Search results for: common vector approach
18930 A Critique of The English And Nigerian Marine Insurance Laws on Insurable Interest
Authors: Omotolani Victoria Somoye
Abstract:
The paper examines modern approaches to the insurable interest, which is a fundamental principle of insurance law that affects the enforceability of insurance contracts. The study starts by examining the competing definitions of the nature of the insurable interest doctrine. It finds that while legal interest theory is seen to be sufficient as the test of insurable interest, the paper argues on how this approach deprives the insured of a full indemnity of losses suffered. The problem with the Nigerian and English current legislative framework is that it defines insurable interest as a legally recognized interest of the insured in the subject matter of insurance. However, other countries like Australia, the United States, South Africa, and more recently, Canada, have rejected the English test and trodden their own path along the factual expectancy line. The study justifies the rationale behind the departure of similar common law jurisdictions and argues that the English and Nigerian position, which appears to be too rigid, harsh on the insured, and no longer fit for purpose in the 21st century, should be revised. The paper concludes that the common law doctrine does not represent better interests of certainty, justice, and fairness, as well as not meeting the policy behind the requirement of insurable interest. This paper adopts a doctrinal comparative research methodology to examine complex areas of insurable interest in selected countries and work out some suggestions for reforming the Nigerian and English laws by referring to the approaches of other jurisdictions.Keywords: Australia, common law, English law, insurable interest, insurance, Nigeria
Procedia PDF Downloads 13918929 Adaptive Neuro Fuzzy Inference System Model Based on Support Vector Regression for Stock Time Series Forecasting
Authors: Anita Setianingrum, Oki S. Jaya, Zuherman Rustam
Abstract:
Forecasting stock price is a challenging task due to the complex time series of the data. The complexity arises from many variables that affect the stock market. Many time series models have been proposed before, but those previous models still have some problems: 1) put the subjectivity of choosing the technical indicators, and 2) rely upon some assumptions about the variables, so it is limited to be applied to all datasets. Therefore, this paper studied a novel Adaptive Neuro-Fuzzy Inference System (ANFIS) time series model based on Support Vector Regression (SVR) for forecasting the stock market. In order to evaluate the performance of proposed models, stock market transaction data of TAIEX and HIS from January to December 2015 is collected as experimental datasets. As a result, the method has outperformed its counterparts in terms of accuracy.Keywords: ANFIS, fuzzy time series, stock forecasting, SVR
Procedia PDF Downloads 24618928 Iris Recognition Based on the Low Order Norms of Gradient Components
Authors: Iman A. Saad, Loay E. George
Abstract:
Iris pattern is an important biological feature of human body; it becomes very hot topic in both research and practical applications. In this paper, an algorithm is proposed for iris recognition and a simple, efficient and fast method is introduced to extract a set of discriminatory features using first order gradient operator applied on grayscale images. The gradient based features are robust, up to certain extents, against the variations may occur in contrast or brightness of iris image samples; the variations are mostly occur due lightening differences and camera changes. At first, the iris region is located, after that it is remapped to a rectangular area of size 360x60 pixels. Also, a new method is proposed for detecting eyelash and eyelid points; it depends on making image statistical analysis, to mark the eyelash and eyelid as a noise points. In order to cover the features localization (variation), the rectangular iris image is partitioned into N overlapped sub-images (blocks); then from each block a set of different average directional gradient densities values is calculated to be used as texture features vector. The applied gradient operators are taken along the horizontal, vertical and diagonal directions. The low order norms of gradient components were used to establish the feature vector. Euclidean distance based classifier was used as a matching metric for determining the degree of similarity between the features vector extracted from the tested iris image and template features vectors stored in the database. Experimental tests were performed using 2639 iris images from CASIA V4-Interival database, the attained recognition accuracy has reached up to 99.92%.Keywords: iris recognition, contrast stretching, gradient features, texture features, Euclidean metric
Procedia PDF Downloads 33418927 Showing Broccoli and Cabbage Genotypes Biodiversity Using Randomly Amplified Polymorphic DNAs (RAPD)
Authors: M. M. A. Abdalla, M. H. Aboul-Nasr, Shimaa H. Mosallam
Abstract:
Ten RAPD markers were used to detect the genetic variability and relationships among four broccoli and three cabbage genotypes. The results of RAPD analysis showed that all the five primers surveyed detected polymorphism for all broccoli genotypes. A total of 39 DNA bands were amplified by the 5 primers from all genotype and 21 of these fragments showed polymorphism (53.85%). The rest of these bands (46.15%) were common between the four genotypes. On the other hand, all of the 7 primers surveyed, used with cabbage, detected polymorphism among all cabbage genotype. A total of 69 DNA bands were amplified by the 7 primers from all genotypes and 23 of these fragments showed polymorphism (33.33%). The rest of these bands (66.67%) were common between the three genotypes. The investigation suggested that the RAPD approach showed considerable potential for identifying and discriminating broccoli and cabbage genotypes.Keywords: Brassica oleracea, genotypes, genetic markers, varietal identification, DNA polymorphism, RAPD markers
