Search results for: open source data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30071

Search results for: open source data

26231 Comeback of the Limited Precedent System in Hungary – A Critical Assessment

Authors: István János Molnár

Abstract:

Hungary has a legal system that is primarily based on statutory legislation, which means that statutes are the main source of law. However, in a surprising move, the Hungarian Parliament introduced a "limited" precedent system on 1 April 2020. This reform requires Hungarian courts to consider not only statutes but also the interpretation of those statutes in decisions made by the highest court in the country, the Curia. While judge-made customary law is not completely unfamiliar in Hungarian legal practice, the introduction of this new system presents several theoretical and practical challenges that may take time to resolve.

Keywords: civil procedure, hungary, judicial practice, precedent system, sources of law

Procedia PDF Downloads 90
26230 Relation of Consumer Satisfaction on Organization by Focusing on the Different Aspects of Buying Behavior

Authors: I. Gupta, N. Setia

Abstract:

Introduction. Buyer conduct is a progression of practices or examples that buyers pursue before making a buy. It begins when the shopper ends up mindful of a need or wish for an item, at that point finishes up with the buying exchange. Business visionaries can't generally simply shake hands with their intended interest group people and become more acquainted with them. Research is often necessary, so every organization primarily involves doing continuous research to understand and satisfy consumer needs pattern. Aims and Objectives: The aim of the present study is to examine the different behaviors of the consumer, including pre-purchase, purchase, and post-purchase behavior. Materials and Methods: In order to get results, face to face interview held with 80 people which comprise a larger part of female individuals having upper as well as middle-class status. The prime source of data collection was primary. However, the study has also used the theoretical contribution of many researchers in their respective field. Results: Majority of the respondents were females (70%) from the age group of 20-50. The collected data was analyzed through hypothesis testing statistical techniques such as correlation analysis, single regression analysis, and ANOVA which has rejected the null hypothesis that there is no relation between researching the consumer behavior at different stages and organizational performance. The real finding of this study is that simply focusing on the buying part isn't enough to gain profits and fame, however, understanding the pre, buy and post-buy behavior of consumer performs a huge role in organization success. The outcomes demonstrated that the organization, which deals with the three phases of research of purchasing conduct is able to establish a great brand image as compare to their competitors. Alongside, enterprises can observe customer conduct in a considerably more proficient manner. Conclusion: The analyses of consumer behavior presented in this study is an attempt to understand the factors affecting consumer purchasing behavior. This study has revealed that those corporations are more successful, which work on understanding buying behavior instead to just focus on the selling products. As a result, organizations perform good and grow rapidly because consumers are the one who can make or break the company. The interviews that were conducted face to face, clearly revealed that those organizations become at top-notch whom consumers are satisfied, not just with product but also with services of the company. The study is not targeting the particular class of audience; however, it brings out benefits to the masses, in particular to business organizations.

Keywords: consumer behavior, pre purchase, post purchase, consumer satisfaction

Procedia PDF Downloads 112
26229 Reliable Consensus Problem for Multi-Agent Systems with Sampled-Data

Authors: S. H. Lee, M. J. Park, O. M. Kwon

Abstract:

In this paper, reliable consensus of multi-agent systems with sampled-data is investigated. By using a suitable Lyapunov-Krasovskii functional and some techniques such as Wirtinger Inequality, Schur Complement and Kronecker Product, the results of this systems are obtained by solving a set of Linear Matrix Inequalities(LMIs). One numerical example is included to show the effectiveness of the proposed criteria.

Keywords: multi-agent, linear matrix inequalities (LMIs), kronecker product, sampled-data, Lyapunov method

Procedia PDF Downloads 528
26228 Referring to Jordanian Female Relatives in Public

Authors: Ibrahim Darwish, Noora Abu Ain

Abstract:

Referring to female relatives by male Jordanian speakers in public is governed by various linguistic and social constraints. Although Jordanian society is less conservative than it was a few decades ago, women are still considered the weaker link in society and men still believe that they need to protect them. Conservative Jordanians often avoid referring to their female relatives overtly, i.e., using their real names. Instead, they use covert names, such as pseudonyms, nicknames, pet names, etc. The reason behind such language use has to do with how Arab men, in general, see women as part of their honor. This study intends to investigate to what extent Jordanian males hide their female relatives’ names in public domains. The data was collected from spontaneous informal voice-recorded interviews carried out in the village of Saham in the far north of Jordan. Saham’s dialect is part of a larger Horani dialect used by speakers along a wide area that stretches from Salt in the south to the Syrian borders in the north of Jordan. The voice-recorded interviews were originally carried out as an audio record of some customs and traditions in the village of Saham in 2013. During most of these interviews, the researchers observed how the male participants indirectly referred to their female relatives. Instead of using real names, the male speakers used broad terms to refer to their female relatives, such al-Beit ‘the home,’ al-ciyaal ‘the kids’, um-x ‘the mother of x,’ etc. All tokens related to the issue in question were collected, analyzed and quantified about three age cohorts: young, middle-aged and old speakers. The results show that young speakers are more direct in referring to their female relatives than the other two age groups. This can point to a possible change in progress in the speech community of Saham. It is argued that due to contact with other urban speech communities, the young speakers in Saham do not feel the need to hide the real names of their female relatives as they consider them as equals. Indeed, the young generation is more open to the idea of women's rights and call for expanding Jordanian women’s roles in Jordanian society.

Keywords: gender differences, Horan, proper names, social constraints

Procedia PDF Downloads 142
26227 Materialized View Effect on Query Performance

Authors: Yusuf Ziya Ayık, Ferhat Kahveci

Abstract:

Currently, database management systems have various tools such as backup and maintenance, and also provide statistical information such as resource usage and security. In terms of query performance, this paper covers query optimization, views, indexed tables, pre-computation materialized view, query performance analysis in which query plan alternatives can be created and the least costly one selected to optimize a query. Indexes and views can be created for related table columns. The literature review of this study showed that, in the course of time, despite the growing capabilities of the database management system, only database administrators are aware of the need for dealing with archival and transactional data types differently. These data may be constantly changing data used in everyday life, and also may be from the completed questionnaire whose data input was completed. For both types of data, the database uses its capabilities; but as shown in the findings section, instead of repeating similar heavy calculations which are carrying out same results with the same query over a survey results, using materialized view results can be in a more simple way. In this study, this performance difference was observed quantitatively considering the cost of the query.

