Search results for: classical text
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2272

Search results for: classical text

1912 Adaptation of Hough Transform Algorithm for Text Document Skew Angle Detection

Authors: Kayode A. Olaniyi, Olabanji F. Omotoye, Adeola A. Ogunleye

Abstract:

The skew detection and correction form an important part of digital document analysis. This is because uncompensated skew can deteriorate document features and can complicate further document image processing steps. Efficient text document analysis and digitization can rarely be achieved when a document is skewed even at a small angle. Once the documents have been digitized through the scanning system and binarization also achieved, document skew correction is required before further image analysis. Research efforts have been put in this area with algorithms developed to eliminate document skew. Skew angle correction algorithms can be compared based on performance criteria. Most important performance criteria are accuracy of skew angle detection, range of skew angle for detection, speed of processing the image, computational complexity and consequently memory space used. The standard Hough Transform has successfully been implemented for text documentation skew angle estimation application. However, the standard Hough Transform algorithm level of accuracy depends largely on how much fine the step size for the angle used. This consequently consumes more time and memory space for increase accuracy and, especially where number of pixels is considerable large. Whenever the Hough transform is used, there is always a tradeoff between accuracy and speed. So a more efficient solution is needed that optimizes space as well as time. In this paper, an improved Hough transform (HT) technique that optimizes space as well as time to robustly detect document skew is presented. The modified algorithm of Hough Transform presents solution to the contradiction between the memory space, running time and accuracy. Our algorithm starts with the first step of angle estimation accurate up to zero decimal place using the standard Hough Transform algorithm achieving minimal running time and space but lacks relative accuracy. Then to increase accuracy, suppose estimated angle found using the basic Hough algorithm is x degree, we then run again basic algorithm from range between ±x degrees with accuracy of one decimal place. Same process is iterated till level of desired accuracy is achieved. The procedure of our skew estimation and correction algorithm of text images is implemented using MATLAB. The memory space estimation and process time are also tabulated with skew angle assumption of within 00 and 450. The simulation results which is demonstrated in Matlab show the high performance of our algorithms with less computational time and memory space used in detecting document skew for a variety of documents with different levels of complexity.

Keywords: hough-transform, skew-detection, skew-angle, skew-correction, text-document

Procedia PDF Downloads 158
1911 Semantic Indexing Improvement for Textual Documents: Contribution of Classification by Fuzzy Association Rules

Authors: Mohsen Maraoui

Abstract:

In the aim of natural language processing applications improvement, such as information retrieval, machine translation, lexical disambiguation, we focus on statistical approach to semantic indexing for multilingual text documents based on conceptual network formalism. We propose to use this formalism as an indexing language to represent the descriptive concepts and their weighting. These concepts represent the content of the document. Our contribution is based on two steps. In the first step, we propose the extraction of index terms using the multilingual lexical resource Euro WordNet (EWN). In the second step, we pass from the representation of index terms to the representation of index concepts through conceptual network formalism. This network is generated using the EWN resource and pass by a classification step based on association rules model (in attempt to discover the non-taxonomic relations or contextual relations between the concepts of a document). These relations are latent relations buried in the text and carried by the semantic context of the co-occurrence of concepts in the document. Our proposed indexing approach can be applied to text documents in various languages because it is based on a linguistic method adapted to the language through a multilingual thesaurus. Next, we apply the same statistical process regardless of the language in order to extract the significant concepts and their associated weights. We prove that the proposed indexing approach provides encouraging results.

Keywords: concept extraction, conceptual network formalism, fuzzy association rules, multilingual thesaurus, semantic indexing

Procedia PDF Downloads 141
1910 Construction of Graph Signal Modulations via Graph Fourier Transform and Its Applications

Authors: Xianwei Zheng, Yuan Yan Tang

Abstract:

Classical window Fourier transform has been widely used in signal processing, image processing, machine learning and pattern recognition. The related Gabor transform is powerful enough to capture the texture information of any given dataset. Recently, in the emerging field of graph signal processing, researchers devoting themselves to develop a graph signal processing theory to handle the so-called graph signals. Among the new developing theory, windowed graph Fourier transform has been constructed to establish a time-frequency analysis framework of graph signals. The windowed graph Fourier transform is defined by using the translation and modulation operators of graph signals, following the similar calculations in classical windowed Fourier transform. Specifically, the translation and modulation operators of graph signals are defined by using the Laplacian eigenvectors as follows. For a given graph signal, its translation is defined by a similar manner as its definition in classical signal processing. Specifically, the translation operator can be defined by using the Fourier atoms; the graph signal translation is defined similarly by using the Laplacian eigenvectors. The modulation of the graph can also be established by using the Laplacian eigenvectors. The windowed graph Fourier transform based on these two operators has been applied to obtain time-frequency representations of graph signals. Fundamentally, the modulation operator is defined similarly to the classical modulation by multiplying a graph signal with the entries in each Fourier atom. However, a single Laplacian eigenvector entry cannot play a similar role as the Fourier atom. This definition ignored the relationship between the translation and modulation operators. In this paper, a new definition of the modulation operator is proposed and thus another time-frequency framework for graph signal is constructed. Specifically, the relationship between the translation and modulation operations can be established by the Fourier transform. Specifically, for any signal, the Fourier transform of its translation is the modulation of its Fourier transform. Thus, the modulation of any signal can be defined as the inverse Fourier transform of the translation of its Fourier transform. Therefore, similarly, the graph modulation of any graph signal can be defined as the inverse graph Fourier transform of the translation of its graph Fourier. The novel definition of the graph modulation operator established a relationship of the translation and modulation operations. The new modulation operation and the original translation operation are applied to construct a new framework of graph signal time-frequency analysis. Furthermore, a windowed graph Fourier frame theory is developed. Necessary and sufficient conditions for constructing windowed graph Fourier frames, tight frames and dual frames are presented in this paper. The novel graph signal time-frequency analysis framework is applied to signals defined on well-known graphs, e.g. Minnesota road graph and random graphs. Experimental results show that the novel framework captures new features of graph signals.

