investigated the Hungarian diagnostic protocol between 18 and 65 years of age. This study aimed to describe and analyze neuropsychological functions in patients with drug-resistant epilepsy and identify factors associated with neuropsychology deficits. We perform a prospective case-control study comparing neuropsychological performances in 50 adult patients and 50 healthy individuals between March 2023 and July 2023. Neuropsychological functions were examined in both patients and controls using a full set of specific tests (general performance level, motor functions, attention, executive facts., verbal and visual memory, language, and visual-spatial functions). Potential risk factors for neuropsychological deficit were assessed in the patient group using a multivariate analysis. The two groups did not differ in age, sex, dominant hand and level of education. Compared with the control group, patients with drug-resistant epilepsy showed worse performance on motor functions and visuospatial memory, sustained attention, inhibition and verbal memory. Neuropsychological deficits could therefore be systematically detected in patients with drug-resistant epilepsy in order to provide neuropsychological therapy and improve quality of life. The analysis of the classical and complex indices of the special neuropsychological tasks presented in the presentation can help in the investigation of normal and disrupted memory and executive functions in the DRE.Keywords: drug-resistant epilepsy, Hungarian diagnostic protocol, memory, executive functions, cognitive neuropsychology
Procedia PDF Downloads 756914 Executive Deficits in Non-Clinical Hoarders
Authors: Thomas Heffernan, Nick Neave, Colin Hamilton, Gill Case
Abstract:
Hoarding is the acquisition of and failure to discard possessions, leading to excessive clutter and significant psychological/emotional distress. From a cognitive-behavioural approach, excessive hoarding arises from information-processing deficits, as well as from problems with emotional attachment to possessions and beliefs about the nature of possessions. In terms of information processing, hoarders have shown deficits in executive functions, including working memory, planning, inhibitory control, and cognitive flexibility. However, this previous research is often confounded by co-morbid factors such as anxiety, depression, or obsessive-compulsive disorder. The current study adopted a cognitive-behavioural approach, specifically assessing executive deficits and working memory in a non-clinical sample of hoarders, compared with non-hoarders. In this study, a non-clinical sample of 40 hoarders and 73 non-hoarders (defined by The Savings Inventory-Revised) completed the Adult Executive Functioning Inventory, which measures working memory and inhibition, Dysexecutive Questionnaire-Revised, which measures general executive function and the Hospital Anxiety and Depression Scale, which measures mood. The participant sample was made up of unpaid young adult volunteers who were undergraduate students and who completed the questionnaires on a university campus. The results revealed that, after observing no differences between hoarders and non-hoarders on age, sex, and mood, hoarders reported significantly more deficits in inhibitory control and general executive function when compared with non-hoarders. There was no between-group difference on general working memory. This suggests that non-clinical hoarders have a specific difficulty with inhibition-control, which enables you to resist repeated, unwanted urges. This might explain the hoarder’s inability to resist urges to buy and keep items that are no longer of any practical use. These deficits may be underpinned by general executive function deficiencies.Keywords: hoarding, memory, executive, deficits
Procedia PDF Downloads 193