Keywords: cost of query, database management systems, materialized view, query performance

Procedia PDF Downloads 280
26226 An AK-Chart for the Non-Normal Data

Authors: Chia-Hau Liu, Tai-Yue Wang

Abstract:

Traditional multivariate control charts assume that measurement from manufacturing processes follows a multivariate normal distribution. However, this assumption may not hold or may be difficult to verify because not all the measurement from manufacturing processes are normal distributed in practice. This study develops a new multivariate control chart for monitoring the processes with non-normal data. We propose a mechanism based on integrating the one-class classification method and the adaptive technique. The adaptive technique is used to improve the sensitivity to small shift on one-class classification in statistical process control. In addition, this design provides an easy way to allocate the value of type I error so it is easier to be implemented. Finally, the simulation study and the real data from industry are used to demonstrate the effectiveness of the propose control charts.

Keywords: multivariate control chart, statistical process control, one-class classification method, non-normal data

Procedia PDF Downloads 422
26225 Cultural Statistics in Governance: A Comparative Analysis between the UK and Finland

Authors: Sandra Toledo

Abstract:

There is an increasing tendency in governments for a more evidence-based policy-making and a stricter auditing of public spheres. Especially when budgets are tight, and taxpayers demand a bigger scrutiny over the use of the available resources, statistics and numbers appeared as an effective tool to produce data that supports investments done, as well as evaluating public policy performance. This pressure has not exempted the cultural and art fields. Finland like the rest of Nordic countries has kept its principles from the welfare state, whilst UK seems to be going towards the opposite direction, relaying more and more in private sectors and foundations, as the state folds back. The boom of the creative industries along with a managerial trend introduced by Tatcher in the UK brought, as a result, a commodification of arts within a market logic, where sponsorship and commercial viability were the keynotes. Finland on its part, in spite of following a more protectionist approach of arts, seems to be heading in a similar direction. Additionally, there is an international growing interest in the application of cultural participation studies and the comparability between countries in their results. Nonetheless, the standardization in the application of cultural surveys has not happened yet. Not only there are differences in the application of these type of surveys in terms of time and frequency, but also regarding those conducting them. Therefore, one hypothesis considered in this research is that behind the differences between countries in the application of cultural surveys, production and utilization of cultural statistics is the cultural policy model adopted by the government. In other words, the main goal of this research is to answer the following: What are the differences and similarities between Finland and the UK regarding the role cultural surveys have in cultural policy making? Along with other secondary questions such as: How does the cultural policy model followed by each country influence the role of cultural surveys in cultural policy making? and what are the differences at the local level? In order to answer these questions, strategic cultural policy documents and interviews with key informants will be used and analyzed as source data, using content analysis methods. Cultural statistics per se will not be compared, but instead their use as instruments of governing, and its relation to the cultural policy model. Aspects such as execution of cultural surveys, funding, periodicity, and use of statistics in formal reports and publications, will be studied in the written documents while in the interviews other elements such as perceptions from those involved in collecting cultural statistics or policy making, distribution of tasks and hierarchies among cultural and statistical institutions, and a general view will be the target. A limitation identified beforehand and that it is expected to encounter throughout the process is the language barrier in the case of Finland when it comes to official documents, which will be tackled by interviewing the authors of such papers and choosing key extract of them for translation.

Keywords: Finland, cultural statistics, cultural surveys, United Kingdom

Procedia PDF Downloads 234
26224 Text Mining of Veterinary Forums for Epidemiological Surveillance Supplementation

Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves

Abstract:

Web scraping and text mining are popular computer science methods deployed by public health researchers to augment traditional epidemiological surveillance. However, within veterinary disease surveillance, such techniques are still in the early stages of development and have not yet been fully utilised. This study presents an exploration into the utility of incorporating internet-based data to better understand the smallholder farming communities within Scotland by using online text extraction and the subsequent mining of this data. Web scraping of the livestock fora was conducted in conjunction with text mining of the data in search of common themes, words, and topics found within the text. Results from bi-grams and topic modelling uncover four main topics of interest within the data pertaining to aspects of livestock husbandry: feeding, breeding, slaughter, and disposal. These topics were found amongst both the poultry and pig sub-forums. Topic modeling appears to be a useful method of unsupervised classification regarding this form of data, as it has produced clusters that relate to biosecurity and animal welfare. Internet data can be a very effective tool in aiding traditional veterinary surveillance methods, but the requirement for human validation of said data is crucial. This opens avenues of research via the incorporation of other dynamic social media data, namely Twitter and Facebook/Meta, in addition to time series analysis to highlight temporal patterns.

Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, smallholding, social media, web scraping, sentiment analysis, geolocation, text mining, NLP

Procedia PDF Downloads 99
26223 Panel Application for Determining Impact of Real Exchange Rate and Security on Tourism Revenues: Countries with Middle and High Level Tourism Income

Authors: M. Koray Cetin, Mehmet Mert

Abstract:

The purpose of the study is to examine impacts on tourism revenues of the exchange rate and country overall security level. There are numerous studies that examine the bidirectional relation between macroeconomic factors and tourism revenues and tourism demand. Most of the studies support the existence of impact of tourism revenues on growth rate but not vice versa. Few studies examine the impact of factors like real exchange rate or purchasing power parity on the tourism revenues. In this context, firstly impact of real exchange rate on tourism revenues examination is aimed. Because exchange rate is one of the main determinants of international tourism services price in guests currency unit. Another determinant of tourism demand for a country is country’s overall security level. This issue can be handled in the context of the relationship between tourism revenues and overall security including turmoil, terrorism, border problem, political violence. In this study, factors are handled for several countries which have tourism revenues on a certain level. With this structure, it is a panel data, and it is evaluated with panel data analysis techniques. Panel data have at least two dimensions, and one of them is time dimensions. The panel data analysis techniques are applied to data gathered from Worldbank data web page. In this study, it is expected to find impacts of real exchange rate and security factors on tourism revenues for the countries that have noteworthy tourism revenues.