Procedia PDF Downloads 32018926 Automatic Lexicon Generation for Domain Specific Dataset for Mining Public Opinion on China Pakistan Economic Corridor
Authors: Tayyaba Azim, Bibi Amina
Abstract:
The increase in the popularity of opinion mining with the rapid growth in the availability of social networks has attracted a lot of opportunities for research in the various domains of Sentiment Analysis and Natural Language Processing (NLP) using Artificial Intelligence approaches. The latest trend allows the public to actively use the internet for analyzing an individual’s opinion and explore the effectiveness of published facts. The main theme of this research is to account the public opinion on the most crucial and extensively discussed development projects, China Pakistan Economic Corridor (CPEC), considered as a game changer due to its promise of bringing economic prosperity to the region. So far, to the best of our knowledge, the theme of CPEC has not been analyzed for sentiment determination through the ML approach. This research aims to demonstrate the use of ML approaches to spontaneously analyze the public sentiment on Twitter tweets particularly about CPEC. Support Vector Machine SVM is used for classification task classifying tweets into positive, negative and neutral classes. Word2vec and TF-IDF features are used with the SVM model, a comparison of the trained model on manually labelled tweets and automatically generated lexicon is performed. The contributions of this work are: Development of a sentiment analysis system for public tweets on CPEC subject, construction of an automatic generation of the lexicon of public tweets on CPEC, different themes are identified among tweets and sentiments are assigned to each theme. It is worth noting that the applications of web mining that empower e-democracy by improving political transparency and public participation in decision making via social media have not been explored and practised in Pakistan region on CPEC yet.Keywords: machine learning, natural language processing, sentiment analysis, support vector machine, Word2vec
Procedia PDF Downloads 14818925 Features Vector Selection for the Recognition of the Fragmented Handwritten Numeric Chains
Authors: Salim Ouchtati, Aissa Belmeguenai, Mouldi Bedda
Abstract:
In this study, we propose an offline system for the recognition of the fragmented handwritten numeric chains. Firstly, we realized a recognition system of the isolated handwritten digits, in this part; the study is based mainly on the evaluation of neural network performances, trained with the gradient backpropagation algorithm. The used parameters to form the input vector of the neural network are extracted from the binary images of the isolated handwritten digit by several methods: the distribution sequence, sondes application, the Barr features, and the centered moments of the different projections and profiles. Secondly, the study is extended for the reading of the fragmented handwritten numeric chains constituted of a variable number of digits. The vertical projection was used to segment the numeric chain at isolated digits and every digit (or segment) was presented separately to the entry of the system achieved in the first part (recognition system of the isolated handwritten digits).Keywords: features extraction, handwritten numeric chains, image processing, neural networks
Procedia PDF Downloads 26518924 Malaria Vector Situation in Tanjung Subdistrict, West Lombok Regency, West Nusa Tenggara Province, Indonesia
Authors: Subagyo Yotopranoto, Sri Wijayanti Sulistyawati, Sukmawati Basuki, Budi Armika, Yoes Prijatna Dachlan
Abstract:
Malaria is a parasitic infectious disease that still remains a health problem in the world, including Indonesia. There is an outbreak happen at West Nusa Tenggara in 2007. A tourist spot in West Nusa Tenggara called West Lombok is mesoendemic area for malaria. Tanjung is the highest malaria morbidity subdistrict in West Lombok. Thus, the research conducted for the presence of a new species of malaria vectors, that are suspected of one factors which caused high morbidity of malaria in this region. The study was conducted in coastal and highland areas. We collected and identified Anopheles larvae from their breeding places. We also collected and identified Anopheles adult mosquitoes with outdoor cow net, indoor and outdoor human bait. In coastal area (Tembobor village), we found Anopheles vagus larvae from rivers as its breeding places. In highland area (Dasan Tengah village), we found An. subpictus from pool, lagoon, and river as its breeding places. In coastal area, with outdoor human bait, we collected An. vagus and An. subpictus adult mosquitoes. With indoor human bait, we collected An. subpictus adult mosquitoes. Whereas with outdoor cow net, we collected An. subpictus and An. maculatus, the first was more dominant. Furthermore, An subpictus strong suspected as malaria vector in coastal area. Anopheles subpictus was an anthropozoophylic mosquitoes, because it was found at indoor and outdoor places.Keywords: malaria, vector, Tanjung, West Nusa Tenggara
Procedia PDF Downloads 36318923 Housing Price Prediction Using Machine Learning Algorithms: The Case of Melbourne City, Australia
Authors: The Danh Phan
Abstract:
House price forecasting is a main topic in the real estate market research. Effective house price prediction models could not only allow home buyers and real estate agents to make better data-driven decisions but may also be beneficial for the property policymaking process. This study investigates the housing market by using machine learning techniques to analyze real historical house sale transactions in Australia. It seeks useful models which could be deployed as an application for house buyers and sellers. Data analytics show a high discrepancy between the house price in the most expensive suburbs and the most affordable suburbs in the city of Melbourne. In addition, experiments demonstrate that the combination of Stepwise and Support Vector Machine (SVM), based on the Mean Squared Error (MSE) measurement, consistently outperforms other models in terms of prediction accuracy.Keywords: house price prediction, regression trees, neural network, support vector machine, stepwise
