Search results for: thermal imaging
918 Assessment of Urban Heat Island through Remote Sensing in Nagpur Urban Area Using Landsat 7 ETM+ Satellite Images
Authors: Meenal Surawar, Rajashree Kotharkar
Abstract:
Urban Heat Island (UHI) is found more pronounced as a prominent urban environmental concern in developing cities. To study the UHI effect in the Indian context, the Nagpur urban area has been explored in this paper using Landsat 7 ETM+ satellite images through Remote Sensing and GIS techniques. This paper intends to study the effect of LU/LC pattern on daytime Land Surface Temperature (LST) variation, contributing UHI formation within the Nagpur Urban area. Supervised LU/LC area classification was carried to study urban Change detection using ENVI 5. Change detection has been studied by carrying Normalized Difference Vegetation Index (NDVI) to understand the proportion of vegetative cover with respect to built-up ratio. Detection of spectral radiance from the thermal band of satellite images was processed to calibrate LST. Specific representative areas on the basis of urban built-up and vegetation classification were selected for observation of point LST. The entire Nagpur urban area shows that, as building density increases with decrease in vegetation cover, LST increases, thereby causing the UHI effect. UHI intensity has gradually increased by 0.7°C from 2000 to 2006; however, a drastic increase has been observed with difference of 1.8°C during the period 2006 to 2013. Within the Nagpur urban area, the UHI effect was formed due to increase in building density and decrease in vegetative cover.Keywords: land use/land cover, land surface temperature, remote sensing, urban heat island
Procedia PDF Downloads 282917 The Impact of Large-Scale Wind Energy Development on Islands’ Interconnection to the Mainland System
Authors: Marina Kapsali, John S. Anagnostopoulos
Abstract:
Greek islands’ interconnection (IC) with larger power systems, such as the mainland grid, is a crucial issue that has attracted a lot of interest; however, the recent economic recession that the country undergoes together with the highly capital intensive nature of this kind of projects have stalled or sifted the development of many of those on a more long-term basis. On the other hand, most of Greek islands are still heavily dependent on the lengthy and costly supply chain of oil imports whilst the majority of them exhibit excellent potential for wind energy (WE) applications. In this respect, the main purpose of the present work is to investigate −through a parametric study which varies both in wind farm (WF) and submarine IC capacities− the impact of large-scale WE development on the IC of the third in size island of Greece (Lesbos) with the mainland system. The energy and economic performance of the system is simulated over a 25-year evaluation period assuming two possible scenarios, i.e. S(a): without the contribution of the local Thermal Power Plant (TPP) and S(b): the TPP is maintained to ensure electrification of the island. The economic feasibility of the two options is investigated in terms of determining their Levelized Cost of Energy (LCOE) including also a sensitivity analysis on the worst/reference/best Cases. According to the results, Lesbos island IC presents considerable economic interest for covering part of island’s future electrification needs with WE having a vital role in this challenging venture.Keywords: electricity generation cost, levelized cost of energy, mainland grid, wind energy rejection
Procedia PDF Downloads 215916 Quantification Model for Capability Evaluation of Optical-Based in-Situ Monitoring System for Laser Powder Bed Fusion (LPBF) Process
Authors: Song Zhang, Hui Wang, Johannes Henrich Schleifenbaum
Abstract:
Due to the increasing demand for quality assurance and reliability for additive manufacturing, the development of an advanced in-situ monitoring system is required to monitor the process anomalies as input for further process control. Optical-based monitoring systems, such as CMOS cameras and NIR cameras, are proved as effective ways to monitor the geometrical distortion and exceptional thermal distribution. Therefore, many studies and applications are focusing on the availability of the optical-based monitoring system for detecting varied types of defects. However, the capability of the monitoring setup is not quantified. In this study, a quantification model to evaluate the capability of the monitoring setups for the LPBF machine based on acquired monitoring data of a designed test artifact is presented, while the design of the relevant test artifacts is discussed. The monitoring setup is evaluated based on its hardware properties, location of the integration, and light condition. Methodology of data processing to quantify the capacity for each aspect is discussed. The minimal capability of the detectable size of the monitoring set up in the application is estimated by quantifying its resolution and accuracy. The quantification model is validated using a CCD camera-based monitoring system for LPBF machines in the laboratory with different setups. The result shows the model to quantify the monitoring system's performance, which makes the evaluation of monitoring systems with the same concept but different setups possible for the LPBF process and provides the direction to improve the setups.Keywords: data processing, in-situ monitoring, LPBF process, optical system, quantization model, test artifact
Procedia PDF Downloads 197915 Effect of B2O3 Addition on Sol-gel Synthesized 45S5 Bioglass
Abstract:
Ceramics or glass ceramics with the property of bone bonding at the nearby tissues and producing possible bone in growth are known to be bioactive. The most extensively used glass in this context is 45S5 which is a silica based bioglass mostly explored in the field of tissue engineering as scaffolds for bone repair. Nowadays, the borate based bioglass are being utilized in orthopedic area largely due to its superior bioactivity with the formation of bone bonding. An attempt has been made, in the present study, to observe the effect of B2O3 addition in 45S5 glass and perceive its consequences on the thermal, mechanical and biological properties. The B2O3 was added in 1, 2.5, and 5 wt% with simultaneous reduction in the silica content of the 45S5 composition. The borate based bioglass has been synthesized by the means of sol-gel route. The synthesized powders were then thermally analyzed by DSC-TG. The as synthesized powders were then calcined at 600ºC for 2hrs. The calcined powders were then pressed into pellets followed by sintering at 850ºC with a holding time of 2hrs. The phase analysis and the microstructural analysis of the as synthesized and calcined powder glass samples and the sintered glass samples were being carried out using XRD and FESEM respectively. The formation of hydroxyapatite layer was performed by immersing the sintered samples in the simulated body fluid (SBF) and mechanical property has been tested for the sintered samples by universal testing machine (UTM). The sintered samples showed the presence of sodium calcium silicate phase while the formation of hydroxyapaptite takes place for SBF immersed samples. The formation of hydroxyapatite is more pronounced in case of borated based glass samples instead of 45S5.Keywords: 45S5 bioglass, bioactive, borate, hydroxyapatite, sol-gel synthesis
Procedia PDF Downloads 256914 Tensile Retention Properties of Thermoplastic Starch Based Biocomposites Modified with Glutaraldehyde