Keywords: exchange rate, panel data analysis, security, tourism revenues

Procedia PDF Downloads 351
26222 Impact of Collieries on Groundwater in Damodar River Basin

Authors: Rajkumar Ghosh

Abstract:

The industrialization of coal mining and related activities has a significant impact on groundwater in the surrounding areas of the Damodar River. The Damodar River basin, located in eastern India, is known as the "Ruhr of India" due to its abundant coal reserves and extensive coal mining and industrial operations. One of the major consequences of collieries on groundwater is the contamination of water sources. Coal mining activities often involve the excavation and extraction of coal through underground or open-pit mining methods. These processes can release various pollutants and chemicals into the groundwater, including heavy metals, acid mine drainage, and other toxic substances. As a result, the quality of groundwater in the Damodar River region has deteriorated, making it unsuitable for drinking, irrigation, and other purposes. The high concentration of heavy metals, such as arsenic, lead, and mercury, in the groundwater has posed severe health risks to the local population. Prolonged exposure to contaminated water can lead to various health problems, including skin diseases, respiratory issues, and even long-term ailments like cancer. The contamination has also affected the aquatic ecosystem, harming fish populations and other organisms dependent on the river's water. Moreover, the excessive extraction of groundwater for industrial processes, including coal washing and cooling systems, has resulted in a decline in the water table and depletion of aquifers. This has led to water scarcity and reduced availability of water for agricultural activities, impacting the livelihoods of farmers in the region. Efforts have been made to mitigate these issues through the implementation of regulations and improved industrial practices. However, the historical legacy of coal industrialization continues to impact the groundwater in the Damodar River area. Remediation measures, such as the installation of water treatment plants and the promotion of sustainable mining practices, are essential to restore the quality of groundwater and ensure the well-being of the affected communities. In conclusion, the coal industrialization in the Damodar River surrounding has had a detrimental impact on groundwater. This research focuses on soil subsidence induced by the over-exploitation of ground water for dewatering open pit coal mines. Soil degradation happens in arid and semi-arid regions as a result of land subsidence in coal mining region, which reduces soil fertility. Depletion of aquifers, contamination, and water scarcity are some of the key challenges resulting from these activities. It is crucial to prioritize sustainable mining practices, environmental conservation, and the provision of clean drinking water to mitigate the long-lasting effects of collieries on the groundwater resources in the region.

Keywords: coal mining, groundwater, soil subsidence, water table, damodar river

Procedia PDF Downloads 80
26221 The Effect of General Data Protection Regulation on South Asian Data Protection Laws

Authors: Sumedha Ganjoo, Santosh Goswami

Abstract:

The rising reliance on technology places national security at the forefront of 21st-century issues. It complicates the efforts of emerging and developed countries to combat cyber threats and increases the inherent risk factors connected with technology. The inability to preserve data securely might have devastating repercussions on a massive scale. Consequently, it is vital to establish national, regional, and global data protection rules and regulations that penalise individuals who participate in immoral technology usage and exploit the inherent vulnerabilities of technology. This study paper seeks to analyse GDPR-inspired Bills in the South Asian Region and determine their suitability for the development of a worldwide data protection framework, considering that Asian countries are much more diversified than European ones. In light of this context, the objectives of this paper are to identify GDPR-inspired Bills in the South Asian Region, identify their similarities and differences, as well as the obstacles to developing a regional-level data protection mechanism, thereby satisfying the need to develop a global-level mechanism. Due to the qualitative character of this study, the researcher did a comprehensive literature review of prior research papers, journal articles, survey reports, and government publications on the aforementioned topics. Taking into consideration the survey results, the researcher conducted a critical analysis of the significant parameters highlighted in the literature study. Many nations in the South Asian area are in the process of revising their present data protection measures in accordance with GDPR, according to the primary results of this study. Consideration is given to the data protection laws of Thailand, Malaysia, China, and Japan. Significant parallels and differences in comparison to GDPR have been discussed in detail. The conclusion of the research analyses the development of various data protection legislation regimes in South Asia.

Keywords: data privacy, GDPR, Asia, data protection laws

Procedia PDF Downloads 82
26220 On the Use of Analytical Performance Models to Design a High-Performance Active Queue Management Scheme

Authors: Shahram Jamali, Samira Hamed

Abstract:

One of the open issues in Random Early Detection (RED) algorithm is how to set its parameters to reach high performance for the dynamic conditions of the network. Although original RED uses fixed values for its parameters, this paper follows a model-based approach to upgrade performance of the RED algorithm. It models the routers queue behavior by using the Markov model and uses this model to predict future conditions of the queue. This prediction helps the proposed algorithm to make some tunings over RED's parameters and provide efficiency and better performance. Widespread packet level simulations confirm that the proposed algorithm, called Markov-RED, outperforms RED and FARED in terms of queue stability, bottleneck utilization and dropped packets count.

Keywords: active queue management, RED, Markov model, random early detection algorithm

Procedia PDF Downloads 539
26219 Longitudinal Analysis of Internet Speed Data in the Gulf Cooperation Council Region

Authors: Musab Isah

Abstract:

This paper presents a longitudinal analysis of Internet speed data in the Gulf Cooperation Council (GCC) region, focusing on the most populous cities of each of the six countries – Riyadh, Saudi Arabia; Dubai, UAE; Kuwait City, Kuwait; Doha, Qatar; Manama, Bahrain; and Muscat, Oman. The study utilizes data collected from the Measurement Lab (M-Lab) infrastructure over a five-year period from January 1, 2019, to December 31, 2023. The analysis includes downstream and upstream throughput data for the cities, covering significant events such as the launch of 5G networks in 2019, COVID-19-induced lockdowns in 2020 and 2021, and the subsequent recovery period and return to normalcy. The results showcase substantial increases in Internet speeds across the cities, highlighting improvements in both download and upload throughput over the years. All the GCC countries have achieved above-average Internet speeds that can conveniently support various online activities and applications with excellent user experience.