Procedia PDF Downloads 23018922 Tibyan Automated Arabic Correction Using Machine-Learning in Detecting Syntactical Mistakes
Authors: Ashwag O. Maghraby, Nida N. Khan, Hosnia A. Ahmed, Ghufran N. Brohi, Hind F. Assouli, Jawaher S. Melibari
Abstract:
The Arabic language is one of the most important languages. Learning it is so important for many people around the world because of its religious and economic importance and the real challenge lies in practicing it without grammatical or syntactical mistakes. This research focused on detecting and correcting the syntactic mistakes of Arabic syntax according to their position in the sentence and focused on two of the main syntactical rules in Arabic: Dual and Plural. It analyzes each sentence in the text, using Stanford CoreNLP morphological analyzer and machine-learning approach in order to detect the syntactical mistakes and then correct it. A prototype of the proposed system was implemented and evaluated. It uses support vector machine (SVM) algorithm to detect Arabic grammatical errors and correct them using the rule-based approach. The prototype system has a far accuracy 81%. In general, it shows a set of useful grammatical suggestions that the user may forget about while writing due to lack of familiarity with grammar or as a result of the speed of writing such as alerting the user when using a plural term to indicate one person.Keywords: Arabic language acquisition and learning, natural language processing, morphological analyzer, part-of-speech
Procedia PDF Downloads 15118921 Factors Contributing to Sports Injuries among Senior High Schools in Ghana
Authors: Mawuli M. Sedegah, Emmanuel O. Sarpong, Ernest Y. Acheampong
Abstract:
Sports injuries among student-athletes in high schools have become prevalent in most developing countries. The study explores the risk factors influencing sports injuries and identify those sustained among high schools’ competitions in the Akuapem Municipality. Drawing on literature from sports injuries, 610 student-athletes were used to understand how they sustained various injuries during schools’ sports and games. Using a cross-sectional survey, the study reveals how wounds, knee injury, muscle cramps, and thigh injury are common injuries in the municipality. The physiological factor was rampant, resulting from the number of games played by student-athletes, which significantly influenced sprain, strain, dislocation, and nose bleeding injuries among them. Results recorded a low correlation accounting for 9% occurrence of sports injuries in the Akuapem Municipality. Further study can be done in the other districts to have a general approach to remedy some of these sports injuries.Keywords: common injuries, physiological factors, sports injuries, student-athletes
Procedia PDF Downloads 17118920 Efficient Elimination of Common Allergens through the Application of Dry Microfine Steam on Innate Surfaces
Authors: O. Rachinel, C. Recchia, M. Bourel, B. Recchia
Abstract:
Dry microfine steam (DMS) technology, developed by Laurastar, was shown to effectively eliminate a range of pathogens such as Sars-CoV-2, E. coli, S. aureus and C. Albicans. The aim of this study was to investigate the effect of DMS technology on allergens. Therefore, the application of the DMS technology was tested on two common allergens (Dermatophagoides pteronyssinus and cat allergen Fel d 1), on different inert surfaces (e.g., cotton), during 2 to 3 seconds. Quantification of the remaining allergens was performed and the reduction rates reached 100% in 3 seconds for D. pteronyssinus and 97,74% in 2 seconds for cat allergens. In conclusion, DMS showed high efficacy in the elimination of common allergens and could be seen as a natural solution to improve domestic hygiene and reduce allergies.Keywords: steam, allergens, dust mites, pollens
Procedia PDF Downloads 13618919 Accessible Sustainability Assessment Tools and Approach of the University level Academic Programs
Authors: S. K. Ashiquer Rahman
Abstract:
The innovative knowledge threshold significantly shifted education from traditional to an online version which was an emergent state of arts for academic programs of any higher education institutions; the substantive situation thus raises the importance of deliberative integration of education, Knowledge, technology and sustainability as well as knowledge platforms, e.g., ePLANETe. In fact, the concept of 'ePLANETe' an innovative knowledge platform and its functionalities as an experimental digitized platform for contributing sustainable assessment of academic programs of higher education institution(HEI). Besides, this paper assessed and define the common sustainable development challenges of higher education(HE) and identified effective approach and tools of 'ePLANETe’ that is enable to practices sustainability assessment of academic programs through the deliberation methodologies. To investigate the effectiveness of knowledge tools and approach of 'ePLANETe’, I have studied sustainable challenges digitized pedagogical content as well as evaluation of academic programs of two public universities in France through the 'ePLANETe’ evaluation space. The investigation indicated that the effectiveness of 'ePLANETe’s tools and approach perfectly fit for the quality assessment of academic programs, implementation of sustainable challenges, and dynamic balance of ecosystem within the university communities and academic programs through 'ePLANETe’ evaluation process and space. The study suggests to the relevant higher educational institution’s authorities and policymakers could use this approach and tools for assessing sustainability and enhancing the sustainability competencies of academic programs for quality educationKeywords: ePLANETe, deliberation, evaluation, competencies