Authors: Jen-Taut Yeh, Yuan-jing Hou, Li Cheng, Ya Zhou Wang, Zhi Yu Zhang
Abstract:
Tensile retention properties of bacterial cellulose (BC) reinforced thermoplastic starch (TPS) resins were successfully improved by reacting with glutaraldehyde (GA) in their gelatinization processes. Small amounts of poly (lactic acid) (PLA) were blended with GA modified TPS resins to improve their processability. As evidenced by the newly developed ether (-C-O-C-) stretching bands on FT-IR spectra of TPS100BC0.02GAx series specimens, hydroxyl groups of TPS100BC0.02 resins were successfully reacted with the aldehyde groups of GA molecules during their modification processes. The retention values of tensile strengths (σf) of TPS100BC0.02GAx and (TPS100BC0.02GAx)75PLA25 specimens improved significantly and reached a maximal value as GA contents approached an optimal value at 0.5 part per hundred parts of TPS resin (PHR). By addition of 0.5 PHR GA in biocomposite specimens, the initial tensile strength and elongation at break values of (TPS100BC0.02GA0.5)75PLA25 specimen improved to 24.6 MPa and 5.6%, respectively, which were slightly improved than those of (TPS100BC0.02)75PLA25 specimen. However, the retention values of tensile strengths of (TPS100BC0.02GA0.5)75PLA25 specimen reached around 82.5%, after placing the specimen under 20oC/50% relative humidity for 56 days, which were significantly better than those of the (TPS100BC0.02)75PLA25 specimen. In order to understand these interesting tensile retention properties found for (TPS100BC0.02GAx)75PLA25 specimens. Thermal analyses of initial and aged TPS100BC0.02, TPS100BC0.02GAx and (TPS100BC0.02GAx)75PLA25 specimens were also performed in this investigation. Possible reasons accounting for the significantly improved tensile retention properties of TPS100BC0.02GAx and (TPS100BC0.02GAx)75PLA25 specimens are proposed.Keywords: biocomposite, strength retention, thermoplastic starch, tensile retention
Procedia PDF Downloads 377913 Novel Fluorescent High Density Polyethylene Composites for Fused Deposition Modeling 3D Printing in Packaging Security Features
Authors: Youssef R. Hassan, Mohamed S. Hasanin, Reda M. Abdelhameed
Abstract:
Recently, innovations in packaging security features become more important to see the originality of packaging in industrial application. Luminescent 3d printing materials have been a promising property which can provides a unique opportunity for the design and application of 3D printing. Lack emission of terbium ions, as a source of green emission, in salt form prevent its uses in industrial applications, so searching about stable and highly emitter material become essential. Nowadays, metal organic frameworks (MOFs) play an important role in designing light emitter material. In this work, fluorescent high density polyethylene (FHDPE) composite filament with Tb-benzene 1,3,5-tricarboxylate (Tb-BTC) MOFs for 3D printing have been successfully developed.HDPE pellets were mixed with Tb-BTC and melting extrustion with single screw extruders. It was found that Tb-BTCuniformly dispersed in the HDPE matrix and significantly increased the crystallinity of PE, which not only maintained the good thermal property but also improved the mechanical properties of Tb-BTC@HDPE composites. Notably, the composite filaments emitted ultra-bright green light under UV lamp, and the fluorescence intensity increased as the content of Tb-BTC increased. Finally, several brightly luminescent exquisite articles could be manufactured by fused deposition modeling (FDM) 3D printer with these new fluorescent filaments. In this context, the development of novel fluorescent Tb-BTC@HDPE composites was combined with 3D printing technology to amplified the packaging Security Features.Keywords: 3D printing, fluorescent, packaging, security
Procedia PDF Downloads 101912 Conservativeness of Functional Proteins in Bovine Milk by Pulsed Electric Field Technology
Authors: Sulhee Lee, Geon Kim, Young-Seo Park
Abstract:
Unlike the traditional milk sterilization methods (LTLT, HTST, or UHT), pulsed electric field (PEF) technology is a non-thermal pasteurization process. This technology minimizes energy required for heat treatment in food processing, changes in sensory properties, and physical losses. In this study, structural changes of bovine milk proteins, the amount of immunoproteins such as IgG, and their storability by PEF treatment were examined. When the changes of protein content in PEF-treated milk were examined using HPLC, the amounts of α-casein and β-lactoglobulin were reduced over 40% each, whereas those of κ-casein and β-casein did not change. The amount of α-casein in HTST milk was reduced to 50%. When PEF was applied to milk at the energy level of 250 kJ, the amounts of IgG, IgA, β-lactoglobulin (β-LG), lactoferrin, and α-lactalbumin (α-LA) decreased by 43, 41, 35, 63, and 45%, respectively. When milk was sterilized by LTLT process followed by PEF process at the level of 150 kJ, the concentrations of IgG, IgA, β-LG, lactoferrin, and α-LA were 56.6, 10.6, 554, 2.8 and 660.1 μg/mL, respectively. When the bovine milk was sterilized by LTLT process followed by PEF process at the energy level of 180 kJ, storability of immunoproteins of milk was the highest and the concentrations of IgG, IgA, and β-LG decreased by 79.5, 6.5, and 134.5 μg/mL, respectively, when compared with the initial concentrations of those proteins. When bovine milk was stored at 4℃ after sterilization through HTST sterilizer followed by PEF process at the energy level of 200 kJ, the amount of lactoferrin decreased 7.3% after 36 days of storage, whereas that of lactoferrin of raw milk decreased 16.4%. Our results showed that PEF treatment did not change the protein structure nor induce protein denaturation in milk significantly when compared with LTLT or HTST sterilization. Also, LTLT or HTST process in combination with PEF were more effective than LTLT only or HTST only process in the conservation of immunoproteins in bovine milk.Keywords: pulsed electric field, bovine milk, immunoproteins, sterilization
Procedia PDF Downloads 436911 The Impact of Surface Roughness and PTFE/TiF3/FeF3 Additives in Plain ZDDP Oil on the Friction and Wear Behavior Using Thermal and Tribological Analysis under Extreme Pressure Condition
Authors: Gabi N. Nehme, Saeed Ghalambor
Abstract:
The use of titanium fluoride and iron fluoride (TiF3/FeF3) catalysts in combination with polutetrafluoroethylene (PTFE) in plain zinc dialkyldithiophosphate (ZDDP) oil is important for the study of engine tribocomponents and is increasingly a strategy to improve the formation of tribofilm and to provide low friction and excellent wear protection in reduced phosphorus plain ZDDP oil. The influence of surface roughness and the concentration of TiF3/FeF3/PTFE were investigated using bearing steel samples dipped in lubricant solution @100°C for two different heating time durations. This paper addresses the effects of water drop contact angle using different surface finishes after treating them with different lubricant combination. The calculated water drop contact angles were analyzed using Design of Experiment software (DOE) and it was determined that a 0.05 μm Ra surface roughness would provide an excellent TiF3/FeF3/PTFE coating for antiwear resistance as reflected in the scanning electron microscopy (SEM) images and the tribological testing under extreme pressure conditions. Both friction and wear performance depend greatly on the PTFE/and catalysts in plain ZDDP oil with 0.05% phosphorous and on the surface finish of bearing steel. The friction and wear reducing effects, which was observed in the tribological tests, indicated a better micro lubrication effect of the 0.05 μm Ra surface roughness treated at 100°C for 24 hours when compared to the 0.1 μm Ra surface roughness with the same treatment.Keywords: scanning electron microscopy, ZDDP, catalysts, PTFE, friction, wear