Keywords: internet data science, internet performance measurement, throughput analysis, internet speed, measurement lab, network diagnostic tool

Procedia PDF Downloads 62
26218 A Web Service Based Sensor Data Management System

Authors: Rose A. Yemson, Ping Jiang, Oyedeji L. Inumoh

Abstract:

The deployment of wireless sensor network has rapidly increased, however with the increased capacity and diversity of sensors, and applications ranging from biological, environmental, military etc. generates tremendous volume of data’s where more attention is placed on the distributed sensing and little on how to manage, analyze, retrieve and understand the data generated. This makes it more quite difficult to process live sensor data, run concurrent control and update because sensor data are either heavyweight, complex, and slow. This work will focus on developing a web service platform for automatic detection of sensors, acquisition of sensor data, storage of sensor data into a database, processing of sensor data using reconfigurable software components. This work will also create a web service based sensor data management system to monitor physical movement of an individual wearing wireless network sensor technology (SunSPOT). The sensor will detect movement of that individual by sensing the acceleration in the direction of X, Y and Z axes accordingly and then send the sensed reading to a database that will be interfaced with an internet platform. The collected sensed data will determine the posture of the person such as standing, sitting and lying down. The system is designed using the Unified Modeling Language (UML) and implemented using Java, JavaScript, html and MySQL. This system allows real time monitoring an individual closely and obtain their physical activity details without been physically presence for in-situ measurement which enables you to work remotely instead of the time consuming check of an individual. These details can help in evaluating an individual’s physical activity and generate feedback on medication. It can also help in keeping track of any mandatory physical activities required to be done by the individuals. These evaluations and feedback can help in maintaining a better health status of the individual and providing improved health care.

Keywords: HTML, java, javascript, MySQL, sunspot, UML, web-based, wireless network sensor

Procedia PDF Downloads 212
26217 The Electric Car Wheel Hub Motor Work Analysis with the Use of 2D FEM Electromagnetic Method and 3D CFD Thermal Simulations

Authors: Piotr Dukalski, Bartlomiej Bedkowski, Tomasz Jarek, Tomasz Wolnik

Abstract:

The article is concerned with the design of an electric in wheel hub motor installed in an electric car with two-wheel drive. It presents the construction of the motor on the 3D cross-section model. Work simulation of the motor (applicated to Fiat Panda car) and selected driving parameters such as driving on the road with a slope of 20%, driving at maximum speed, maximum acceleration of the car from 0 to 100 km/h are considered by the authors in the article. The demand for the drive power taking into account the resistance to movement was determined for selected driving conditions. The parameters of the motor operation and the power losses in its individual elements, calculated using the FEM 2D method, are presented for the selected car driving parameters. The calculated power losses are used in 3D models for thermal calculations using the CFD method. Detailed construction of thermal models with materials data, boundary conditions and losses calculated using the FEM 2D method are presented in the article. The article presents and describes calculated temperature distributions in individual motor components such as winding, permanent magnets, magnetic core, body, cooling system components. Generated losses in individual motor components and their impact on the limitation of its operating parameters are described by authors. Attention is paid to the losses generated in permanent magnets, which are a source of heat as the removal of which from inside the motor is difficult. Presented results of calculations show how individual motor power losses, generated in different load conditions while driving, affect its thermal state.

Keywords: electric car, electric drive, electric motor, thermal calculations, wheel hub motor

Procedia PDF Downloads 174
26216 Unlocking Health Insights: Studying Data for Better Care

Authors: Valentina Marutyan

Abstract:

Healthcare data mining is a rapidly developing field at the intersection of technology and medicine that has the potential to change our understanding and approach to providing healthcare. Healthcare and data mining is the process of examining huge amounts of data to extract useful information that can be applied in order to improve patient care, treatment effectiveness, and overall healthcare delivery. This field looks for patterns, trends, and correlations in a variety of healthcare datasets, such as electronic health records (EHRs), medical imaging, patient demographics, and treatment histories. To accomplish this, it uses advanced analytical approaches. Predictive analysis using historical patient data is a major area of interest in healthcare data mining. This enables doctors to get involved early to prevent problems or improve results for patients. It also assists in early disease detection and customized treatment planning for every person. Doctors can customize a patient's care by looking at their medical history, genetic profile, current and previous therapies. In this way, treatments can be more effective and have fewer negative consequences. Moreover, helping patients, it improves the efficiency of hospitals. It helps them determine the number of beds or doctors they require in regard to the number of patients they expect. In this project are used models like logistic regression, random forests, and neural networks for predicting diseases and analyzing medical images. Patients were helped by algorithms such as k-means, and connections between treatments and patient responses were identified by association rule mining. Time series techniques helped in resource management by predicting patient admissions. These methods improved healthcare decision-making and personalized treatment. Also, healthcare data mining must deal with difficulties such as bad data quality, privacy challenges, managing large and complicated datasets, ensuring the reliability of models, managing biases, limited data sharing, and regulatory compliance. Finally, secret code of data mining in healthcare helps medical professionals and hospitals make better decisions, treat patients more efficiently, and work more efficiently. It ultimately comes down to using data to improve treatment, make better choices, and simplify hospital operations for all patients.