Procedia PDF Downloads 11318918 Evaluation of Botanical Plant Powders against Zabrotes subfasciatus (Boheman) (Coleoptera: Bruchidae) in Stored Local Common Bean Varieties
Authors: Fikadu Kifle Hailegeorgis
Abstract:
Common bean is one of the most important sources of protein in Ethiopia and other developing countries. However, the Mexican bean weevil, Zabrotes subfasciatus (Boheman), is a major factor in the storage of common beans that causes losses. Studies were conducted to evaluate the efficacy of botanical powders of Jatropha curcas (L.), Neem/Azadrachta indica, and Parthenium hysterophorus (L) on local common bean varieties against Z subfasciatus at Melkassa Agriculture Research Center. Twenty local common bean varieties were evaluated twice against Z. Subfasciatus in a completely randomized design in three replications at the rate of 0.2g/250g of seed for each experiment. Malathion and untreated were used as standard checks. The result indicated that RAZ White and Round Yellow showed high resistance variety in experiments while Batu and Black showed high susceptible variety in experiments. Jatropha seed powder was the most effective against Z. subfasciatus. Parthenium seed powders and neem leaf powders also indicate promising results. Common beans treated with botanicals significantly (p<0.05) had a higher germination percentage than that of the untreated seed. In general, the results obtained indicated that using bean varieties (RAZ white and Round yellow) and botanicals (Jatropha) seed powder gave the best control of Z. subfasciatus.Keywords: botanicals, malathion, resistant varieties, Z. subfasciatus
Procedia PDF Downloads 5918917 Alternator Fault Detection Using Wigner-Ville Distribution
Authors: Amin Ranjbar, Amir Arsalan Jalili Zolfaghari, Amir Abolfazl Suratgar, Mehrdad Khajavi
Abstract:
This paper describes two stages of learning-based fault detection procedure in alternators. The procedure consists of three states of machine condition namely shortened brush, high impedance relay and maintaining a healthy condition in the alternator. The fault detection algorithm uses Wigner-Ville distribution as a feature extractor and also appropriate feature classifier. In this work, ANN (Artificial Neural Network) and also SVM (support vector machine) were compared to determine more suitable performance evaluated by the mean squared of errors criteria. Modules work together to detect possible faulty conditions of machines working. To test the method performance, a signal database is prepared by making different conditions on a laboratory setup. Therefore, it seems by implementing this method, satisfactory results are achieved.Keywords: alternator, artificial neural network, support vector machine, time-frequency analysis, Wigner-Ville distribution
Procedia PDF Downloads 37318916 The Concept of Decentralization: Modern Challenges for the EU Countries, Prospects for Further Implementation in Ukraine
Authors: Alina Murtishcheva
Abstract:
The tendency of globalization, challenges to democracy and peace caused by the Russian invasion of Ukraine, and other global conflicts require searching general orientations of governmental development, including local government. The formation of a common theoretical framework for local government guarantees not only of harmonisation of European legislation but also creates prerequisites for the integration of new members into the European Union. One of the most important milestones of such a theoretical framework is the concept of decentralization. Decentralization as a phenomenon is characteristic of most European Union countries at different historical stages. For Ukraine, as a country that has clearly defined a European integration vector of development, understanding not only the legal but also the theoretical basis of decentralisation processes in European countries is an important prerequisite for further reforms. Decentralisation takes different forms, which leads to a variety of understandings in doctrine and, consequently, different interpretations in national legislation. Despite of this, decentralisation is based on common ideas and values such as democracy, participation, the rule of law, and proximity government that are shared by all EU member states. Nevertheless, not all EU countries are currently implementing broad decentralization in their political and legal practices. Some countries are gradually moving in this direction, while others remain quite centralised. There is also a new, insufficiently studied trend today – recentralisation, which can be broadly defined as the strengthening of centralization tendencies in countries that were considered to be decentralized. Consequently, an exploratory theoretical study is needed to identify how the concept of decentralization is combined with the recentralization tendency in EU member states. The purpose of this study is to empirically analyse scientific approaches to the concept of “decentralisation”, to highlight the tendency of recentralisation and its consequences, to analyse Ukraine's experience in the field of decentralisation of public power, and to outline the prospects for further development of Ukrainian legislation in this area.Keywords: centralization, decentralization, local government, recentralization, reforms
Procedia PDF Downloads 7518915 Using of Particle Swarm Optimization for Loss Minimization of Vector-Controlled Induction Motors
Authors: V. Rashtchi, H. Bizhani, F. R. Tatari
Abstract:
This paper presents a new online loss minimization for an induction motor drive. Among the many loss minimization algorithms (LMAs) for an induction motor, a particle swarm optimization (PSO) has the advantages of fast response and high accuracy. However, the performance of the PSO and other optimization algorithms depend on the accuracy of the modeling of the motor drive and losses. In the development of the loss model, there is always a trade off between accuracy and complexity. This paper presents a new online optimization to determine an optimum flux level for the efficiency optimization of the vector-controlled induction motor drive. An induction motor (IM) model in d-q coordinates is referenced to the rotor magnetizing current. This transformation results in no leakage inductance on the rotor side, thus the decomposition into d-q components in the steady-state motor model can be utilized in deriving the motor loss model. The suggested algorithm is simple for implementation.Keywords: induction machine, loss minimization, magnetizing current, particle swarm optimization
Procedia PDF Downloads 63118914 Cost-Effectiveness of Laparoscopic Common Bile Duct Exploration vs. Endoscopic Retrograde Cholangiopancreatography in the Emergency Management of Common Bile Duct Stones
Authors: Tess Howard, Lily Owens, Maneesha De Silva, Russell Hodgson
Abstract:
Purpose: This study aims to evaluate the cost-effectiveness of laparoscopic common bile duct exploration (CBDE) compared to endoscopic retrograde cholangiopancreatography (ERCP) and cholecystectomy for the emergency management of common bile duct (CBD) stones. Methodology: A retrospective case note review was conducted on consecutive patients undergoing emergency management of CBD stones using either CBDE, or ERCP and cholecystectomy at a single centre between January 2014-October 2014. Data on admission and procedural costs, length of hospital stay, postoperative complications and further stone related interventions were analysed. Results: A total of 350 patients were analysed. Among them, 299 patients underwent CBDE at the time of cholecystectomy, while the remaining 51 underwent ERCP either pre-, intra- or post cholecystectomy. CBDE was associated with lower overall costs compared to ERCP with an average hospital stay cost of $13,093 vs $22,930 respectively. This was largely attributed to shorter hospital stays (6.5 vs 10.3 days), decreased need for intensive care unit admission and fewer postoperative interventions within the CBDE group. Notably, single procedure laparoscopic cholecystectomy with CBDE demonstrated decreased operative costs compared to laparoscopic cholecystectomy combined with ERCP pre-/intra- or post-operatively ($3,747 vs. $4,641). Conclusion: Emergent CBDE is a cost-effective alternative to ERCP for managing CBD stones when combined with cholecystectomy. The upfront investment in equipment for CBDE and increased cholecystectomy procedural time is counterbalanced by reduced hospital stay, fewer procedures and subsequent cost savings. Economic considerations, in conjunction with clinical outcomes, should inform the selection of the optimal approach for CBD stone management in emergency settings.Keywords: choledocolithiasis, management, cost-effectiveness, endoscopic retrograde cholangiopancreatography, ERCP, CBDE, common bile duct exploration
Procedia PDF Downloads 1918913 Transfer of Contractual Right of Suit Evidenced in Carriage Contract of Bill of Lading in Nigeria
Authors: Eunice Chiamaka Allen-Ngbale
Abstract:
Prior to bill of lading (BOL), merchants travelled along with their goods; then recorded the goods in the ship’s mates’ register; and finally started selling the goods while in transit by way of BOL, indicative that BOL is negotiable. Common law doctrine of privity of contract did not allow the transfer of right to sue to a non-party to the contract. This created hardship to cargo owners, which made many jurisdictions enact laws in this regard. Bill of Lading Act 1855 (BLA) was enacted in the United Kingdom, which applied as statute of general application under section 375 Merchant Shipping Act 1990 (MSA) in Nigeria; and conferred contractual rights of the suit on consignees and endorsees, but on the passing of ownership upon or by reason of such consignment or endorsement on the shipment of the goods simultaneously. The repeal of section 375 MSA by section 439 MSA 2007 created a lacuna, and the doctrine of privity of contract is the extant law in Nigeria. The aim of this study is to evaluate laws governing the transfer of the contractual right of suit to a third party under the bill of lading in Nigeria. The specific objectives of this study are to ascertain: (i) whether the extant law of common law doctrine of privity of the contract covers the transfer of the right of suit to the third party under the bill of lading in Nigeria; (ii) impediment(s) of the common law to transfer such right in Nigeria in the absence of any legislation; (iii) the level of applicability of the doctrine of privity of contract as it relates to transfer of the contractual right of suit to third party under the bill of lading in Nigeria; and (iv) whether to proffer possible suggestion on how to fill the lacuna left by the repeal of Merchant Shipping Act 1990. This work adopted a doctrinal approach with reliance on primary and secondary source materials. It finds that the common law doctrine of privity of contract in Nigeria is retrogressive. This work recommends for amendment of the relevant statute to cure this defect/lacuna like other commonwealth nations for best international practices.Keywords: contract of carriage by sea, doctrine of privity of contract, lawful holder of bill of lading, third party right of suit
Procedia PDF Downloads 16018912 A Spatial Hypergraph Based Semi-Supervised Band Selection Method for Hyperspectral Imagery Semantic Interpretation
Authors: Akrem Sellami, Imed Riadh Farah
Abstract:
Hyperspectral imagery (HSI) typically provides a wealth of information captured in a wide range of the electromagnetic spectrum for each pixel in the image. Hence, a pixel in HSI is a high-dimensional vector of intensities with a large spectral range and a high spectral resolution. Therefore, the semantic interpretation is a challenging task of HSI analysis. We focused in this paper on object classification as HSI semantic interpretation. However, HSI classification still faces some issues, among which are the following: The spatial variability of spectral signatures, the high number of spectral bands, and the high cost of true sample labeling. Therefore, the high number of spectral bands and the low number of training samples pose the problem of the curse of dimensionality. In order to resolve this problem, we propose to introduce the process of dimensionality reduction trying to improve the classification of HSI. The presented approach is a semi-supervised band selection method based on spatial hypergraph embedding model to represent higher order relationships with different weights of the spatial neighbors corresponding to the centroid of pixel. This semi-supervised band selection has been developed to select useful bands for object classification. The presented approach is evaluated on AVIRIS and ROSIS HSIs and compared to other dimensionality reduction methods. The experimental results demonstrate the efficacy of our approach compared to many existing dimensionality reduction methods for HSI classification.Keywords: dimensionality reduction, hyperspectral image, semantic interpretation, spatial hypergraph
Procedia PDF Downloads 30618911 An Application to Predict the Best Study Path for Information Technology Students in Learning Institutes
Authors: L. S. Chathurika
Abstract:
Early prediction of student performance is an important factor to be gained academic excellence. Whatever the study stream in secondary education, students lay the foundation for higher studies during the first year of their degree or diploma program in Sri Lanka. The information technology (IT) field has certain improvements in the education domain by selecting specialization areas to show the talents and skills of students. These specializations can be software engineering, network administration, database administration, multimedia design, etc. After completing the first-year, students attempt to select the best path by considering numerous factors. The purpose of this experiment is to predict the best study path using machine learning algorithms. Five classification algorithms: decision tree, support vector machine, artificial neural network, Naïve Bayes, and logistic regression are selected and tested. The support vector machine obtained the highest accuracy, 82.4%. Then affecting features are recognized to select the best study path.Keywords: algorithm, classification, evaluation, features, testing, training
Procedia PDF Downloads 11918910 Real Time Adaptive Obstacle Avoidance in Dynamic Environments with Different D-S
Authors: Mohammad Javad Mollakazemi, Farhad Asadi
Abstract:
In this paper a real-time obstacle avoidance approach for both autonomous and non-autonomous dynamical systems (DS) is presented. In this approach the original dynamics of the controller which allow us to determine safety margin can be modulated. Different common types of DS increase the robot’s reactiveness in the face of uncertainty in the localization of the obstacle especially when robot moves very fast in changeable complex environments. The method is validated by simulation and influence of different autonomous and non-autonomous DS such as important characteristics of limit cycles and unstable DS. Furthermore, the position of different obstacles in complex environment is explained. Finally, the verification of avoidance trajectories is described through different parameters such as safety factor.Keywords: limit cycles, nonlinear dynamical system, real time obstacle avoidance, safety margin
Procedia PDF Downloads 44318909 An Algebraic Geometric Imaging Approach for Automatic Dairy Cow Body Condition Scoring System
Authors: Thi Thi Zin, Pyke Tin, Ikuo Kobayashi, Yoichiro Horii
Abstract:
Today dairy farm experts and farmers have well recognized the importance of dairy cow Body Condition Score (BCS) since these scores can be used to optimize milk production, managing feeding system and as an indicator for abnormality in health even can be utilized to manage for having healthy calving times and process. In tradition, BCS measures are done by animal experts or trained technicians based on visual observations focusing on pin bones, pin, thurl and hook area, tail heads shapes, hook angles and short and long ribs. Since the traditional technique is very manual and subjective, the results can lead to different scores as well as not cost effective. Thus this paper proposes an algebraic geometric imaging approach for an automatic dairy cow BCS system. The proposed system consists of three functional modules. In the first module, significant landmarks or anatomical points from the cow image region are automatically extracted by using image processing techniques. To be specific, there are 23 anatomical points in the regions of ribs, hook bones, pin bone, thurl and tail head. These points are extracted by using block region based vertical and horizontal histogram methods. According to animal experts, the body condition scores depend mainly on the shape structure these regions. Therefore the second module will investigate some algebraic and geometric properties of the extracted anatomical points. Specifically, the second order polynomial regression is employed to a subset of anatomical points to produce the regression coefficients which are to be utilized as a part of feature vector in scoring process. In addition, the angles at thurl, pin, tail head and hook bone area are computed to extend the feature vector. Finally, in the third module, the extracted feature vectors are trained by using Markov Classification process to assign BCS for individual cows. Then the assigned BCS are revised by using multiple regression method to produce the final BCS score for dairy cows. In order to confirm the validity of proposed method, a monitoring video camera is set up at the milk rotary parlor to take top view images of cows. The proposed method extracts the key anatomical points and the corresponding feature vectors for each individual cows. Then the multiple regression calculator and Markov Chain Classification process are utilized to produce the estimated body condition score for each cow. The experimental results tested on 100 dairy cows from self-collected dataset and public bench mark dataset show very promising with accuracy of 98%.Keywords: algebraic geometric imaging approach, body condition score, Markov classification, polynomial regression