Procedia PDF Downloads 350910 Al-Ti-W Metallic Glass Thin Films Deposited by Magnetron Sputtering Technology to Protect Steel Against Hydrogen Embrittlement
Authors: Issam Lakdhar, Akram Alhussein, Juan Creus
Abstract:
With the huge increase in world energy consumption, researchers are working to find other alternative sources of energy instead of fossil fuel one causing many environmental problems as the production of greenhouse effect gases. Hydrogen is considered a green energy source, which its combustion does not cause environmental pollution. The transport and the storage of the gas molecules or the other products containing this smallest chemical element in metallic structures (pipelines, tanks) are crucial issues. The dissolve and the permeation of hydrogen into the metal lattice lead to the formation of hydride phases and the embrittlement of structures. To protect the metallic structures, a surface treatment could be a good solution. Among the different techniques, magnetron sputtering is used to elaborate micrometric coatings capable of slowing down or stop hydrogen permeation. In the plasma environment, the deposition parameters of new thin-film metallic glasses Al-Ti-W were optimized and controlled in order to obtain, hydrogen barrier. Many characterizations were carried out (SEM, XRD and Nano-indentation…) to control the composition and understand the influence of film microstructure and chemical composition on the hydrogen permeation through the coatings. The coating performance was evaluated under two hydrogen production methods: chemical and electrochemical (cathodic protection) techniques. The hydrogen quantity absorbed was experimentally determined using the Thermal-Desorption Spectroscopy method (TDS)). An ideal ATW thin film was developed and showed excellent behavior against the diffusion of hydrogen.Keywords: thin films, hydrogen, PVD, plasma technology, electrochemical properties
Procedia PDF Downloads 185909 The Impact of a Sustainable Solar Heating System on the Growth of Strawberry Plants in an Agricultural Greenhouse
Authors: Ilham Ihoume, Rachid Tadili, Nora Arbaoui
Abstract:
The use of solar energy is a crucial tactic in the agricultural industry's plan to decrease greenhouse gas emissions. This clean source of energy can greatly lower the sector's carbon footprint and make a significant impact in the fight against climate change. In this regard, this study examines the effects of a solar-based heating system, in a north-south oriented agricultural greenhouse on the development of strawberry plants during winter. This system relies on the circulation of water as a heat transfer fluid in a closed circuit installed on the greenhouse roof to store heat during the day and release it inside at night. A comparative experimental study was conducted in two greenhouses, one experimental with the solar heating system and the other for control without any heating system. Both greenhouses are located on the terrace of the Solar Energy and Environment Laboratory of the Mohammed V University in Rabat, Morocco. The developed heating system consists of a copper coil inserted in double glazing and placed on the roof of the greenhouse, a water pump circulator, a battery, and a photovoltaic solar panel to power the electrical components. This inexpensive and environmentally friendly system allows the greenhouse to be heated during the winter and improves its microclimate system. This improvement resulted in an increase in the air temperature inside the experimental greenhouse by 6 °C and 8 °C, and a reduction in its relative humidity by 23% and 35% compared to the control greenhouse and the ambient air, respectively, throughout the winter. For the agronomic performance, it was observed that the production was 17 days earlier than in the control greenhouse.Keywords: sustainability, thermal energy storage, solar energy, agriculture greenhouse
Procedia PDF Downloads 87908 The Impact of Window Opening Occupant Behavior Models on Building Energy Performance
Authors: Habtamu Tkubet Ebuy
Abstract:
Purpose Conventional dynamic energy simulation tools go beyond the static dimension of simplified methods by providing better and more accurate prediction of building performance. However, their ability to forecast actual performance is undermined by a low representation of human interactions. The purpose of this study is to examine the potential benefits of incorporating information on occupant diversity into occupant behavior models used to simulate building performance. The co-simulation of the stochastic behavior of the occupants substantially increases the accuracy of the simulation. Design/methodology/approach In this article, probabilistic models of the "opening and closing" behavior of the window of inhabitants have been developed in a separate multi-agent platform, SimOcc, and implemented in the building simulation, TRNSYS, in such a way that the behavior of the window with the interconnectivity can be reflected in the simulation analysis of the building. Findings The results of the study prove that the application of complex behaviors is important to research in predicting actual building performance. The results aid in the identification of the gap between reality and existing simulation methods. We hope this study and its results will serve as a guide for researchers interested in investigating occupant behavior in the future. Research limitations/implications Further case studies involving multi-user behavior for complex commercial buildings need to more understand the impact of the occupant behavior on building performance. Originality/value This study is considered as a good opportunity to achieve the national strategy by showing a suitable tool to help stakeholders in the design phase of new or retrofitted buildings to improve the performance of office buildings.Keywords: occupant behavior, co-simulation, energy consumption, thermal comfort
Procedia PDF Downloads 104907 Improvement of Ventilation and Thermal Comfort Using the Atrium Design for Traditional Folk Houses-Fujian Earthen Building
Authors: Ying-Ming Su
Abstract:
Fujian earthen building which was known as a classic for ecological buildings was listed on the world heritage in 2008 (UNESCO) in China. Its design strategy can be applied to modern architecture planning and design. This study chose two different cases (Round Atrium: Er-Yi Building, Double Round Atrium: Zhen-Chen Building) of earthen building in Fu-Jian to compare the ventilation effects of different atrium forms. We adopt field measurements and computational fluid dynamics (CFD) simulation of temperature, humidity, and wind environment to identify the relationship between external environment and atrium about comfort and to confirm the relationship about atrium H/W (height/width). Results indicate that, through the atrium convection effect, it makes the natural wind guides to each space surrounded and keeps indoor comfort. It illustrates that the smaller the ratio of the H/W which is the relationship between the height and the width of an atrium is, the greater the wind speed generated within the street valley. Moreover, the wind speed is very close to the reference wind speed. This field measurement verifies that the value of H/W has great influence of solar radiation heat and sunshine shadows. The ventilation efficiency is: Er-Yi Building (H/W =0.2778) > Zhen-Chen Building (H/W=0.3670). Comparing the cases with the same shape but with different H/W, through the different size patios, airflow revolves in the atriums and can be brought into each interior space. The atrium settings meet the need of building ventilation, and can adjust the humidity and temperature within the buildings. It also creates good ventilation effect.Keywords: traditional folk houses, atrium, tulou, ventilation, building microclimate
