Search results for: numerical integration
2237 Entrepreneurship, Institutional Quality, and Macroeconomic Performance: Evidence from Nigeria
Authors: Cleopatra Oluseye Ibukun
Abstract:
Following the endogenous growth theory, entrepreneurship has been considered pivotal to economic growth and development, particularly in developing countries like Nigeria. Meanwhile, efforts to reduce unemployment has yielded minimal result with over 36% of youth unemployment and a dwindling economic growth despite the country’s natural and human resource endowment. This study, therefore, investigates the effects of entrepreneurship and institutional quality on economic growth and unemployment in Nigeria over the period 1996 to 2018. The data is obtained from the National Bureau of Statistics (NBS), World Bank’s World Development Indicators (WDI), and the World Bank’s World Governance Indicators (WGI). The study period is guided by the availability of data, and the study employs both descriptive and econometric techniques of analysis (specifically, the Auto-regressive Distributed Lag Approach). This approach is preferable given that the variables are stationary at the first difference, while the bounds test suggests the existence of co-integration among the variables. By implication, an increase in entrepreneurship significantly improves economic growth, and it reduces unemployment in both the short-run and the long-run. Besides, institutional quality proxied by the control of corruption, political stability, and government effectiveness significantly mediates the interaction between entrepreneurship and macroeconomic performance. This study concludes that improved institutional quality enhances the effect of entrepreneurship on economic growth and unemployment in Nigeria, and it recommends an improvement in Nigeria’s institutional quality because it can jeopardise or augment the effect of entrepreneurship on macroeconomic performance.Keywords: entrepreneurship, institutional quality, unemployment, gross domestic product, Nigeria
Procedia PDF Downloads 1372236 Conceptual Modeling of the Relationship between Project Management Practices and Knowledge Absorptive Capacity Using Interpretive Structural Modeling Method
Authors: Seyed Abdolreza Mosavi, Alireza Babakhan, Elham Sadat Hoseinifard
Abstract:
Knowledge-based firms need to design mechanisms for continuous absorptive and creation of knowledge in order to ensure their survival in the competitive arena and to follow the path of development. Considering the project-oriented nature of product development activities in knowledge-based firms on the one hand and the importance of analyzing the factors affecting knowledge absorptive capacity in these firms on the other, the purpose of this study is to identify and classify the factors affecting project management practices on absorptive knowledge capacity. For this purpose, we have studied and reviewed the theoretical literature in the field of project management and absorptive knowledge capacity so as to clarify its dimensions and indexes. Then, using the ISM method, the relationship between them has been studied. To collect data, 21 questionnaires were distributed in project-oriented knowledge-based companies. The results of the ISM method analysis provide a model for the relationship between project management activities and knowledge absorptive capacity, which includes knowledge acquisition capacity, scope management, time management, cost management, quality management, human resource management, communications management, procurement management, risk management, stakeholders management and integration management. Having conducted the MICMAC analysis, we divided the variables into three groups of independent, relational and dependent variables and came up with no variables to be included in the group of autonomous variables.Keywords: knowledge absorptive capacity, project management practices, knowledge-based firms, interpretive structural modeling
Procedia PDF Downloads 1972235 Indigenous Knowledge Management: Towards Identification of Challenges and Opportunities in Developing Countries
Authors: Desmond Chinedu Oparaku, Emmanuel Uwazie Anyanwu, Oyemike Victor Benson, Ogbonna Isaac-Nnadimele
Abstract:
The purpose of this paper is to provide a theoretical discourse that highlights the challenges associated with management of indigenous knowledge with reference to developing countries. Literature review and brainstorming were used to collect relevant data and draw inferences. The findings indicate that non-existence of indigenous knowledge management policy (IKMP), low level of partnership drive among library and information services providers, non-uniformity of format and content of indigenous knowledge, inadequate funding, and lack of access to ICTs, lack of indigenous people with indigenous expertise and hoarding of knowledge as challenges to indigenous knowledge management. The study is based on literature review and information gathered through brain storming with professional colleagues the geographic scope as developing countries. The study has birth several implication based on the findings made. Professionally, it has necessitated the need for formulating a viable indigenous knowledge management policy (IKMP), creating of collaborative network through partnership, and integration of ICTs to indigenous knowledge management practices by libraries in developing countries etc. The originality of this paper is revealed in its capability as serving as an eye opener to librarians on the need for preserving and managing indigenous knowledge in developing countries. It further unlocks the possibilities of exploring empirical based researches to substantiate the theoretical issues raised in this paper. The findings may be used by library managers to improve indigenous knowledge management (IKM).Keywords: developing countries, ICTs, indigenous knowledge, knowledge management