Keywords: data mining, healthcare, big data, large amounts of data

Procedia PDF Downloads 76
26215 Magnitude of Transactional Sex and Its Determinant Factors Among Women in Sub-Saharan Africa: Systematic Review and Meat Analysis

Authors: Gedefaye Nibret Mihretie

Abstract:

Background: Transactional sex is casual sex between two people to receive material incentives in exchange for sexual favors. Transactional sex is associated with negative consequences, which increase the risk of sexually transmitted diseases, including HIV/AIDS, unintended pregnancy, unsafe abortion, and physiological trauma. Many primary studies in Sub-Saharan Africa have been conducted to assess the prevalence and associated factors of transactional sex among women. These studies had great discrepancies and inconsistent results. Hence, this systematic review and meta-analysis aimed to synthesize the pooled prevalence of the practice of transactional sex among women and its associated factors in Sub-Saharan Africa. Method: Cross-sectional studies were systematically searched from March 6, 2022, to April 24, 2022, using PubMed, Google Scholar, HINARI, Cochrane Library, and grey literature. The pooled prevalence of transactional sex and associated factors was estimated using DerSemonial-Laird Random Effect Model. Stata (version 16.0) was used to analyze the data. The I-squared statistic was used to assess the studies' heterogeneity. A funnel plot and Egger's test were used to check for publication bias. A subgroup analysis was performed to minimize the underline heterogeneity depending on the study years, source of data, sample sizes and geographical location. Results: Four thousand one hundred thirty articles were extracted from various databases. The final thirty-two studies were included in this systematic review, including 108,075 participants. The pooled prevalence of transactional sex among women in Sub-Saharan Africa was 12.55%, with a confidence interval of 9.59% to 15.52%. Educational status (OR = .48, 95%CI, 0.27, 0.69) was the protective factors of transactional sex whereas, alcohol use (OR = 1.85, 95% CI: 1.19, 2.52), early sex debut (OR = 2.57, 95%CI, 1.17, 3.98), substance abuse (OR = 4.21, 95% CI: 2.05, 6.37), having history of sexual experience abuse (OR = 4.08, 95% CI: 1.38, 6.78), physical violence abuse (OR = 6.59, 95% CI: 1.17, 12.02), and sexual violence abuse (OR = 3.56, 95% CI: 1.15, 8.27) were the risk factors of transactional sex. Conclusion: The prevalence of transactional sex among women in Sub-Saharan Africa was high. Educational status, alcohol use, substance abuse, early sex debut, having a history of sexual experiences, physical violence, and sexual violence were predictors of transaction sex. Governmental and other stakeholders are designed to reduce alcohol utilization, provide health information about the negative consequences of early sex debut, substance abuse, and reduce sexual violence, ensuring gender equality through mass media, which should be included in state policy.

Keywords: women’s health, child health, reproductive health, midwifery

Procedia PDF Downloads 94
26214 Assessing Smallholder Rice and Vegetable Farmers’ Constraints and Needs to Adopt Small-Scale Irrigation in South Tongu District, Ghana

Authors: Tamekloe Michael Kossivi, Kenichi Matsui

Abstract:

Irrigation access is one of the essential rural development investment options that can significantly improve smallholder farmers’ agriculture productivity. Investment in irrigation infrastructural development to supply adequate water could improve food security, growth in income for farmers, poverty alleviation, and improve business and livelihood. This paper assesses smallholder farmers’ constraints and the needs to adopt small-scale irrigation for crops production in the South Tongu District of Ghana. The data collection involved database search, questionnaire survey, interview, and field work. The structured questionnaire survey was administered from September to November 2020 among 120 respondents in six purposively sampled irrigation communities in the District. The questions focused on small-scale irrigation development constraints and needs. As a result, we found that the respondents relied mainly on rainfall for agriculture production. They did not have adequate irrigation access. Even though the District is blessed with open arable lands and rich water sources for rice and vegetable production on a massive scale, water sources like the Lower Volta River, Tordzi River, and Avu Lagoon were not close enough to the respondents. The respondents faced inadequate credit support (100%), unreliable rainfall (76%), insufficient water supply (54%), and unreliable water delivery challenges on their farms (53%). Physical constraints for the respondents to adopt irrigation included flood (77%), drought (93%), inadequate irrigation technology (59%), and insufficient technical know-how (65%). Farmers were interested in investing in irrigation infrastructural development to enhance productivity on their farms only if they own the farmlands. External support from donors on irrigation systems did not allow smallholder farmers to control irrigation facilities.

Keywords: constraints, food security, needs, smallholder farmers, small-scale irrigation

Procedia PDF Downloads 137
26213 Using Wearable Technology to Monitor Perinatal Health: Perspectives of Community Health Workers and Potential Use by Underserved Perinatal Women in California

Authors: Tamara Jimah, Priscilla Kehoe, Pamela Pimentel, Amir Rahmani, Nikil Dutt, Yuqing Guo

Abstract:

Ensuring equitable access to maternal health care is critical for public health. Particularly for underserved women, community health workers (CHWs) have been invaluable in providing support through health education and strategies for improved maternal self-care management. Our research aimed to assess the acceptance of technology by CHWs and perinatal women to promote healthy pregnancy and postpartum wellness. This pilot study was conducted at a local community organization in Orange County, California, where CHWs play an important role in supporting low-income women through home visitations. Questionnaires were administered to 14 CHWs and 114 pregnant and postpartum women, literate in English and/or Spanish. CHWs tested two wearable devices (Galaxy watch and Oura ring) and shared their user experience, including potential reception by the perinatal women they served. In addition, perinatal women provided information on access to a smart phone and the internet, as well as their interest in using wearable devices to self-monitor personal health with guidance from a CHW. Over 85% of CHWs agreed that it was useful to track pregnancy with the smart watch and ring. The majority of perinatal women owned a smartphone (97.4%), had access to the internet (80%) and unlimited data plans (78%), expressed interest in using the smart wearable devices to self-monitor health, and were open to receiving guidance from a CHW (87%). Community health workers and perinatal women embraced the use of wearable technology to monitor maternal health. These preliminary findings have formed the basis of an ongoing research study that integrates CHW guidance and technology (i.e., smart watch, smart ring, and a mobile phone app) to promote self-efficacy and self-management among underserved perinatal women.