Keywords: graph signals, windowed graph Fourier transform, windowed graph Fourier frames, vertex frequency analysis

Procedia PDF Downloads 340
1909 Direct Blind Separation Methods for Convolutive Images Mixtures

Authors: Ahmed Hammed, Wady Naanaa

Abstract:

In this paper, we propose a general approach to deal with the problem of a convolutive mixture of images. We use a direct blind source separation method by adding only one non-statistical justified constraint describing the relationships between different mixing matrix at the aim to make its resolution easy. This method can be applied, provided that this constraint is known, to degraded document affected by the overlapping of text-patterns and images. This is due to chemical and physical reactions of the materials (paper, inks,...) occurring during the documents aging, and other unpredictable causes such as humidity, microorganism infestation, human handling, etc. We will demonstrate that this problem corresponds to a convolutive mixture of images. Subsequently, we will show how the validation of our method through numerical examples. We can so obtain clear images from unreadable ones which can be caused by pages superposition, a phenomenon similar to that we find every often in archival documents.

Keywords: blind source separation, convoluted mixture, degraded documents, text-patterns overlapping

Procedia PDF Downloads 322
1908 Scattered Places in Stories Singularity and Pattern in Geographic Information

Authors: I. Pina, M. Painho

Abstract:

Increased knowledge about the nature of place and the conditions under which space becomes place is a key factor for better urban planning and place-making. Although there is a broad consensus on the relevance of this knowledge, difficulties remain in relating the theoretical framework about place and urban management. Issues related to representation of places are among the greatest obstacles to overcome this gap. With this critical discussion, based on literature review, we intended to explore, in a common framework for geographical analysis, the potential of stories to spell out place meanings, bringing together qualitative text analysis and text mining in order to capture and represent the singularity contained in each person's life history, and the patterns of social processes that shape places. The development of this reasoning is based on the extensive geographical thought about place, and in the theoretical advances in the field of Geographic Information Science (GISc).

Keywords: discourse analysis, geographic information science place, place-making, stories

Procedia PDF Downloads 196
1907 A Relationship Extraction Method from Literary Fiction Considering Korean Linguistic Features

Authors: Hee-Jeong Ahn, Kee-Won Kim, Seung-Hoon Kim

Abstract:

The knowledge of the relationship between characters can help readers to understand the overall story or plot of the literary fiction. In this paper, we present a method for extracting the specific relationship between characters from a Korean literary fiction. Generally, methods for extracting relationships between characters in text are statistical or computational methods based on the sentence distance between characters without considering Korean linguistic features. Furthermore, it is difficult to extract the relationship with direction from text, such as one-sided love, because they consider only the weight of relationship, without considering the direction of the relationship. Therefore, in order to identify specific relationships between characters, we propose a statistical method considering linguistic features, such as syntactic patterns and speech verbs in Korean. The result of our method is represented by a weighted directed graph of the relationship between the characters. Furthermore, we expect that proposed method could be applied to the relationship analysis between characters of other content like movie or TV drama.

Keywords: data mining, Korean linguistic feature, literary fiction, relationship extraction

Procedia PDF Downloads 380
1906 Metadiscourse in EFL, ESP and Subject-Teaching Online Courses in Higher Education

Authors: Maria Antonietta Marongiu

Abstract:

Propositional information in discourse is made coherent, intelligible, and persuasive through metadiscourse. The linguistic and rhetorical choices that writers/speakers make to organize and negotiate content matter are intended to help relate a text to its context. Besides, they help the audience to connect to and interpret a text according to the values of a specific discourse community. Based on these assumptions, this work aims to analyse the use of metadiscourse in the spoken performance of teachers in online EFL, ESP, and subject-teacher courses taught in English to non-native learners in higher education. In point of fact, the global spread of Covid 19 has forced universities to transition their in-class courses to online delivery. This has inevitably placed on the instructor a heavier interactional responsibility compared to in-class courses. Accordingly, online delivery needs greater structuring as regards establishing the reader/listener’s resources for text understanding and negotiating. Indeed, in online as well as in in-class courses, lessons are social acts which take place in contexts where interlocutors, as members of a community, affect the ways ideas are presented and understood. Following Hyland’s Interactional Model of Metadiscourse (2005), this study intends to investigate Teacher Talk in online academic courses during the Covid 19 lock-down in Italy. The selected corpus includes the transcripts of online EFL and ESP courses and subject-teachers online courses taught in English. The objective of the investigation is, firstly, to ascertain the presence of metadiscourse in the form of interactive devices (to guide the listener through the text) and interactional features (to involve the listener in the subject). Previous research on metadiscourse in academic discourse, in college students' presentations in EAP (English for Academic Purposes) lessons, as well as in online teaching methodology courses and MOOC (Massive Open Online Courses) has shown that instructors use a vast array of metadiscoursal features intended to express the speakers’ intentions and standing with respect to discourse. Besides, they tend to use directions to orient their listeners and logical connectors referring to the structure of the text. Accordingly, the purpose of the investigation is also to find out whether metadiscourse is used as a rhetorical strategy by instructors to control, evaluate and negotiate the impact of the ongoing talk, and eventually to signal their attitudes towards the content and the audience. Thus, the use of metadiscourse can contribute to the informative and persuasive impact of discourse, and to the effectiveness of online communication, especially in learning contexts.