Procedia PDF Downloads 475906 Electronic, Optical, and Thermodynamic Properties of a Quantum Spin Liquid Candidate NaRuO₂: Ab-initio Investigation
Authors: A. Bouhmouche, I. Rhrissi, A. Jabar, R. Moubah
Abstract:
Quantum spin liquids (QSLs), known for their competing interactions that prevent conventional ordering, exhibit emergent phenomena and exotic properties resulting from quantum correlations. Despite these recent advancements in QSLs, a significant portion of the optical and thermodynamic properties in the Kagome lattice remains unknown. In addition, the thermodynamic phenomenology of NaRuO₂ bears a resemblance to that of highly frustrated magnets. Here, we employed ab-initio calculations to explore the electronic, optical and thermodynamic properties of NaRuO₂, a new QSL candidate. NaRuO₂ was identified as a semiconductor with a small bandgap energy of 0.69 eV. Our results reveal huge anisotropic optical properties, in which a distinct refractive index within the ab-plane indicating an impressive birefringent character of the NaRuO₂ system and a significant enhancement of the optical absorption coefficient and optical conductivity in the in-plane with respect to the c-axis. The investigation also examines the electronic anisotropy of the gap energy; by applying strain, the gap energy displays significant variations in the ab-plane compared to the out-of-plane direction. Conversely, calculations of the thermodynamic properties reveal a low thermal conductivity (2.5-0.5 W.m-¹. K-¹) and specific heat, which suggests the existence of strong interactions among the NaRuO₂ quantum spins. The linear specific heat behavior observed in NaRuO₂ suggests the fractionalization of electrons and the presence of a spinons Fermi surface. These findings hold promising potential for future quantum applications.Keywords: quantum spin liquids, anisotropy, hybrid-DFT, applied strain, optoelectronic and thermodynamic properties
Procedia PDF Downloads 18905 Study of Pipes Scaling of Purified Wastewater Intended for the Irrigation of Agadir Golf Grass
Authors: A. Driouiche, S. Mohareb, A. Hadfi
Abstract:
In Morocco’s Agadir region, the reuse of treated wastewater for irrigation of green spaces has faced the problem of scaling of the pipes of these waters. This research paper aims at studying the phenomenon of scaling caused by the treated wastewater from the Mzar sewage treatment plant. These waters are used in the irrigation of golf turf for the Ocean Golf Resort. Ocean Golf, located about 10 km from the center of the city of Agadir, is one of the most important recreation centers in Morocco. The course is a Belt Collins design with 27 holes, and is quite open with deep challenging bunkers. The formation of solid deposits in the irrigation systems has led to a decrease in their lifetime and, consequently, a loss of load and performance. Thus, the sprinklers used in golf turf irrigation are plugged in the first weeks of operation. To study this phenomenon, the wastewater used for the irrigation of the golf turf was taken and analyzed at various points, and also samples of scale formed in the circuits of the passage of these waters were characterized. This characterization of the scale was performed by X-ray fluorescence spectrometry, X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential thermal analysis (DTA), and scanning electron microscopy (SEM). The results of the physicochemical analysis of the waters show that they are full of bicarbonates (653 mg/L), chloride (478 mg/L), nitrate (412 mg/L), sodium (425 mg/L) and calcium (199mg/L). Their pH is slightly alkaline. The analysis of the scale reveals that it is rich in calcium and phosphorus. It is formed of calcium carbonate (CaCO₃), silica (SiO₂), calcium silicate (Ca₂SiO₄), hydroxylapatite (Ca₁₀P₆O₂₆), calcium carbonate and phosphate (Ca₁₀(PO₄) 6CO₃) and silicate calcium and magnesium (Ca₅MgSi₃O₁₂).Keywords: Agadir, irrigation, scaling water, wastewater
Procedia PDF Downloads 120904 Polymeric Nanocarriers for Intranasal Delivery of Cannabidiol in Neurodevelopmental Disorders
Authors: Rania Awad, Avi Avital, Alejandro Sosnik
Abstract:
Neurodevelopmental disorders, including autism spectrum disorder (ASD), affect 5.9% of the global population. Recently, research indicated the potential therapeutic use of cannabidiol (CBD) to treat different neurodevelopmental disorders, including ASD. Intranasal drug delivery (IN) is a non-invasive and painless administration route that enhances drug bioavailability in the brain by bypassing the blood-brain barrier. However, IN has limited bioavailability due to the low nasal mucosa permeability. Various polymeric nanoparticles (NPs) have been investigated for IN delivery with different successes. In this study, we investigate the nanoencapsulation of CBD within self-assembled polymeric NPs for nose-to-brain delivery in ASD to increase the bioavailability of CBD in the brain. The nanoencapsulation of CBD within self-assembled polymeric NPs, namely poly (ethylene oxide)-b-poly (propylene oxide)-b-poly (ethylene oxide) (PEO-PPO-PEO) polymeric micelles, was assessed. The CBD-loaded system was characterized by different methods. The compatibility was assessed in the nasal septum epithelium cell line Rpmi 2650. In vitro, permeability studies were conducted using Rpmi2650 cell monolayers cultured in semipermeable membranes 2650. The accumulation of CBD-loaded NPs labeled with near-infra-red fluorescent dye in the brain was measured after IN and oral administration after 20 and 45 min using IVIS spectrum CT imaging (IVIS-CT). Pharmacokinetic (PK) studies were conducted to assess the CBD concentration in rat plasma and brain tissues at different time points, PK parameters were measured and analyzed. Then, the effect of IN and oral administration of CBD-loaded NPs on a social cooperation test, which is a relevant behavioral test in the ASD model in rats, was investigated. Initially, we produced Pluronic® F127 polymeric micelles loaded with 25% w/w of CBD, with a size of 23 ± 1 nm, with suitable physical properties for IN administration. Then, Pluronic® F127 nanoparticles (F127 NPs) in the medium showed good compatibility and permeability in Rpmi 2650 cells. In the IVIS-CT study, the accumulation of IN administration of CBD-loaded F127 in the rat's brains was higher than the oral. Pharmacokinetic analysis of rat brain tissues revealed that, 20 minutes after administration, the concentration of CBD was higher following a 5 mg/kg nasal administration compared to a 15 mg/kg oral administration of CBD-loaded F127. Followed by IN administration of CBD-loaded F127 improved the social cooperation performance of the ASD model in rats as compared to oral and control groups.Keywords: drug delivery to the brain, Intranasal drug delivery, nanoencapsulation, neurodevelopmental disorders, polymeric nanoparticles.