Keywords: community health workers, health promotion and education, health equity, maternal and child health, technology

Procedia PDF Downloads 147
26212 Automated Fact-Checking by Incorporating Contextual Knowledge and Multi-Faceted Search

Authors: Wenbo Wang, Yi-Fang Brook Wu

Abstract:

The spread of misinformation and disinformation has become a major concern, particularly with the rise of social media as a primary source of information for many people. As a means to address this phenomenon, automated fact-checking has emerged as a safeguard against the spread of misinformation and disinformation. Existing fact-checking approaches aim to determine whether a news claim is true or false, and they have achieved decent veracity prediction accuracy. However, the state-of-the-art methods rely on manually verified external information to assist the checking model in making judgments, which requires significant human resources. This study introduces a framework, SAC, which focuses on 1) augmenting the representation of a claim by incorporating additional context using general-purpose, comprehensive, and authoritative data; 2) developing a search function to automatically select relevant, new, and credible references; 3) focusing on the important parts of the representations of a claim and its reference that are most relevant to the fact-checking task. The experimental results demonstrate that 1) Augmenting the representations of claims and references through the use of a knowledge base, combined with the multi-head attention technique, contributes to improved performance of fact-checking. 2) SAC with auto-selected references outperforms existing fact-checking approaches with manual selected references. Future directions of this study include I) exploring knowledge graphs in Wikidata to dynamically augment the representations of claims and references without introducing too much noise, II) exploring semantic relations in claims and references to further enhance fact-checking.

Keywords: fact checking, claim verification, deep learning, natural language processing

Procedia PDF Downloads 62
26211 A Novel Heuristic for Analysis of Large Datasets by Selecting Wrapper-Based Features

Authors: Bushra Zafar, Usman Qamar

Abstract:

Large data sample size and dimensions render the effectiveness of conventional data mining methodologies. A data mining technique are important tools for collection of knowledgeable information from variety of databases and provides supervised learning in the form of classification to design models to describe vital data classes while structure of the classifier is based on class attribute. Classification efficiency and accuracy are often influenced to great extent by noisy and undesirable features in real application data sets. The inherent natures of data set greatly masks its quality analysis and leave us with quite few practical approaches to use. To our knowledge first time, we present a new approach for investigation of structure and quality of datasets by providing a targeted analysis of localization of noisy and irrelevant features of data sets. Machine learning is based primarily on feature selection as pre-processing step which offers us to select few features from number of features as a subset by reducing the space according to certain evaluation criterion. The primary objective of this study is to trim down the scope of the given data sample by searching a small set of important features which may results into good classification performance. For this purpose, a heuristic for wrapper-based feature selection using genetic algorithm and for discriminative feature selection an external classifier are used. Selection of feature based on its number of occurrence in the chosen chromosomes. Sample dataset has been used to demonstrate proposed idea effectively. A proposed method has improved average accuracy of different datasets is about 95%. Experimental results illustrate that proposed algorithm increases the accuracy of prediction of different diseases.

Keywords: data mining, generic algorithm, KNN algorithms, wrapper based feature selection

Procedia PDF Downloads 316
26210 The Negative Effects of Controlled Motivation on Mathematics Achievement

Authors: John E. Boberg, Steven J. Bourgeois

Abstract:

The decline in student engagement and motivation through the middle years is well documented and clearly associated with a decline in mathematics achievement that persists through high school. To combat this trend and, very often, to meet high-stakes accountability standards, a growing number of parents, teachers, and schools have implemented various methods to incentivize learning. However, according to Self-Determination Theory, forms of incentivized learning such as public praise, tangible rewards, or threats of punishment tend to undermine intrinsic motivation and learning. By focusing on external forms of motivation that thwart autonomy in children, adults also potentially threaten relatedness measures such as trust and emotional engagement. Furthermore, these controlling motivational techniques tend to promote shallow forms of cognitive engagement at the expense of more effective deep processing strategies. Therefore, any short-term gains in apparent engagement or test scores are overshadowed by long-term diminished motivation, resulting in inauthentic approaches to learning and lower achievement. The current study focuses on the relationships between student trust, engagement, and motivation during these crucial years as students transition from elementary to middle school. In order to test the effects of controlled motivational techniques on achievement in mathematics, this quantitative study was conducted on a convenience sample of 22 elementary and middle schools from a single public charter school district in the south-central United States. The study employed multi-source data from students (N = 1,054), parents (N = 7,166), and teachers (N = 356), along with student achievement data and contextual campus variables. Cross-sectional questionnaires were used to measure the students’ self-regulated learning, emotional and cognitive engagement, and trust in teachers. Parents responded to a single item on incentivizing the academic performance of their child, and teachers responded to a series of questions about their acceptance of various incentive strategies. Structural equation modeling (SEM) was used to evaluate model fit and analyze the direct and indirect effects of the predictor variables on achievement. Although a student’s trust in teacher positively predicted both emotional and cognitive engagement, none of these three predictors accounted for any variance in achievement in mathematics. The parents’ use of incentives, on the other hand, predicted a student’s perception of his or her controlled motivation, and these two variables had significant negative effects on achievement. While controlled motivation had the greatest effects on achievement, parental incentives demonstrated both direct and indirect effects on achievement through the students’ self-reported controlled motivation. Comparing upper elementary student data with middle-school student data revealed that controlling forms of motivation may be taking their toll on student trust and engagement over time. While parental incentives positively predicted both cognitive and emotional engagement in the younger sub-group, such forms of controlling motivation negatively predicted both trust in teachers and emotional engagement in the middle-school sub-group. These findings support the claims, posited by Self-Determination Theory, about the dangers of incentivizing learning. Short-term gains belie the underlying damage to motivational processes that lead to decreased intrinsic motivation and achievement. Such practices also appear to thwart basic human needs such as relatedness.