Keywords: discourse analysis, metadiscourse, online EFL and ESP teaching, rhetoric

Procedia PDF Downloads 129
1905 The Oral Production of University EFL Students: An Analysis of Tasks, Format, and Quality in Foreign Language Development

Authors: Vera Lucia Teixeira da Silva, Sandra Regina Buttros Gattolin de Paula

Abstract:

The present study focuses on academic literacy and addresses the impact of semantic-discursive resources on the constitution of genres that are produced in such context. The research considers the development of writing in the academic context in Portuguese. Researches that address academic literacy and the characteristics of the texts produced in this context are rare, mainly with focus on the development of writing, considering three variables: the constitution of the writer, the perception of the reader/interlocutor and the organization of the informational text flow. The research aims to map the semantic-discursive resources of the written register in texts of several genres and produced by students in the first semester of the undergraduate course in Letters. The hypothesis raised is that writing in the academic environment is not a recurrent literacy practice for these learners and can be explained by the ontogenetic and phylogenetic nature of language development. Qualitative in nature, the present research has as empirical data texts produced in a half-yearly course of Reading and Textual Production; these data result from the proposition of four different writing proposals, in a total of 600 texts. The corpus is analyzed based on semantic-discursive resources, seeking to contemplate relevant aspects of language (grammar, discourse and social context) that reveal the choices made in the reader/writer interrelationship and the organizational flow of the Text. Among the semantic-discursive resources, the analysis includes three resources, including (a) appraisal and negotiation to understand the attitudes negotiated (roles of the participants of the discourse and their relationship with the other); (b) ideation to explain the construction of the experience (activities performed and participants); and (c) periodicity to outline the flow of information in the organization of the text according to the genre it instantiates. The results indicate the organizational difficulties of the flow of the text information. Cartography contributes to the understanding of the way writers use language in an effort to present themselves, evaluate someone else’s work, and communicate with readers.

Keywords: academic writing, Portuguese mother tongue, semantic-discursive resources, academic context

Procedia PDF Downloads 126
1904 Topic-to-Essay Generation with Event Element Constraints

Authors: Yufen Qin

Abstract:

Topic-to-Essay generation is a challenging task in Natural language processing, which aims to generate novel, diverse, and topic-related text based on user input. Previous research has overlooked the generation of articles under the constraints of event elements, resulting in issues such as incomplete event elements and logical inconsistencies in the generated results. To fill this gap, this paper proposes an event-constrained approach for a topic-to-essay generation that enforces the completeness of event elements during the generation process. Additionally, a language model is employed to verify the logical consistency of the generated results. Experimental results demonstrate that the proposed model achieves a better BLEU-2 score and performs better than the baseline in terms of subjective evaluation on a real dataset, indicating its capability to generate higher-quality topic-related text.

Keywords: event element, language model, natural language processing, topic-to-essay generation.

Procedia PDF Downloads 236
1903 Controlling the Expense of Political Contests Using a Modified N-Players Tullock’s Model

Authors: C. Cohen, O. Levi

Abstract:

This work introduces a generalization of the classical Tullock’s model of one-stage contests under complete information with multiple unlimited numbers of contestants. In classical Tullock’s model, the contest winner is not necessarily the highest bidder. Instead, the winner is determined according to a draw in which the winning probabilities are the relative contestants’ efforts. The Tullock modeling fits well political contests, in which the winner is not necessarily the highest effort contestant. This work presents a modified model which uses a simple non-discriminating rule, namely, a parameter to influence the total costs planned for an election, for example, the contest designer can control the contestants' efforts. The winner pays a fee, and the losers are reimbursed the same amount. Our proposed model includes a mechanism that controls the efforts exerted and balances competition, creating a tighter, less predictable and more interesting contest. Additionally, the proposed model follows the fairness criterion in the sense that it does not alter the contestants' probabilities of winning compared to the classic Tullock’s model. We provide an analytic solution for the contestant's optimal effort and expected reward.

Keywords: contests, Tullock's model, political elections, control expenses

Procedia PDF Downloads 145
1902 Examining the Dubbing Strategies Used in the Egyptian Dubbed Version of Mulan (1998)

Authors: Shaza Melies, Saadeya Salem, Seham Kareh

Abstract:

Cartoon films are multisemiotic as various modes integrate in the production of meaning. This study aims to examine the cultural and linguistic specific references in the Egyptian dubbed cartoon film Mulan. The study examines the translation strategies implemented in the Egyptian dubbed version of Mulan to meet the cultural preferences of the audience. The study reached the following findings: Using the traditional translation strategies does not deliver the intended meaning of the source text and causes loss in the intended humor. As a result, the findings showed that in the dubbed version, translators tend to omit, change, or add information to the target text to be accepted by the audience. The contrastive analysis of the Mulan (English and dubbed versions) proves the connotations that the dubbing has taken to be accepted by the target audience. Cartoon films are multisemiotic as various modes integrate in the production of meaning. This study aims to examine the cultural and linguistic specific references in the Egyptian dubbed cartoon film Mulan. The study examines the translation strategies implemented in the Egyptian dubbed version of Mulan to meet the cultural preferences of the audience. The study reached the following findings: Using the traditional translation strategies does not deliver the intended meaning of the source text and causes loss in the intended humor. As a result, the findings showed that in the dubbed version, translators tend to omit, change, or add information to the target text to be accepted by the audience. The contrastive analysis of the Mulan (English and dubbed versions) proves the connotations that the dubbing has taken to be accepted by the target audience.