Procedia PDF Downloads 2903 Model-Based Fault Diagnosis in Carbon Fiber Reinforced Composites Using Particle Filtering
Abstract:
Carbon fiber reinforced composites (CFRP) used as aircraft structure are subject to lightning strike, putting structural integrity under risk. Indirect damage may occur after a lightning strike where the internal structure can be damaged due to excessive heat induced by lightning current, while the surface of the structures remains intact. Three damage modes may be observed after a lightning strike: fiber breakage, inter-ply delamination and intra-ply cracks. The assessment of internal damage states in composite is challenging due to complicated microstructure, inherent uncertainties, and existence of multiple damage modes. In this work, a model based approach is adopted to diagnose faults in carbon composites after lighting strikes. A resistor network model is implemented to relate the overall electrical and thermal conduction behavior under simulated lightning current waveform to the intrinsic temperature dependent material properties, microstructure and degradation of materials. A fault detection and identification (FDI) module utilizes the physics based model and a particle filtering algorithm to identify damage mode as well as calculate the probability of structural failure. Extensive simulation results are provided to substantiate the proposed fault diagnosis methodology with both single fault and multiple faults cases. The approach is also demonstrated on transient resistance data collected from a IM7/Epoxy laminate under simulated lightning strike.Keywords: carbon composite, fault detection, fault identification, particle filter
Procedia PDF Downloads 195902 In vitro Protein Folding and Stability Using Thermostable Exoshells
Authors: Siddharth Deshpande, Nihar Masurkar, Vallerinteavide Mavelli Girish, Malan Desai, Chester Drum
Abstract:
Folding and stabilization of recombinant proteins remain a consistent challenge for industrial and therapeutic applications. Proteins derived from thermophilic bacteria often have superior expression and stability qualities. To develop a generalizable approach to protein folding and stabilization, we tested the hypothesis that wrapping a thermostable exoshell around a protein substrate would aid folding and impart thermostable qualities to the internalized substrate. To test the effect of internalizing a protein within a thermostable exoshell (tES), we tested in vitro folding and stability using green fluorescent protein (GFPuv), horseradish peroxidase (HRP) and renilla luciferase (rLuc). The 8nm interior volume of a thermostable ferritin assembly was engineered to accommodate foreign proteins and either present a positive, neutral or negative interior charge environment. We further engineered the tES complex to reversibly assemble and disassemble with pH titration. Template proteins were expressed as inclusion bodies and an in vitro folding protocol was developed that forced proteins to fold inside a single tES. Functional yield was improved 100-fold, 100-fold and 150-fold with use of tES for GFPuv, HRP and rLuc respectively and was highly dependent on the internal charge environment of the tES. After folding, functional proteins could be released from the tES folding cavity using size exclusion chromatography at pH 5.8. Internalized proteins were tested for improved stability against thermal, organic, urea and guanidine denaturation. Our results demonstrated that thermostable exoshells can efficiently refold and stabilize inactive aggregates into functional proteins.Keywords: thermostable shell, in vitro folding, stability, functional yield
Procedia PDF Downloads 249901 A Mixed 3D Finite Element for Highly Deformable Thermoviscoplastic Materials Under Ductile Damage
Authors: João Paulo Pascon
Abstract:
In this work, a mixed 3D finite element formulation is proposed in order to analyze thermoviscoplastic materials under large strain levels and ductile damage. To this end, a tetrahedral element of linear order is employed, considering a thermoviscoplastic constitutive law together with the neo-Hookean hyperelastic relationship and a nonlocal Gurson`s porous plasticity theory The material model is capable of reproducing finite deformations, elastoplastic behavior, void growth, nucleation and coalescence, thermal effects such as plastic work heating and conductivity, strain hardening and strain-rate dependence. The nonlocal character is introduced by means of a nonlocal parameter applied to the Laplacian of the porosity field. The element degrees of freedom are the nodal values of the deformed position, the temperature and the nonlocal porosity field. The internal variables are updated at the Gauss points according to the yield criterion and the evolution laws, including the yield stress of matrix, the equivalent plastic strain, the local porosity and the plastic components of the Cauchy-Green stretch tensor. Two problems involving 3D specimens and ductile damage are numerically analyzed with the developed computational code: the necking problem and a notched sample. The effect of the nonlocal parameter and the mesh refinement is investigated in detail. Results indicate the need of a proper nonlocal parameter. In addition, the numerical formulation can predict ductile fracture, based on the evolution of the fully damaged zone.Keywords: mixed finite element, large strains, ductile damage, thermoviscoplasticity
Procedia PDF Downloads 95900 Enhanced Solar-Driven Evaporation Process via F-Mwcnts/Pvdf Photothermal Membrane for Forward Osmosis Draw Solution Recovery
Authors: Ayat N. El-Shazly, Dina Magdy Abdo, Hamdy Maamoun Abdel-Ghafar, Xiangju Song, Heqing Jiang
Abstract:
Product water recovery and draw solution (DS) reuse is the most energy-intensive stage in forwarding osmosis (FO) technology. Sucrose solution is the most suitable DS for FO application in food and beverages. However, sucrose DS recovery by conventional pressure-driven or thermal-driven concentration techniques consumes high energy. Herein, we developed a spontaneous and sustainable solar-driven evaporation process based on a photothermal membrane for the concentration and recovery of sucrose solution. The photothermal membrane is composed of multi-walled carbon nanotubes (f-MWCNTs)photothermal layer on a hydrophilic polyvinylidene fluoride (PVDF) substrate. The f-MWCNTs photothermal layer with a rough surface and interconnected network structures not only improves the light-harvesting and light-to-heat conversion performance but also facilitates the transport of water molecules. The hydrophilic PVDF substrate can promote the rapid transport of water for adequate water supply to the photothermal layer. As a result, the optimized f-MWCNTs/PVDF photothermal membrane exhibits an excellent light absorption of 95%, and a high surface temperature of 74 °C at 1 kW m−2 . Besides, it realizes an evaporation rate of 1.17 kg m−2 h−1 for 5% (w/v) of sucrose solution, which is about 5 times higher than that of the natural evaporation. The designed photothermal evaporation process is capable of concentrating sucrose solution efficiently from 5% to 75% (w/v), which has great potential in FO process and juice concentration.Keywords: solar, pothothermal, membrane, MWCNT
Procedia PDF Downloads 99899 A Comparative Study Mechanical Properties of Polytetrafluoroethylene Materials Synthesized by Non-Conventional and Conventional Techniques
Authors: H. Lahlali F. El Haouzi, A.M.Al-Baradi, I. El Aboudi, M. El Azhari, A. Mdarhri
Abstract:
Polytetrafluoroethylene (PTFE) is a high performance thermoplastic polymer with exceptional physical and chemical properties, such as a high melting temperature, high thermal stability, and very good chemical resistance. Nevertheless, manufacturing PTFE is problematic due to its high melt viscosity (10 12 Pa.s). In practice, it is by now well established that this property presents a serious problem when the classical methods are used to synthesized the dense PTFE materials in particularly hot pressing, high temperature extrusion. In this framework, we use here a new process namely spark plasma sintering (SPS) to elaborate PTFE samples from the micro metric particles powder. It consists in applying simultaneous electric current and pressure directly on the sample powder. By controlling the processing parameters of this technique, a series of PTFE samples are easy obtained and associated to remarkably short time as is reported in an early work. Our central goal in the present study is to understand how the non conventional SPS affects the mechanical properties at room temperature. For this end, a second commercially series of PTFE synthesized by using the extrusion method is investigated. The first data according to the tensile mechanical properties are found to be superior for the first set samples (SPS). However, this trend is not observed for the results obtained from the compression testing. The observed macro-behaviors are correlated to some physical properties of the two series of samples such as their crystallinity or density. Upon a close examination of these properties, we believe the SPS technique can be seen as a promising way to elaborate the polymer having high molecular mass without compromising their mechanical properties.Keywords: PTFE, extrusion, Spark Plasma Sintering, physical properties, mechanical behavior
Procedia PDF Downloads 308898 Catalytic Effect on Eco Friendly Functional Material in Flame Retardancy of Cellulose
Authors: Md. Abdul Hannan
Abstract:
Two organophosphorus compounds, namely diethyloxymethyl-9-oxa-10- phosphaphenanthrene-10-oxide (DOPAC) and diethyl (2,2-diethoxyethyl) phosphonate (DPAC) were applied on cotton cellulose to impart non-carcinogenic and durable (in alkaline washing) flame retardant property to it. Some acidic catalysts, sodium dihydrogen phosphate (NaH2PO4), ammonium dihydrogen phosphate (NH4H2PO4) and phosphoric acid (H3PO4) were successfully used. Synergistic acidic catalyzing effect of NaH2PO4+H3PO4 and NaH2PO4+NH4H2PO4 was also investigated. Appreciable limiting oxygen index (LOI) value of 23.2% was achieved in case of the samples treated with flame retardant (FR) compound DPAC along with the combined acidic catalyzing effect. A distinguishing outcome of total heat of combustion (THC) 3.27 KJ/g was revealed during pyrolysis combustion flow calorimetry (PCFC) test of the treated sample. In respect of thermal degradation, low temperature dehydration in conjugation with sufficient amount of char residue (30.5%) was obtained in case of DPAC treated sample. Consistently, the temperature of peak heat release rate (TPHRR) (325°C) of DPAC treated sample supported the expected low temperature pyrolysis in condensed phase mechanism. Subsequent thermogravimetric analysis (TGA) also reported inspiring weight retention% of the treated samples. Furthermore, for both of the flame retardant compounds, effect of different catalysts, considering both individual and combined, effect of solvents and overall the optimization of the process parameters were studied in detail.Keywords: cotton cellulose, organophosphorus flame retardant, acetal linkage, THC, HRR, PHHR, char residue, LOI
Procedia PDF Downloads 266897 A Bayesian Parameter Identification Method for Thermorheological Complex Materials
Authors: Michael Anton Kraus, Miriam Schuster, Geralt Siebert, Jens Schneider
Abstract:
Polymers increasingly gained interest in construction materials over the last years in civil engineering applications. As polymeric materials typically show time- and temperature dependent material behavior, which is accounted for in the context of the theory of linear viscoelasticity. Within the context of this paper, the authors show, that some polymeric interlayers for laminated glass can not be considered as thermorheologically simple as they do not follow a simple TTSP, thus a methodology of identifying the thermorheologically complex constitutive bahavioir is needed. ‘Dynamical-Mechanical-Thermal-Analysis’ (DMTA) in tensile and shear mode as well as ‘Differential Scanning Caliometry’ (DSC) tests are carried out on the interlayer material ‘Ethylene-vinyl acetate’ (EVA). A navoel Bayesian framework for the Master Curving Process as well as the detection and parameter identification of the TTSPs along with their associated Prony-series is derived and applied to the EVA material data. To our best knowledge, this is the first time, an uncertainty quantification of the Prony-series in a Bayesian context is shown. Within this paper, we could successfully apply the derived Bayesian methodology to the EVA material data to gather meaningful Master Curves and TTSPs. Uncertainties occurring in this process can be well quantified. We found, that EVA needs two TTSPs with two associated Generalized Maxwell Models. As the methodology is kept general, the derived framework could be also applied to other thermorheologically complex polymers for parameter identification purposes.Keywords: bayesian parameter identification, generalized Maxwell model, linear viscoelasticity, thermorheological complex
Procedia PDF Downloads 263896 Fahr Dsease vs Fahr Syndrome in the Field of a Case Report
Authors: Angelis P. Barlampas
Abstract:
Objective: The confusion of terms is a common practice in many situations of the everyday life. But, in some circumstances, such as in medicine, the precise meaning of a word curries a critical role for the health of the patient. Fahr disease and Fahr syndrome are often falsely used interchangeably, but they are two different conditions with different physical histories of different etiology and different medical management. A case of the seldom Fahr disease is presented, and a comparison with the more common Fahr syndrome follows. Materials and method: A 72 years old patient came to the emergency department, complaining of some kind of non specific medal disturbances, like anxiety, difficulty of concentrating, and tremor. The problems had a long course, but he had the impression of getting worse lately, so he decided to check them. Past history and laboratory tests were unremarkable. Then, a computed tomography examination was ordered. Results: The CT exam showed bilateral, hyperattenuating areas of heavy, dense calcium type deposits in basal ganglia, striatum, pallidum, thalami, the dentate nucleus, and the cerebral white matter of frontal, parietal and iniac lobes, as well as small areas of the pons. Taking into account the absence of any known preexisting illness and the fact that the emergency laboratory tests were without findings, a hypothesis of the rare Fahr disease was supposed. The suspicion was confirmed with further, more specific tests, which showed the lack of any other conditions which could probably share the same radiological image. Differentiating between Fahr disease and Fahr syndrome. Fahr disease: Primarily autosomal dominant Symmetrical and bilateral intracranial calcifications The patient is healthy until the middle age Absence of biochemical abnormalities. Family history consistent with autosomal dominant Fahr syndrome :Earlier between 30 to 40 years old. Symmetrical and bilateral intracranial calcifications Endocrinopathies: Idiopathic hypoparathyroidism, secondary hypoparathyroidism, hyperparathyroidism, pseudohypoparathyroidism ,pseudopseudohypoparathyroidism, e.t.c The disease appears at any age There are abnormal laboratory or imaging findings. Conclusion: Fahr disease and Fahr syndrome are not the same illness, although this is not well known to the inexperienced doctors. As clinical radiologists, we have to inform our colleagues that a radiological image, along with the patient's history, probably implies a rare condition and not something more usual and prompt the investigation to the right route. In our case, a genetic test could be done earlier and reveal the problem, and thus avoiding unnecessary and specific tests which cost in time and are uncomfortable to the patient.Keywords: fahr disease, fahr syndrome, CT, brain calcifications