Keywords: controlled motivation, student engagement, incentivized learning, mathematics achievement, self-determination theory, student trust

Procedia PDF Downloads 219
26209 Improve Student Performance Prediction Using Majority Vote Ensemble Model for Higher Education

Authors: Wade Ghribi, Abdelmoty M. Ahmed, Ahmed Said Badawy, Belgacem Bouallegue

Abstract:

In higher education institutions, the most pressing priority is to improve student performance and retention. Large volumes of student data are used in Educational Data Mining techniques to find new hidden information from students' learning behavior, particularly to uncover the early symptom of at-risk pupils. On the other hand, data with noise, outliers, and irrelevant information may provide incorrect conclusions. By identifying features of students' data that have the potential to improve performance prediction results, comparing and identifying the most appropriate ensemble learning technique after preprocessing the data, and optimizing the hyperparameters, this paper aims to develop a reliable students' performance prediction model for Higher Education Institutions. Data was gathered from two different systems: a student information system and an e-learning system for undergraduate students in the College of Computer Science of a Saudi Arabian State University. The cases of 4413 students were used in this article. The process includes data collection, data integration, data preprocessing (such as cleaning, normalization, and transformation), feature selection, pattern extraction, and, finally, model optimization and assessment. Random Forest, Bagging, Stacking, Majority Vote, and two types of Boosting techniques, AdaBoost and XGBoost, are ensemble learning approaches, whereas Decision Tree, Support Vector Machine, and Artificial Neural Network are supervised learning techniques. Hyperparameters for ensemble learning systems will be fine-tuned to provide enhanced performance and optimal output. The findings imply that combining features of students' behavior from e-learning and students' information systems using Majority Vote produced better outcomes than the other ensemble techniques.

Keywords: educational data mining, student performance prediction, e-learning, classification, ensemble learning, higher education

Procedia PDF Downloads 108
26208 Foundation of the Information Model for Connected-Cars

Authors: Hae-Won Seo, Yong-Gu Lee

Abstract:

Recent progress in the next generation of automobile technology is geared towards incorporating information technology into cars. Collectively called smart cars are bringing intelligence to cars that provides comfort, convenience and safety. A branch of smart cars is connected-car system. The key concept in connected-cars is the sharing of driving information among cars through decentralized manner enabling collective intelligence. This paper proposes a foundation of the information model that is necessary to define the driving information for smart-cars. Road conditions are modeled through a unique data structure that unambiguously represent the time variant traffics in the streets. Additionally, the modeled data structure is exemplified in a navigational scenario and usage using UML. Optimal driving route searching is also discussed using the proposed data structure in a dynamically changing road conditions.

Keywords: connected-car, data modeling, route planning, navigation system

Procedia PDF Downloads 374
26207 Characterization of Group Dynamics for Fostering Mathematical Modeling Competencies

Authors: Ayse Ozturk

Abstract:

The study extends the prior research on modeling competencies by positioning students’ cognitive and language resources as the fundamentals for pursuing their own inquiry and expression lines through mathematical modeling. This strategy aims to answer the question that guides this study, “How do students’ group approaches to modeling tasks affect their modeling competencies over a unit of instruction?” Six bilingual tenth-grade students worked on open-ended modeling problems along with the content focused on quantities over six weeks. Each group was found to have a unique cognitive approach for solving these problems. Three different problem-solving strategies affected how the groups’ modeling competencies changed. The results provide evidence that the discussion around groups’ solutions, coupled with their reflections, advances group interpreting and validating competencies in the mathematical modeling process

Keywords: cognition, collective learning, mathematical modeling competencies, problem-solving

Procedia PDF Downloads 159
26206 Biochar - A Multi-Beneficial and Cost-Effective Amendment to Clay Soil for Stormwater Runoff Treatment

Authors: Mohammad Khalid, Mariya Munir, Jacelyn Rice Boyaue

Abstract:

Highways are considered a major source of pollution to storm-water, and its runoff can introduce various contaminants, including nutrients, Indicator bacteria, heavy metals, chloride, and phosphorus compounds, which can have negative impacts on receiving waters. This study assessed the ability of biochar for contaminants removal and to improve the water holding capacity of soil biochar mixture. For this, ten commercially available biochar has been strategically selected. Lab scale batch testing was done at 3% and 6% by the weight of the soil to find the preliminary estimate of contaminants removal along with hydraulic conductivity and water retention capacity. Furthermore, from the above-conducted studies, six best performing candidate and an application rate of 6% has been selected for the column studies. Soil biochar mixture was filled in 7.62 cm assembled columns up to a fixed height of 76.2 cm based on hydraulic conductivity. A total of eight column experiments have been conducted for nutrient, heavy metal, and indicator bacteria analysis over a period of one year, which includes a drying as well as a deicing period. The saturated hydraulic conductivity was greatly improved, which is attributed to the high porosity of the biochar soil mixture. Initial data from the column testing shows that biochar may have the ability to significantly remove nutrients, indicator bacteria, and heavy metals. The overall study demonstrates that biochar could be efficiently applied with clay soil to improve the soil's hydraulic characteristics as well as remove the pollutants from the stormwater runoff.

Keywords: biochar, nutrients, indicator bacteria, storm-water treatment, sustainability

Procedia PDF Downloads 121
26205 Facies Analysis and Depositional Environment of Late Cretaceous (Cenomanian) Lidam Formation, South East Sirt Basin, Libya

Authors: Miloud M. Abugares

Abstract:

This study concentrates on the facies analysis, cyclicity and depositional environment of the Upper Cretaceous (Cenomanian) carbonate ramp deposits of the Lidam Formation. Core description, petrographic analysis data from five wells in Hamid and 3V areas in the SE Sirt Basin, Libya were studied in detail. The Lidam Formation is one of the main oil producing carbonate reservoirs in Southeast Sirt Basin and this study represents one of the key detailed studies of this Formation. In this study, ten main facies have been identified. These facies are; Chicken-Wire Anhydrite Facies, Fine Replacive Dolomite Facies, Bioclastic Sandstone Facies, Laminated Shale Facies, Stromatolitic Laminated Mudstone Facies, Ostracod Bioturbated Wackestone Facies, Bioturbated Mollusc Packstone Facies, Foraminifera Bioclastic Packstone/Grainstone Facies Peloidal Ooidal Packstone/Grainstone Facies and Squamariacean/Coralline Algae Bindstone Facies. These deposits are inferred to have formed in supratidal sabkha, intertidal, semi-open restricted shallow lagoon and higher energy shallow shoal environments. The overall depositional setting is interpreted as have been deposited in inner carbonate ramp deposits. The best reservoir quality is encountered in Peloidal- Ooidal Packstone/Grainstone facies, these facies represents storm - dominated shoal to back shoal deposits and constitute the inner part of carbonate ramp deposits. The succession shows a conspicuous hierarchical cyclicity. Porous shoal and backshoal deposits form during maximum transgression system and early regression hemi-cycle of the Lidam Fm. However; oil producing from shoal and backshoal deposits which only occur in the upper intervals 15 - 20 feet, which forms the large scale transgressive cycle of the Upper Lidam Formation.