Keywords: domestication, dubbing, Mulan, translation theories

Procedia PDF Downloads 136
1901 Zinc Oxide Nanoparticles as Support for Classical Anti-cancer Therapies

Authors: Nadine Wiesmann, Melanie Viel, Christoph Buhr, Rachel Tanner, Wolfgang Tremel, Juergen Brieger

Abstract:

Recidivation of tumors and the development of resistances against the classical anti-tumor approaches represent a major challenge we face when treating cancer. In order to master this challenge, we are in desperate need of new treatment options beyond the beaten tracks. Zinc oxide nanoparticles (ZnO NPs) represent such an innovative approach. Zinc oxide is characterized by a high level of biocompatibility, concurrently ZnO NPs are able to exert anti-tumor effects. By concentration of the nanoparticles at the tumor site, tumor cells can specifically be exposed to the nanoparticles while low zinc concentrations at off-target sites are tolerated well and can be excreted easily. We evaluated the toxicity of ZnO NPs in vitro with the help of immortalized tumor cell lines and primary cells stemming from healthy tissue. Additionally, the Chorioallantoic Membrane Assay (CAM Assay) was employed to gain insights into the in vivo behavior of the nanoparticles. We could show that ZnO NPs interact with tumor cells as nanoparticulate matter. Furthermore, the extensive release of zinc ions from the nanoparticles nearby and within the tumor cells results in overload with zinc. Beyond that, ZnO NPs were found to further the generation of reactive oxygen species (ROS). We were able to show that tumor cells were more prone to the toxic effects of ZnO NPs at intermediate concentrations compared to fibroblasts. With the help of ZnO NPs covered by a silica shell in which FITC dye was incorporated, we were able to track ZnO NPs within tumor cells as well as within a whole organism in the CAM assay after injection into the bloodstream. Depending on the applied concentrations, selective tumor cell killing seems feasible. Furthermore, the combinational treatment of tumor cells with radiotherapy and ZnO NPs shows promising results. Still, further investigations are needed to gain a better understanding of the interaction between ZnO NPs and the human body to be able to pave the way for their application as an innovative anti-tumor agent in the clinics.

Keywords: metal oxide nanoparticles, nanomedicine, overcome resistances against classical treatment options, zinc oxide nanoparticles

Procedia PDF Downloads 128
1900 Translation Quality Assessment: Proposing a Linguistic-Based Model for Translation Criticism with Considering Ideology and Power Relations

Authors: Mehrnoosh Pirhayati

Abstract:

In this study, the researcher tried to propose a model of Translation Criticism (TC) regarding the phenomenon of Translation Quality Assessment (TQA). With changing the general view on re/writing as an illegal act, the researcher defined a scale for the act of translation and determined the redline of translation with other products. This research attempts to show TC as a related phenomenon to TQA. This study shows that TQA with using the rules and factors of TC as depicted in both product-oriented analysis and process-oriented analysis, determines the orientation or the level of the quality of translation. This study also depicts that TC, regarding TQA’s perspective, reveals the aim of the translation of original text and the root of ideological manipulation and re/writing. On the other hand, this study stresses the existence of a direct relationship between the linguistic materials and semiotic codes of a text or book. This study can be fruitful for translators, scholars, translation criticizers, and translation quality assessors, and also it is applicable in the area of pedagogy.

Keywords: a model of translation criticism, a model of translation quality assessment, critical discourse analysis (CDA), re/writing, translation criticism (TC), translation quality assessment (TQA)

Procedia PDF Downloads 320
1899 Intentionality and Context in the Paradox of Reward and Punishment in the Meccan Surahs

Authors: Asmaa Fathy Mohamed Desoky

Abstract:

The subject of this research is the inference of intentionality and context from the verses of the Meccan surahs, which include the paradox of reward and punishment, applied to the duality of disbelief and faith; The Holy Quran is the most important sacred linguistic reference in the Arabic language because it is rich in all the rules of the language in addition to the linguistic miracle. the Quranic text is a first-class intentional text, sent down to convey something to the recipient (Muhammad first and then communicates it to Muslims) and influence and convince him, which opens the door to many Ijtihad; a desire to reach the will of Allah and his intention from his words Almighty. Intentionality as a term is one of the most important deliberative terms, but it will be modified to suit the Quranic discourse, especially since intentionality is related to intention-as it turned out earlier - that is, it turns the reader or recipient into a predictor of the unseen, and this does not correspond to the Quranic discourse. Hence, in this research, a set of dualities will be identified that will be studied in order to clarify the meaning of them according to the opinions of previous interpreters in accordance with the sanctity of the Quranic discourse, which is intentionally related to the dualities of reward and punishment, such as: the duality of disbelief and faith, noting that it is a duality that combines opposites and Paradox on one level, because it may be an external paradox between action and reaction, and may be an internal paradox in matters related to faith, and may be a situational paradox in a specific event or a certain fact. It should be noted that the intention of the Qur'anic text is fully realized in form and content, in whole and in part, and this research includes a presentation of some applied models of the issues of intention and context that appear in the verses of the paradox of reward and punishment in the Meccan surahs in Quraan.