Procedia PDF Downloads 62895 Triple Intercell Bar for Electrometallurgical Processes: A Design to Increase PV Energy Utilization
Authors: Eduardo P. Wiechmann, Jorge A. Henríquez, Pablo E. Aqueveque, Luis G. Muñoz
Abstract:
PV energy prices are declining rapidly. To take advantage of the benefits of those prices and lower the carbon footprint, operational practices must be modified. Undoubtedly, it challenges the electrowinning practice to operate at constant current throughout the day. This work presents a technology that contributes in providing modulation capacity to the electrode current distribution system. This is to raise the day time dc current and lower it at night. The system is a triple intercell bar that operates in current-source mode. The design is a capping board free dogbone type of bar that ensures an operation free of short circuits, hot swapability repairs and improved current balance. This current-source system eliminates the resetting currents circulating in equipotential bars. Twin auxiliary connectors are added to the main connectors providing secure current paths to bypass faulty or impaired contacts. All system conductive elements are positioned over a baseboard offering a large heat sink area to the ventilation of a facility. The system works with lower temperature than a conventional busbar. Of these attributes, the cathode current balance property stands out and is paramount for day/night modulation and the use of photovoltaic energy. A design based on a 3D finite element method model predicting electric and thermal performance under various industrial scenarios is presented. Preliminary results obtained in an electrowinning facility with industrial prototypes are included.Keywords: electrowinning, intercell bars, PV energy, current modulation
Procedia PDF Downloads 154894 The Study of Periodontal Health Status in Menopausal Women with Osteoporosis Referred to Rheumatology Clinics in Yazd and Healthy People
Authors: Mahboobe Daneshvar
Abstract:
Introduction: Clinical studies on the effect of systemic conditions on periodontal diseases have shown that some systemic deficiencies may provide grounds for the onset of periodontal diseases. One of these systemic problems is osteoporosis, which may be a risk factor for the onset and exacerbation of periodontitis. This study tends to evaluate periodontal indices in osteoporotic menopausal women and compare them with healthy controls. Materials and Methods: In this case-control study, participants included 45-75-year-old menopausal women referred to rheumatology wards of the Khatamolanbia Clinic and Shahid Sadoughi Hospital in Yazd; Their bone density was determined by DEXA-scan and by imaging the femoral-lumbar bone. Thirty patients with osteoporosis and 30 subjects with normal BMD were selected. Then, informed consent was obtained for participation in the study. During the clinical examinations, tooth loss (TL), plaque index (PI), gingival recession, pocket probing depth (PPD), clinical attachment loss (CAL), and tooth mobility (TM) were measured to evaluate the periodontal status. These clinical examinations were performed to determine the periodontal status by catheter, mirror and probe. Results: During the evaluation, there was no significant difference in PPD, PI, TM, gingival recession, and CAL between case and control groups (P-value>0.05); that is, osteoporosis has no effect on the above factors. These periodontal factors are almost the same in both healthy and patient groups. In the case of missing teeth, the following results were obtained: the mean of missing teeth was 22.173% of the total teeth in the case group and 18.583% of the total teeth in the control group. In the study of the missing teeth in the case and control groups, there was a significant relationship between case and control groups (P-value = 0.025). Conclusion: In fact, since periodontal disease is multifactorial and microbial plaque is the main cause, osteoporosis is considered a predisposing factor in exacerbation or persistence of periodontal disease. In patients with osteoporosis, usually pathological fractures, hormonal changes, and aging lead to reduced physical activity and affect oral health, which leads to the manifestation of periodontal disease. But this disease increases tooth loss by changing the shape and structure of bone trabeculae and weakening them. Osteoporosis does not seem to be a deterministic factor in the incidence of periodontal disease, since it affects bone quality rather than bone quantity.Keywords: plaque index, Osteoporosis, tooth mobility, periodontal packet
Procedia PDF Downloads 73893 Synthesis of Montmorillonite/CuxCd1-xS Nanocomposites and Their Application to the Photodegradation of Methylene Blue
Authors: H. Boukhatem, L. Djouadi, H. Khalaf, R. M. Navarro, F. V. Ganzalez
Abstract:
Synthetic organic dyes are used in various industries, such as textile industry, leather tanning industry, paper production, hair dye production, etc. Wastewaters containing these dyes may be harmful to the environment and living organisms. Therefore, it is very important to remove or degrade these dyes before discharging them into the environment. In addition to standard technologies for the degradation and/or removal of dyes, several new specific technologies, the so-called advanced oxidation processes (AOPs), have been developed to eliminate dangerous compounds from polluted waters. AOPs are all characterized by the same chemical feature: production of radicals (•OH) through a multistep process, although different reaction systems are used. These radicals show little selectivity of attack and are able to oxidize various organic pollutants due to their high oxidative capacity (reduction potential of HO• Eo = 2.8 V). Heterogeneous photocatalysis, as one of the AOPs, could be effective in the oxidation/degradation of organic dyes. A major advantage of using heterogeneous photocatalysis for this purpose is the total mineralization of organic dyes, which results in CO2, H2O and corresponding mineral acids. In this study, nanomaterials based on montmorillonite and CuxCd1-xS with different Cu concentration (0.3 < x < 0.7) were utilized for the degradation of the commercial cationic textile dye Methylene blue (MB), used as a model pollutant. The synthesized nanomaterials were characterized by fourier transform infrared (FTIR) and thermogravimetric-differential thermal analysis (TG–DTA). Test results of photocatalysis of methylene blue under UV-Visible irradiation show that the photoactivity of nanomaterials montmorillonite/ CuxCd1-xS increases with the increasing of Cu concentration. The kinetics of the degradation of the MB dye was described with the Langmuir–Hinshelwood (L–H) kinetic model.Keywords: heterogeneous photocatalysis, methylene blue, montmorillonite, nanomaterial
Procedia PDF Downloads 374892 Dual Mode Mobile Based Detection of Endogenous Hydrogen Sulfide for Determination of Live and Antibiotic Resistant Bacteria