Keywords: Lidam Fm. Sirt Basin, Wackestone Facies, petrographic, intertidal

Procedia PDF Downloads 516
26204 Students Awareness on Reproductive Health Education in Sri Lanka

Authors: Ayomi Indika Irugalbandara

Abstract:

Reproductive Health (RE) education among Sri Lankan Adolescents (comprising one fifth inner population) remains unsatisfactory despite 91.8% of them completing primary education & 56.2 % receiving post secondary level education. The main reason for this large population not receiving satisfactory RH education is traditional values and longstanding taboos surrounding sexuality. The current study was undertaken with there objectives. The relevance of achieving them being to formulate RH educational policies and programs that address a sizable and sensitive chunk of the population thereby achieving the goal of mental and social well being and not merely the absence of reproductive disease or infirmity. This research was a descriptive study, using random sampling technique, sample of the study consisting of 160 adolescent in the age group of 16-19, studying in government schools in Sri Lanka. Questionnaire was the main instrument of data collection, qualitative and quantitative techniques were used in data analysis. According to the data it was revealed that a majority has some idea about RH education. While this awareness had been provided by the school, the source of information had been Health and Physical Education. The entire sample mentioned that more RH information, than was provided, should be given and everybody wanted further knowledge regarding sexuality, and in depth information on it was essential. About 96 adolescents were of the opinion that their behavior was respectful to elders and 64 felt embarrassed while communicating with elders regarding RH issues. About their preferred sources of information, both genders named health providers as their first choice, followed by family members and friends. The internet was cited by a few boys; less than 5 percent cited religious figures. More than 50% of respondents had no knowledge about abortion and they were unaware of dangerous abortion. The practice of abortion was reported among zero percent. Although every member of the sample did not possess knowledge of the scientific process involved in abortion, all of them totally rejected the idea of destroying a foetus. Adolescence is a critical period in the life of girls and boys and sexuality education empowers young people to protect their health and well-being. Schools have the proper staff, and environment for learning. It might be stated that the greater segment of individuals entering adolescents and going through their adolescence are still in the school. This becomes the reason why it is mandatory that the school should be geared to handle this critical stage of the students. Adolescents or those approaching adolescence are best educated by the relevant parents, but this being quite a sensitive issue in the socio cultural context, it is somewhat doubtful whether all parents are prepared to handle this candidly, due either to lack of knowledge or absence of the appropriate state of mind. As such it is best that seminars/workshops be conducted to enlighten parents on handling HR issues related to their adolescent children. Apart from the awareness on HR provided through the school curriculum a greater impact can be brought about through street dramas, exhibitions etc. specific to HR. Finally the researcher would like to suggest that Sunday schools be harnessed for the provision of HR education linked with cultural values, ethics, and social well-being.

Keywords: reproductive health, awareness, perception, school curriculum

Procedia PDF Downloads 545
26203 Screening of Potential Cytotoxic Activities of Some Medicinal Plants of Saudi Arabia

Authors: Syed Farooq Adil, Merajuddinkhan, Mujeeb Khan, Hamad Z. Alkhathlan

Abstract:

Phytochemicals from plant extracts belong to an important source of natural products which have demonstrated excellent cytotoxic activities. However, plants of different origins exhibit diverse chemical compositions and bioactivities. Therefore, the discovery of plants based new anticancer agents from different parts of the world is always challenging. In this study, methanolic extracts of different parts of 11 plants from Saudi Arabia have been tested in vitro for their anticancer potential on human liver cancer cell line (HepG2). Particularly, for this study, plants from Asteraceae, Resedaceae, and Polygonaceae families were chosen on the basis of locally available ethnobotanical data and their medicinal properties. Among 12 tested extract samples, three samples obtained from Artemisia monosperma stem, Ochradenus baccatus aerial parts, and Pulicaria glutinosa stem have demonstrated interesting cytotoxic activities with a cell viability of 29.3%, 28.4% and 24.2%, respectively. Whereas, four plant extracts including Calendula arvensis aerial parts, Scorzonera musilii whole plant, A. monosperma leaves show moderate anticancer properties bearing a cell viability ranging from 11.9 to 16.7%. The remaining extracts have shown poor cytotoxic activities. Subsequently, GC-MS analysis of methanolic extracts of the four most active plants extracts such as C. comosum, O. baccatus, P. glutinosa and A. monosperma detected the presence of 41 phytomolecules. Among which 3-(4-hydroxyphenyl) propionitrile (1), 8,11-octadecadiynoic acid methyl ester (2), 6,7-dimethoxycoumarin (3), and 1-(2-hydroxyphenyl) ethenone (4) were found to be the lead compounds of C. comosum, O. baccatus P. glutinosa and A. monosperma, respectively.

Keywords: medicinal plants, asteraceae, polygonaceae, hepg2

Procedia PDF Downloads 127
26202 A Performance Model for Designing Network in Reverse Logistic

Authors: S. Dhib, S. A. Addouche, T. Loukil, A. Elmhamedi

Abstract:

In this paper, a reverse supply chain network is investigated for a decision making. This decision is surrounded by complex flows of returned products, due to the increasing quantity, the type of returned products and the variety of recovery option products (reuse, recycling, and refurbishment). The most important problem in the reverse logistic network (RLN) is to orient returned products to the suitable type of recovery option. However, returned products orientations from collect sources to the recovery disposition have not well considered in performance model. In this study, we propose a performance model for designing a network configuration on reverse logistics. Conceptual and analytical models are developed with taking into account operational, economic and environmental factors on designing network.

Keywords: reverse logistics, network design, performance model, open loop configuration

Procedia PDF Downloads 435