Keywords: intentionality, context, the paradox, reward, punishment, Meccan surahs

Procedia PDF Downloads 79
1898 Switching to the Latin Alphabet in Kazakhstan: A Brief Overview of Character Recognition Methods

Authors: Ainagul Yermekova, Liudmila Goncharenko, Ali Baghirzade, Sergey Sybachin

Abstract:

In this article, we address the problem of Kazakhstan's transition to the Latin alphabet. The transition process started in 2017 and is scheduled to be completed in 2025. In connection with these events, the problem of recognizing the characters of the new alphabet is raised. Well-known character recognition programs such as ABBYY FineReader, FormReader, MyScript Stylus did not recognize specific Kazakh letters that were used in Cyrillic. The author tries to give an assessment of the well-known method of character recognition that could be in demand as part of the country's transition to the Latin alphabet. Three methods of character recognition: template, structured, and feature-based, are considered through the algorithms of operation. At the end of the article, a general conclusion is made about the possibility of applying a certain method to a particular recognition process: for example, in the process of population census, recognition of typographic text in Latin, or recognition of photos of car numbers, store signs, etc.

Keywords: text detection, template method, recognition algorithm, structured method, feature method

Procedia PDF Downloads 186
1897 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm

Authors: Ameur Abdelkader, Abed Bouarfa Hafida

Abstract:

Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.

Keywords: predictive analysis, big data, predictive analysis algorithms, CART algorithm

Procedia PDF Downloads 142
1896 Unsupervised Domain Adaptive Text Retrieval with Query Generation

Authors: Rui Yin, Haojie Wang, Xun Li

Abstract:

Recently, mainstream dense retrieval methods have obtained state-of-the-art results on some datasets and tasks. However, they require large amounts of training data, which is not available in most domains. The severe performance degradation of dense retrievers on new data domains has limited the use of dense retrieval methods to only a few domains with large training datasets. In this paper, we propose an unsupervised domain-adaptive approach based on query generation. First, a generative model is used to generate relevant queries for each passage in the target corpus, and then the generated queries are used for mining negative passages. Finally, the query-passage pairs are labeled with a cross-encoder and used to train a domain-adapted dense retriever. Experiments show that our approach is more robust than previous methods in target domains that require less unlabeled data.

Keywords: dense retrieval, query generation, unsupervised training, text retrieval

Procedia PDF Downloads 73
1895 A Method for Clinical Concept Extraction from Medical Text

Authors: Moshe Wasserblat, Jonathan Mamou, Oren Pereg

Abstract:

Natural Language Processing (NLP) has made a major leap in the last few years, in practical integration into medical solutions; for example, extracting clinical concepts from medical texts such as medical condition, medication, treatment, and symptoms. However, training and deploying those models in real environments still demands a large amount of annotated data and NLP/Machine Learning (ML) expertise, which makes this process costly and time-consuming. We present a practical and efficient method for clinical concept extraction that does not require costly labeled data nor ML expertise. The method includes three steps: Step 1- the user injects a large in-domain text corpus (e.g., PubMed). Then, the system builds a contextual model containing vector representations of concepts in the corpus, in an unsupervised manner (e.g., Phrase2Vec). Step 2- the user provides a seed set of terms representing a specific medical concept (e.g., for the concept of the symptoms, the user may provide: ‘dry mouth,’ ‘itchy skin,’ and ‘blurred vision’). Then, the system matches the seed set against the contextual model and extracts the most semantically similar terms (e.g., additional symptoms). The result is a complete set of terms related to the medical concept. Step 3 –in production, there is a need to extract medical concepts from the unseen medical text. The system extracts key-phrases from the new text, then matches them against the complete set of terms from step 2, and the most semantically similar will be annotated with the same medical concept category. As an example, the seed symptom concepts would result in the following annotation: “The patient complaints on fatigue [symptom], dry skin [symptom], and Weight loss [symptom], which can be an early sign for Diabetes.” Our evaluations show promising results for extracting concepts from medical corpora. The method allows medical analysts to easily and efficiently build taxonomies (in step 2) representing their domain-specific concepts, and automatically annotate a large number of texts (in step 3) for classification/summarization of medical reports.

Keywords: clinical concepts, concept expansion, medical records annotation, medical records summarization

Procedia PDF Downloads 135
1894 Use and Relationship of Shell Nouns as Cohesive Devices in the Quality of Second Language Writing

Authors: Kristine D. de Leon, Junifer A. Abatayo, Jose Cristina M. Pariña

Abstract:

The current study is a comparative analysis of the use of shell nouns as a cohesive device (CD) in an English for Second Language (ESL) setting in order to identify their use and relationship in the quality of second language (L2) writing. As these nouns were established to anticipate the meaning within, across or outside the text, their use has fascinated writing researchers. The corpus of the study included published articles from reputable journals and graduate students’ papers in order to analyze the frequency of shell nouns using “highly prevalent” nouns in the academic community, to identify the different lexicogrammatical patterns where these nouns occur and to the functions connected with these patterns. The result of the study implies that published authors used more shell nouns in their paper than graduate students. However, the functions of the different lexicogrammatical patterns for the frequently occurring shell nouns are somewhat similar. These results could help students in enhancing the cohesion of their text and in comprehending it.