Procedia PDF Downloads 15718908 Selecting Answers for Questions with Multiple Answer Choices in Arabic Question Answering Based on Textual Entailment Recognition
Authors: Anes Enakoa, Yawei Liang
Abstract:
Question Answering (QA) system is one of the most important and demanding tasks in the field of Natural Language Processing (NLP). In QA systems, the answer generation task generates a list of candidate answers to the user's question, in which only one answer is correct. Answer selection is one of the main components of the QA, which is concerned with selecting the best answer choice from the candidate answers suggested by the system. However, the selection process can be very challenging especially in Arabic due to its particularities. To address this challenge, an approach is proposed to answer questions with multiple answer choices for Arabic QA systems based on Textual Entailment (TE) recognition. The developed approach employs a Support Vector Machine that considers lexical, semantic and syntactic features in order to recognize the entailment between the generated hypotheses (H) and the text (T). A set of experiments has been conducted for performance evaluation and the overall performance of the proposed method reached an accuracy of 67.5% with C@1 score of 80.46%. The obtained results are promising and demonstrate that the proposed method is effective for TE recognition task.Keywords: information retrieval, machine learning, natural language processing, question answering, textual entailment
Procedia PDF Downloads 14518907 Malaria Outbreak Facilitated by Appearance of Vector-Breeding Sites after Heavy Rainfall and Inadequate Preventive Measures: Nwoya District, Uganda, March–May 2018
Authors: Godfrey Nsereko, Daniel Kadobera, Denis Okethwangu, Joyce Nguna, Alex Riolexus Ario
Abstract:
Background: Malaria is a leading cause of morbidity and mortality in Uganda. In April 2018, malaria cases surged in Nwoya District, northern Uganda, exceeding the action thresholds. We investigated to assess the outbreak’s magnitude, identify transmission risk factors, and recommend evidence-based control measures. Methods: We defined a malaria case as onset of fever in a resident of Nwoya District with a positive Rapid Diagnostic Test or microscopy for malaria P. falciparum from 1 February to 22 May 2018. We reviewed medical records in all health facilities of affected sub-counties to find cases. In a case-control study, we compared exposure risk factors between 107 case-persons and 107 asymptomatic controls matched by age and village. We conducted entomological assessment on vector-density and behavior. Results: We identified 3,879 case-persons (attack rate [AR]=6.5%) and 2 deaths (case-fatality rate=5.2/10,000). Females (AR=8.1%) were more affected than males (AR=4.7%). Of all age groups, the 5-18 year age group (AR=8.4%) was most affected. Heavy rain started on 4 March; a propagated outbreak began during the week of 2 April. In the case-control study, 55% (59/107) of case-patients and 18% (19/107) of controls had stagnant water around households for several days following rainfall (ORM-H=5.6, 95%CI=3.0-11); 25% (27/107) of case-patients and 51% (55/107) of controls wore long-sleeve cloths during evening hours (ORM-H=0.30, 95%CI=0.20-0.60); 29% (31/107) of case-patients and 15% (16/107) of controls did not sleep under a long-lasting insecticide-treated net (LLIN) (ORM-H=2.3, 95%CI=1.1-4.9); 37% (40/107) of case-patients and 52% (56/107) of controls had ≥1 LLIN per 2 household members (ORM-H=0.54, 95%CI=0.30-0.97). Entomological assessment indicated active breeding sites; Anopheles gambiae sensu lato species were the predominant vector. Conclusion: Increased vector breeding sites after heavy rainfall, together with inadequate malaria preventive measures caused this outbreak. We recommended increasing coverage for LLINs and larviciding breeding sites.Keywords: malaria outbreak, Plasmodium falciparum, global health security, Uganda
Procedia PDF Downloads 22518906 Machine Vision System for Measuring the Quality of Bulk Sun-dried Organic Raisins
Authors: Navab Karimi, Tohid Alizadeh
Abstract:
An intelligent vision-based system was designed to measure the quality and purity of raisins. A machine vision setup was utilized to capture the images of bulk raisins in ranges of 5-50% mixed pure-impure berries. The textural features of bulk raisins were extracted using Grey-level Histograms, Co-occurrence Matrix, and Local Binary Pattern (a total of 108 features). Genetic Algorithm and neural network regression were used for selecting and ranking the best features (21 features). As a result, the GLCM features set was found to have the highest accuracy (92.4%) among the other sets. Followingly, multiple feature combinations of the previous stage were fed into the second regression (linear regression) to increase accuracy, wherein a combination of 16 features was found to be the optimum. Finally, a Support Vector Machine (SVM) classifier was used to differentiate the mixtures, producing the best efficiency and accuracy of 96.2% and 97.35%, respectively.Keywords: sun-dried organic raisin, genetic algorithm, feature extraction, ann regression, linear regression, support vector machine, south azerbaijan.