Authors: Shashank Gahlaut, Chandrashekhar Sharan, J. P. Singh
Abstract:
Increasing incidence of antibiotic-resistant bacteria is a big concern for the treatment of pathogenic diseases. The effect of treatment of patients with antibiotics often leads to the evolution of antibiotic resistance in the pathogens. The detection of antibiotic or antimicrobial resistant bacteria (microbes) is quite essential as it is becoming one of the big threats globally. Here we propose a novel technique to tackle this problem. We are taking a step forward to prevent the infections and diseases due to drug resistant microbes. This detection is based on some unique features of silver (a noble metal) nanorods (AgNRs) which are fabricated by a physical deposition method called thermal glancing angle deposition (GLAD). Silver nanorods are found to be highly sensitive and selective for hydrogen sulfide (H2S) gas. Color and water wetting (contact angle) of AgNRs are two parameters what are effected in the presence of this gas. H₂S is one of the major gaseous products evolved in the bacterial metabolic process. It is also known as gasotransmitter that transmits some biological singles in living systems. Nitric Oxide (NO) and Carbon mono oxide (CO) are two another members of this family. Orlowski (1895) observed the emission of H₂S by the bacteria for the first time. Most of the microorganism produce these gases. Here we are focusing on H₂S gas evolution to determine live/dead and antibiotic-resistant bacteria. AgNRs array has been used for the detection of H₂S from micro-organisms. A mobile app is also developed to make it easy, portable, user-friendly, and cost-effective.Keywords: antibiotic resistance, hydrogen sulfide, live and dead bacteria, mobile app
Procedia PDF Downloads 145891 Optimum Performance of the Gas Turbine Power Plant Using Adaptive Neuro-Fuzzy Inference System and Statistical Analysis
Authors: Thamir K. Ibrahim, M. M. Rahman, Marwah Noori Mohammed
Abstract:
This study deals with modeling and performance enhancements of a gas-turbine combined cycle power plant. A clean and safe energy is the greatest challenges to meet the requirements of the green environment. These requirements have given way the long-time governing authority of steam turbine (ST) in the world power generation, and the gas turbine (GT) will replace it. Therefore, it is necessary to predict the characteristics of the GT system and optimize its operating strategy by developing a simulation system. The integrated model and simulation code for exploiting the performance of gas turbine power plant are developed utilizing MATLAB code. The performance code for heavy-duty GT and CCGT power plants are validated with the real power plant of Baiji GT and MARAFIQ CCGT plants the results have been satisfactory. A new technology of correlation was considered for all types of simulation data; whose coefficient of determination (R2) was calculated as 0.9825. Some of the latest launched correlations were checked on the Baiji GT plant and apply error analysis. The GT performance was judged by particular parameters opted from the simulation model and also utilized Adaptive Neuro-Fuzzy System (ANFIS) an advanced new optimization technology. The best thermal efficiency and power output attained were about 56% and 345MW respectively. Thus, the operation conditions and ambient temperature are strongly influenced on the overall performance of the GT. The optimum efficiency and power are found at higher turbine inlet temperatures. It can be comprehended that the developed models are powerful tools for estimating the overall performance of the GT plants.Keywords: gas turbine, optimization, ANFIS, performance, operating conditions
Procedia PDF Downloads 425890 Progressive Collapse of Cooling Towers
Authors: Esmaeil Asadzadeh, Mehtab Alam
Abstract:
Well documented records of the past failures of the structures reveals that the progressive collapse of structures is one of the major reasons for dramatic human loss and economical consequences. Progressive collapse is the failure mechanism in which the structure fails gradually due to the sudden removal of the structural elements. The sudden removal of some structural elements results in the excessive redistributed loads on the others. This sudden removal may be caused by any sudden loading resulted from local explosion, impact loading and terrorist attacks. Hyperbolic thin walled concrete shell structures being an important part of nuclear and thermal power plants are always prone to such terrorist attacks. In concrete structures, the gradual failure would take place by generation of initial cracks and its propagation in the supporting columns along with the tower shell leading to the collapse of the entire structure. In this study the mechanism of progressive collapse for such high raised towers would be simulated employing the finite element method. The aim of this study would be providing clear conceptual step-by-step descriptions of various procedures for progressive collapse analysis using commercially available finite element structural analysis software’s, with the aim that the explanations would be clear enough that they will be readily understandable and will be used by practicing engineers. The study would be carried out in the following procedures: 1. Provide explanations of modeling, simulation and analysis procedures including input screen snapshots; 2. Interpretation of the results and discussions; 3. Conclusions and recommendations.Keywords: progressive collapse, cooling towers, finite element analysis, crack generation, reinforced concrete
Procedia PDF Downloads 481889 The Studies of the Sorption Capabilities of the Porous Microspheres with Lignin
Authors: M. Goliszek, M. Sobiesiak, O. Sevastyanova, B. Podkoscielna
Abstract:
Lignin is one of three main constituents of biomass together with cellulose and hemicellulose. It is a complex biopolymer, which contains a large number of functional groups, including aliphatic and aromatic hydroxyl groups, carbohylic groups and methoxy groups in its structure, that is why it shows potential capacities for process of sorption. Lignin is a highly cross-linked polymer with a three-dimentional structure which can provide large surface area and pore volumes. It can also posses better dispersion, diffusion and mass transfer behavior in a field of the removal of, e.g., heavy-metal-ions or aromatic pollutions. In this work emulsion-suspension copolymerization method, to synthesize the porous microspheres of divinylbenzene (DVB), styrene (St) and lignin was used. There are also microspheres without the addition of lignin for comparison. Before the copolymerization, modification lignin with methacryloyl chloride, to improve its reactivity with other monomers was done. The physico-chemical properties of the obtained microspheres, e.g., pore structures (adsorption-desorption measurements), thermal properties (DSC), tendencies to swell and the actual shapes were also studied. Due to well-developed porous structure and the presence of functional groups our materials may have great potential in sorption processes. To estimate the sorption capabilities of the microspheres towards phenol and its chlorinated derivatives the off-line SPE (solid-phase extraction) method is going to be applied. This method has various advantages, including low-cost, easy to use and enables the rapid measurements for a large number of chemicals. The efficiency of the materials in removing phenols from aqueous solution and in desorption processes will be evaluated.Keywords: microspheres, lignin, sorption, solid-phase extraction
Procedia PDF Downloads 183