Keywords: anaphoric, cataphoric, lexico-grammatical, shell nouns

Procedia PDF Downloads 185
1893 A U-Net Based Architecture for Fast and Accurate Diagram Extraction

Authors: Revoti Prasad Bora, Saurabh Yadav, Nikita Katyal

Abstract:

In the context of educational data mining, the use case of extracting information from images containing both text and diagrams is of high importance. Hence, document analysis requires the extraction of diagrams from such images and processes the text and diagrams separately. To the author’s best knowledge, none among plenty of approaches for extracting tables, figures, etc., suffice the need for real-time processing with high accuracy as needed in multiple applications. In the education domain, diagrams can be of varied characteristics viz. line-based i.e. geometric diagrams, chemical bonds, mathematical formulas, etc. There are two broad categories of approaches that try to solve similar problems viz. traditional computer vision based approaches and deep learning approaches. The traditional computer vision based approaches mainly leverage connected components and distance transform based processing and hence perform well in very limited scenarios. The existing deep learning approaches either leverage YOLO or faster-RCNN architectures. These approaches suffer from a performance-accuracy tradeoff. This paper proposes a U-Net based architecture that formulates the diagram extraction as a segmentation problem. The proposed method provides similar accuracy with a much faster extraction time as compared to the mentioned state-of-the-art approaches. Further, the segmentation mask in this approach allows the extraction of diagrams of irregular shapes.

Keywords: computer vision, deep-learning, educational data mining, faster-RCNN, figure extraction, image segmentation, real-time document analysis, text extraction, U-Net, YOLO

Procedia PDF Downloads 137
1892 Bayesian Estimation under Different Loss Functions Using Gamma Prior for the Case of Exponential Distribution

Authors: Md. Rashidul Hasan, Atikur Rahman Baizid

Abstract:

The Bayesian estimation approach is a non-classical estimation technique in statistical inference and is very useful in real world situation. The aim of this paper is to study the Bayes estimators of the parameter of exponential distribution under different loss functions and then compared among them as well as with the classical estimator named maximum likelihood estimator (MLE). In our real life, we always try to minimize the loss and we also want to gather some prior information (distribution) about the problem to solve it accurately. Here the gamma prior is used as the prior distribution of exponential distribution for finding the Bayes estimator. In our study, we also used different symmetric and asymmetric loss functions such as squared error loss function, quadratic loss function, modified linear exponential (MLINEX) loss function and non-linear exponential (NLINEX) loss function. Finally, mean square error (MSE) of the estimators are obtained and then presented graphically.

Keywords: Bayes estimator, maximum likelihood estimator (MLE), modified linear exponential (MLINEX) loss function, Squared Error (SE) loss function, non-linear exponential (NLINEX) loss function

Procedia PDF Downloads 383
1891 An End-to-end Piping and Instrumentation Diagram Information Recognition System

Authors: Taekyong Lee, Joon-Young Kim, Jae-Min Cha

Abstract:

Piping and instrumentation diagram (P&ID) is an essential design drawing describing the interconnection of process equipment and the instrumentation installed to control the process. P&IDs are modified and managed throughout a whole life cycle of a process plant. For the ease of data transfer, P&IDs are generally handed over from a design company to an engineering company as portable document format (PDF) which is hard to be modified. Therefore, engineering companies have to deploy a great deal of time and human resources only for manually converting P&ID images into a computer aided design (CAD) file format. To reduce the inefficiency of the P&ID conversion, various symbols and texts in P&ID images should be automatically recognized. However, recognizing information in P&ID images is not an easy task. A P&ID image usually contains hundreds of symbol and text objects. Most objects are pretty small compared to the size of a whole image and are densely packed together. Traditional recognition methods based on geometrical features are not capable enough to recognize every elements of a P&ID image. To overcome these difficulties, state-of-the-art deep learning models, RetinaNet and connectionist text proposal network (CTPN) were used to build a system for recognizing symbols and texts in a P&ID image. Using the RetinaNet and the CTPN model carefully modified and tuned for P&ID image dataset, the developed system recognizes texts, equipment symbols, piping symbols and instrumentation symbols from an input P&ID image and save the recognition results as the pre-defined extensible markup language format. In the test using a commercial P&ID image, the P&ID information recognition system correctly recognized 97% of the symbols and 81.4% of the texts.

Keywords: object recognition system, P&ID, symbol recognition, text recognition

Procedia PDF Downloads 153
1890 Using the Smith-Waterman Algorithm to Extract Features in the Classification of Obesity Status

Authors: Rosa Figueroa, Christopher Flores

Abstract:

Text categorization is the problem of assigning a new document to a set of predetermined categories, on the basis of a training set of free-text data that contains documents whose category membership is known. To train a classification model, it is necessary to extract characteristics in the form of tokens that facilitate the learning and classification process. In text categorization, the feature extraction process involves the use of word sequences also known as N-grams. In general, it is expected that documents belonging to the same category share similar features. The Smith-Waterman (SW) algorithm is a dynamic programming algorithm that performs a local sequence alignment in order to determine similar regions between two strings or protein sequences. This work explores the use of SW algorithm as an alternative to feature extraction in text categorization. The dataset used for this purpose, contains 2,610 annotated documents with the classes Obese/Non-Obese. This dataset was represented in a matrix form using the Bag of Word approach. The score selected to represent the occurrence of the tokens in each document was the term frequency-inverse document frequency (TF-IDF). In order to extract features for classification, four experiments were conducted: the first experiment used SW to extract features, the second one used unigrams (single word), the third one used bigrams (two word sequence) and the last experiment used a combination of unigrams and bigrams to extract features for classification. To test the effectiveness of the extracted feature set for the four experiments, a Support Vector Machine (SVM) classifier was tuned using 20% of the dataset. The remaining 80% of the dataset together with 5-Fold Cross Validation were used to evaluate and compare the performance of the four experiments of feature extraction. Results from the tuning process suggest that SW performs better than the N-gram based feature extraction. These results were confirmed by using the remaining 80% of the dataset, where SW performed the best (accuracy = 97.10%, weighted average F-measure = 97.07%). The second best was obtained by the combination of unigrams-bigrams (accuracy = 96.04, weighted average F-measure = 95.97) closely followed by the bigrams (accuracy = 94.56%, weighted average F-measure = 94.46%) and finally unigrams (accuracy = 92.96%, weighted average F-measure = 92.90%).

Keywords: comorbidities, machine learning, obesity, Smith-Waterman algorithm

Procedia PDF Downloads 297
1889 Composite Kernels for Public Emotion Recognition from Twitter

Authors: Chien-Hung Chen, Yan-Chun Hsing, Yung-Chun Chang

Abstract:

The Internet has grown into a powerful medium for information dispersion and social interaction that leads to a rapid growth of social media which allows users to easily post their emotions and perspectives regarding certain topics online. Our research aims at using natural language processing and text mining techniques to explore the public emotions expressed on Twitter by analyzing the sentiment behind tweets. In this paper, we propose a composite kernel method that integrates tree kernel with the linear kernel to simultaneously exploit both the tree representation and the distributed emotion keyword representation to analyze the syntactic and content information in tweets. The experiment results demonstrate that our method can effectively detect public emotion of tweets while outperforming the other compared methods.

Keywords: emotion recognition, natural language processing, composite kernel, sentiment analysis, text mining

Procedia PDF Downloads 218
1888 Enhanced Physiological Response of Blood Pressure and Improved Performance in Successive Divided Attention Test Seen with Classical Instrumental Background Music Compared to Controls

Authors: Shantala Herlekar

Abstract:

Introduction: Entrainment effect of music on cardiovascular parameters is well established. Music is being used in the background by medical students while studying. However, does it really help them relax faster and concentrate better? Objectives: This study was done to compare the effects of classical instrumental background music versus no music on blood pressure response over time and on successively performed divided attention test in Indian and Malaysian 1st-year medical students. Method: 60 Indian and 60 Malaysian first year medical students, with an equal number of girls and boys were randomized into two groups i.e music group and control group thus creating four subgroups. Three different forms of Symbol Digit Modality Test (to test concentration ability) were used as a pre-test, during music/control session and post-test. It was assessed using total, correct and error score. Simultaneously, multiple Blood Pressure recordings were taken as pre-test, during 1, 5, 15, 25 minutes during music/control (+SDMT) and post-test. The music group performed the test with classical instrumental background music while the control group performed it in silence. Results were analyzed using students paired t test. p value < 0.05 was taken as statistically significant. A drop in BP recording was indicative of relaxed state and a rise in BP with task performance was indicative of increased arousal. Results: In Symbol Digit Modality Test (SDMT) test, Music group showed significant better results for correct (p = 0.02) and total (p = 0.029) scores during post-test while errors reduced (p = 0.002). Indian music group showed decline in post-test error scores (p = 0.002). Malaysian music group performed significantly better in all categories. Blood pressure response was similar in music and control group with following variations, a drop in BP at 5minutes, being significant in music group (p < 0.001), a steep rise in values till 15minutes (corresponding to SDMT test) also being significant only in music group (p < 0.001) and the Systolic BP readings in controls during post-test were at lower levels compared to music group. On comparing the subgroups, not much difference was noticed in recordings of Indian student’s subgroups while all the paired-t test values in the Malaysian music group were significant. Conclusion: These recordings indicate an increased relaxed state with classical instrumental music and an increased arousal while performing a concentration task. Music used in our study was beneficial to students irrespective of their nationality and preference of music type. It can act as an “active coping” strategy and alleviate stress within a very short period of time, in our study within a span of 5minutes. When used in the background, during task performance, can increase arousal which helps the students perform better. Implications: Music can be used between lectures for a short time to relax the students and help them concentrate better for the subsequent classes, especially for late afternoon sessions.

Keywords: blood pressure, classical instrumental background music, ethnicity, symbol digit modality test

Procedia PDF Downloads 141
1887 Psychological Nano-Therapy: A New Method in Family Therapy

Authors: Siamak Samani, Nadereh Sohrabi

Abstract:

Psychological nano-therapy is a new method based on systems theory. According to the theory, systems with severe dysfunctions are resistant to changes. Psychological nano-therapy helps the therapists to break this ice. Two key concepts in psychological nano-therapy are nano-functions and nano-behaviors. The most important step in psychological nano-therapy in family therapy is selecting the most effective nano-function and nano-behavior. The aim of this study was to check the effectiveness of psychological nano-therapy for family therapy. One group pre-test-post-test design (quasi-experimental Design) was applied for research. The sample consisted of ten families with severe marital conflict. The important character of these families was resistance for participating in family therapy. In this study, sending respectful (nano-function) text massages (nano-behavior) with cell phone were applied as a treatment. Cohesion/respect sub scale from self-report family processes scale and family readiness for therapy scale were used to assess all family members in pre-test and post-test. In this study, one of family members was asked to send a respectful text massage to other family members every day for a week. The content of the text massages were selected and checked by therapist. To compare the scores of families in pre-test and post-test paired sample t-test was used. The results of the test showed significant differences in both cohesion/respect score and family readiness for therapy between per-test and post-test. The results revealed that these families have found a better atmosphere for participation in a complete family therapy program. Indeed, this study showed that psychological nano-therapy is an effective method to make family readiness for therapy.