Procedia PDF Downloads 7318905 Hierarchical Tree Long Short-Term Memory for Sentence Representations
Authors: Xiuying Wang, Changliang Li, Bo Xu
Abstract:
A fixed-length feature vector is required for many machine learning algorithms in NLP field. Word embeddings have been very successful at learning lexical information. However, they cannot capture the compositional meaning of sentences, which prevents them from a deeper understanding of language. In this paper, we introduce a novel hierarchical tree long short-term memory (HTLSTM) model that learns vector representations for sentences of arbitrary syntactic type and length. We propose to split one sentence into three hierarchies: short phrase, long phrase and full sentence level. The HTLSTM model gives our algorithm the potential to fully consider the hierarchical information and long-term dependencies of language. We design the experiments on both English and Chinese corpus to evaluate our model on sentiment analysis task. And the results show that our model outperforms several existing state of the art approaches significantly.Keywords: deep learning, hierarchical tree long short-term memory, sentence representation, sentiment analysis
Procedia PDF Downloads 34918904 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network
Authors: Abdulaziz Alsadhan, Naveed Khan
Abstract:
In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion Detection System (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw data set for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. These optimal feature subset used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.Keywords: Particle Swarm Optimization (PSO), Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP)
Procedia PDF Downloads 36718903 Hybrid Fermentation System for Improvement of Ergosterol Biosynthesis
Authors: Alexandra Tucaliuc, Alexandra C. Blaga, Anca I. Galaction, Lenuta Kloetzer, Dan Cascaval
Abstract:
Ergosterol (ergosta-5,7,22-trien-3β-ol), also known as provitamin D2, is the precursor of vitamin D2 (ergocalciferol), because it is converted under UV radiation to this vitamin. The natural sources of ergosterol are mainly the yeasts (Saccharomyces sp., Candida sp.), but it can be also found in fungus (Claviceps sp.) or plants (orchids). In the yeasts cells, ergosterol is accumulated in membranes, especially in free form in the plasma membrane, but also as esters with fatty acids in membrane lipids. The chemical synthesis of ergosterol does not represent an efficient method for its production, in these circumstances, the most attractive alternative for producing ergosterol at larger-scale remains the aerobic fermentation using S. cerevisiae on glucose or by-products from agriculture of food industry as substrates, in batch or fed-batch operating systems. The aim of this work is to analyze comparatively the influence of aeration efficiency on ergosterol production by S. cerevisiae in batch and fed-batch fermentations, by considering different levels of mixing intensity, aeration rate, and n-dodecane concentration. The effects of the studied factors are quantitatively described by means of the mathematical correlations proposed for each of the two fermentation systems, valid both for the absence and presence of oxygen-vector inside the broth. The experiments were carried out in a laboratory stirred bioreactor, provided with computer-controlled and recorded parameters. n-Dodecane was used as oxygen-vector and the ergosterol content inside the yeasts cells has been considered at the fermentation moment related to the maximum concentration of ergosterol, 9 hrs for batch process and 20 hrs for fed-batch one. Ergosterol biosynthesis is strongly dependent on the dissolved oxygen concentration. The hydrocarbon concentration exhibits a significant influence on ergosterol production mainly by accelerating the oxygen transfer rate. Regardless of n-dodecane addition, by maintaining the glucose concentration at a constant level in the fed-batch process, the amount of ergosterol accumulated into the yeasts cells has been almost tripled. In the presence of hydrocarbon, the ergosterol concentration increased by over 50%. The value of oxygen-vector concentration corresponding to the maximum level of ergosterol depends mainly on biomass concentration, due to its negative influences on broth viscosity and interfacial phenomena of air bubbles blockage through the adsorption of hydrocarbon droplets–yeast cells associations. Therefore, for the batch process, the maximum ergosterol amount was reached for 5% vol. n-dodecane, while for the fed-batch process for 10% vol. hydrocarbon.Keywords: bioreactors, ergosterol, fermentation, oxygen-vector
Procedia PDF Downloads 18818902 The Feasibility of Economic Science in Islam With an Emphasis on Sadr's Vantage Point
Authors: Yahya Jahangiri, Ali Almasi
Abstract:
Currently capitalism is one of the most important economic issues discussed by great scholars around the world. But Islamic approach, regarding this issue may differ both western and eastern views. A greatest scholar in Islamic economy ‘especially in Shia’ is Martyr Muhammad Baqir Al-Sadr. He wrote “Our economy” (Iqtisaduna) to present an economic point of view according to the Islamic teachings. In this regard firstly we will mention three approaches which are common in Muslim scullers about the economic science and then the main approach which is Sadr's view is described here. His claim explains that Islam and capitalism are in conflict with each other. And finally he explains the relationship between Islam and economy and he suggests the Islamic point of view in economy and its foundations as a solution for economic problems which we face today.Keywords: Islam, economic science, capitalism, Martyr Sadr
Procedia PDF Downloads 32718901 Classifications of Sleep Apnea (Obstructive, Central, Mixed) and Hypopnea Events Using Wavelet Packet Transform and Support Vector Machines (VSM)
Authors: Benghenia Hadj Abd El Kader
Abstract:
Sleep apnea events as obstructive, central, mixed or hypopnea are characterized by frequent breathing cessations or reduction in upper airflow during sleep. An advanced method for analyzing the patterning of biomedical signals to recognize obstructive sleep apnea and hypopnea is presented. In the aim to extract characteristic parameters, which will be used for classifying the above stated (obstructive, central, mixed) sleep apnea and hypopnea, the proposed method is based first on the analysis of polysomnography signals such as electrocardiogram signal (ECG) and electromyogram (EMG), then classification of the (obstructive, central, mixed) sleep apnea and hypopnea. The analysis is carried out using the wavelet transform technique in order to extract characteristic parameters whereas classification is carried out by applying the SVM (support vector machine) technique. The obtained results show good recognition rates using characteristic parameters.Keywords: obstructive, central, mixed, sleep apnea, hypopnea, ECG, EMG, wavelet transform, SVM classifier
Procedia PDF Downloads 371