Keywords: family therapy, family conflicts, nano-therapy, family readiness

Procedia PDF Downloads 659
1886 Jalal-Ale-Ahmad and ‘Critical Consciousness’: A Comparative Study

Authors: Zohreh Ramin

Abstract:

One of the most important contributions that Edward Said has had in the realm of critical theory is his insistence on the worldliness of the text and the critic. By this, Said meant that the critic and the text must be considered in their ‘material’ contexts. Foregrounding the substantial role of a critic as embodying what he refers to as ‘critical consciousness’, a true critic, Said maintains, is one who can stand between the ‘dominant culture’ and ‘the totalizing forms of critical systems.’ Considered as one of Iran’s major contemporary intellectuals, Jalal Ale Ahmad is responsible for introducing the idea of ‘Westoxication’ in Iran, constructing a social paradigm of the necessity to return to tradition in contemporary Iran. The present paper intends to study Al-Ahmad’s definition of the orient versus the occident, his criticism of the ‘machination’ of contemporary Iranian society, and his solution to the problem of ‘Westoxication’. The objective of this study is to see whether Ale Ahmad can be considered as embodying the spirit of ‘critical consciousness’ as described by Said as the necessary tool in the hands of an intellectual who is simultaneously attached filitavely to his culture but can detach himself affilitavely through employing critical consciousness.

Keywords: Westoxication, filiative, affiliative, machination

Procedia PDF Downloads 184
1885 Thermodynamic Analysis of a Vapor Absorption System Using Modified Gouy-Stodola Equation

Authors: Gulshan Sachdeva, Ram Bilash

Abstract:

In this paper, the exergy analysis of vapor absorption refrigeration system using LiBr-H2O as working fluid is carried out with the modified Gouy-Stodola approach rather than the classical Gouy-Stodola equation and effect of varying input parameters is also studied on the performance of the system. As the modified approach uses the concept of effective temperature, the mathematical expressions for effective temperature have been formulated and calculated for each component of the system. Various constraints and equations are used to develop program in EES to solve these equations. The main aim of this analysis is to determine the performance of the system and the components having major irreversible loss. Results show that exergy destruction rate is considerable in absorber and generator followed by evaporator and condenser. There is an increase in exergy destruction in generator, absorber and condenser and decrease in the evaporator by the modified approach as compared to the conventional approach. The value of exergy determined by the modified Gouy Stodola equation deviates maximum i.e. 26% in the generator as compared to the exergy calculated by the classical Gouy-Stodola method.

Keywords: exergy analysis, Gouy-Stodola, refrigeration, vapor absorption

Procedia PDF Downloads 400
1884 Move Analysis of Death Row Statements: An Explanatory Study Applied to Death Row Statements in Texas Department of Criminal Justice Website

Authors: Giya Erina

Abstract:

Linguists have analyzed the rhetorical structure of various forensic genres, but only a few have investigated the complete structure of death row statements. Unlike other forensic text types, such as suicide or ransom notes, the focus of death row statement analysis is not the authenticity or falsity of the text, but its intended meaning and its communicative purpose. As it constitutes their last statement before their execution, there are probably many things that inmates would like to express. This study mainly examines the rhetorical moves of 200 death row statements from the Texas Department of Criminal Justice website using rhetorical move analysis. The rhetorical moves identified in the statements will be classified based on their communicative purpose, and they will be grouped into moves and steps. A move structure will finally be suggested from the most common or characteristic moves and steps, as well as some sub-moves. However, because of some statements’ atypicality, some moves may appear in different parts of the texts or not at all.

Keywords: Death row statements, forensic linguistics, genre analysis, move analysis

Procedia PDF Downloads 295
1883 A Fractional Derivative Model to Quantify Non-Darcy Flow in Porous and Fractured Media

Authors: Golden J. Zhang, Dongbao Zhou

Abstract:

Darcy’s law is the fundamental theory in fluid dynamics and engineering applications. Although Darcy linearity was found to be valid for slow, viscous flow, non-linear and non-Darcian flow has been well documented under both small and large velocity fluid flow. Various classical models were proposed and used widely to quantify non-Darcian flow, including the well-known Forchheimer, Izbash, and Swartzendruber models. Applications, however, revealed limitations of these models. Here we propose a general model built upon the Caputo fractional derivative to quantify non-Darcian flow for various flows (laminar to turbulence).Real-world applications and model comparisons showed that the new fractional-derivative model, which extends the fractional model proposed recently by Zhou and Yang (2018), can capture the non-Darcian flow in the relatively small velocity in low-permeability deposits and the relatively high velocity in high-permeability sand. A scale effect was also identified for non-Darcian flow in fractured rocks. Therefore, fractional calculus may provide an efficient tool to improve classical models to quantify fluid dynamics in aquatic environments.

Keywords: fractional derivative, darcy’s law, non-darcian flow, fluid dynamics

Procedia PDF Downloads 126