Procedia PDF Downloads 3422234 Lessons Learned in Developing a Clinical Information System and Electronic Health Record (EHR) System That Meet the End User Needs and State of Qatar's Emerging Regulations
Authors: Darshani Premaratne, Afshin Kandampath Puthiyadath
Abstract:
The Government of Qatar is taking active steps in improving quality of health care industry in the state of Qatar. In this initiative development and market introduction of Clinical Information System and Electronic Health Record (EHR) system are proved to be a highly challenging process. Along with an organization specialized on EHR system development and with the blessing of Health Ministry of Qatar the process of introduction of EHR system in Qatar healthcare industry was undertaken. Initially a market survey was carried out to understand the requirements. Secondly, the available government regulations, needs and possible upcoming regulations were carefully studied before deployment of resources for software development. Sufficient flexibility was allowed to cater for both the changes in the market and the regulations. As the first initiative a system that enables integration of referral network where referral clinic and laboratory system for all single doctor (and small scale) clinics was developed. Setting of isolated single doctor clinics all over the state to bring in to an integrated referral network along with a referral hospital need a coherent steering force and a solid top down framework. This paper discusses about the lessons learned in developing, in obtaining approval of the health ministry and in introduction to the industry of the single doctor referral network along with an EHR system. It was concluded that development of this nature required continues balance between the market requirements and upcoming regulations. Further accelerating the development based on the emerging needs, implementation based on the end user needs while tallying with the regulations, diffusion, and uptake of demand-driven and evidence-based products, tools, strategies, and proper utilization of findings were equally found paramount in successful development of end product. Development of full scale Clinical Information System and EHR system are underway based on the lessons learned. The Government of Qatar is taking active steps in improving quality of health care industry in the state of Qatar. In this initiative development and market introduction of Clinical Information System and Electronic Health Record (EHR) system are proved to be a highly challenging process. Along with an organization specialized on EHR system development and with the blessing of Health Ministry of Qatar the process of introduction of EHR system in Qatar healthcare industry was undertaken. Initially a market survey was carried out to understand the requirements. Secondly the available government regulations, needs and possible upcoming regulations were carefully studied before deployment of resources for software development. Sufficient flexibility was allowed to cater for both the changes in the market and the regulations. As the first initiative a system that enables integration of referral network where referral clinic and laboratory system for all single doctor (and small scale) clinics was developed. Setting of isolated single doctor clinics all over the state to bring in to an integrated referral network along with a referral hospital need a coherent steering force and a solid top down framework. This paper discusses about the lessons learned in developing, in obtaining approval of the health ministry and in introduction to the industry of the single doctor referral network along with an EHR system. It was concluded that development of this nature required continues balance between the market requirements and upcoming regulations. Further accelerating the development based on the emerging needs, implementation based on the end user needs while tallying with the regulations, diffusion, and uptake of demand-driven and evidence-based products, tools, strategies, and proper utilization of findings were equally found paramount in successful development of end product. Development of full scale Clinical Information System and EHR system are underway based on the lessons learned.Keywords: clinical information system, electronic health record, state regulations, integrated referral network of clinics
Procedia PDF Downloads 3622233 Design and Analysis of Metamaterial Based Vertical Cavity Surface Emitting Laser
Authors: Ishraq M. Anjum
Abstract:
Distributed Bragg reflectors are used in vertical-cavity surface-emitting lasers (VCSELs) in order to achieve very high reflectivity. Use of metamaterial in place of distributed Bragg reflector can reduce the device size significantly. A silicon-based metamaterial near perfect reflector is designed to be used in place of distributed Bragg reflectors in VCSELs. Mie resonance in dielectric microparticles is exploited in order to design the metamaterial. A reflectivity of 98.31% is achieved using finite-difference time-domain method. An 808nm double intra-cavity contacted VCSEL structure with 1.5 λ cavity is proposed using this metamaterial near perfect reflector. The active region is designed to be composed of seven GaAs/AlGaAs quantum wells. Upon numerical investigation of the designed VCSEL structure, the threshold current is found to be 2.96 mA at an aperture of 40 square micrometers and the maximum output power is found to be 71 mW at a current of 141 mA. Miniaturization of conventional VCSELs is possible using this design.Keywords: GaAs, LASER, metamaterial, VCSEL, vertical cavity surface emitting laser
Procedia PDF Downloads 1822232 Optimization of Tolerance Grades of a Bearing and Shaft Assembly in a Washing Machine with Regard to Fatigue Life
Authors: M. Cangi, T. Dolar, C. Ersoy, Y. E. Aydogdu, A. I. Aydeniz, A. Mugan
Abstract:
The drum is one of the critical parts in a washing machine in which the clothes are washed and spin by the rotational movement. It is activated by the drum shaft which is attached to an electric motor and subjected to dynamic loading. Being one of the critical components, failures of the drum require costly repairs of dynamic components. In this study, tolerance bands between the drum shaft and its two bearings were examined to develop a relationship between the fatigue life of the shaft and the interaction tolerances. Optimization of tolerance bands was completed in consideration of the fatigue life of the shaft as the cost function. The following methodology is followed: multibody dynamic model of a washing machine was constructed and used to calculate dynamic loading on the components. Then, these forces were used in finite element analyses to calculate the stress field in critical components which was used for fatigue life predictions. The factors affecting the fatigue life were examined to find optimum tolerance grade for a given test condition. Numerical results were verified by experimental observations.Keywords: fatigue life, finite element analysis, tolerance analysis, optimization
Procedia PDF Downloads 1572231 Ultra Reliable Communication: Availability Analysis in 5G Cellular Networks
Authors: Yosra Benchaabene, Noureddine Boujnah, Faouzi Zarai
Abstract:
To meet the growing demand of users, the fifth generation (5G) will continue to provide services to higher data rates with higher carrier frequencies and wider bandwidths. As part of the 5G communication paradigm, Ultra Reliable Communication (URC) is envisaged as an important technology pillar for providing anywhere and anytime services to end users. Ultra Reliable Communication (URC) is considered an important technology that why it has become an active research topic. In this work, we analyze the availability of a service in the space domain. We characterize spatially available areas consisting of all locations that meet a performance requirement with confidence, and we define cell availability and system availability, individual user availability, and user-oriented system availability. Poisson point process (PPP) and Voronoi tessellation are adopted to model the spatial characteristics of a cell deployment in heterogeneous networks. Numerical results are presented, also highlighting the effect of different system parameters on the achievable link availability.Keywords: URC, dependability and availability, space domain analysis, Poisson point process, Voronoi Tessellation
Procedia PDF Downloads 1222230 A Study on Manufacturing of Head-Part of Pipes Using a Rotating Manufacturing Process
Authors: J. H. Park, S. K. Lee, Y. W. Kim, D. C. Ko
Abstract:
A large variety of pipe flange is required in marine and construction industry.Pipe flanges are usually welded or screwed to the pipe end and are connected with bolts.This approach is very simple and widely used for a long time, however, it results in high development cost and low productivity, and the productions made by this approach usually have safety problem at the welding area.In this research, a new approach of forming pipe flange based on cold forging and floating die concept is presented.This innovative approach increases the effectiveness of the material usage and save the time cost compared with conventional welding method. To ensure the dimensional accuracy of the final product, the finite element analysis (FEA) was carried out to simulate the process of cold forging, and the orthogonal experiment methods were used to investigate the influence of four manufacturing factors (pin die angle, pipe flange angle, rpm, pin die distance from clamp jig) and predicted the best combination of them. The manufacturing factors were obtained by numerical and experimental studies and it shows that the approach is very useful and effective for the forming of pipe flange, and can be widely used later.Keywords: cold forging, FEA (finite element analysis), forge-3D, rotating forming, tubes
Procedia PDF Downloads 3772229 Enhancing Transfer Path Analysis with In-Situ Component Transfer Path Analysis for Interface Forces Identification
Authors: Raef Cherif, Houssine Bakkali, Wafaa El Khatiri, Yacine Yaddaden
Abstract:
The analysis of how vibrations are transmitted between components is required in many engineering applications. Transfer path analysis (TPA) has been a valuable engineering tool for solving Noise, Vibration, and Harshness (NVH problems using sub-structuring applications. The most challenging part of a TPA analysis is estimating the equivalent forces at the contact points between the active and the passive side. Component TPA in situ Method calculates these forces by inverting the frequency response functions (FRFs) measured at the passive subsystem, relating the motion at indicator points to forces at the interface. However, matrix inversion could pose problems due to the ill-conditioning of the matrices leading to inaccurate results. This paper establishes a TPA model for an academic system consisting of two plates linked by four springs. A numerical study has been performed to improve the interface forces identification. Several parameters are studied and discussed, such as the singular value rejection and the number and position of indicator points chosen and used in the inversion matrix.Keywords: transfer path analysis, matrix inverse method, indicator points, SVD decomposition
Procedia PDF Downloads 852228 High Gain Broadband Plasmonic Slot Nano-Antenna
Authors: H. S. Haroyan, V. R. Tadevosyan
Abstract:
High gain broadband plasmonic slot nano-antenna has been considered. The theory of plasmonic slot nano-antenna (PSNA) has been developed. The analytical model takes into account also the electrical field inside the metal due to imperfectness of metal in optical range, as well as numerical investigation based on FEM method has been realized. It should be mentioned that Yagi-Uda configuration improves directivity in the plane of structure. In contrast, in this paper the possibility of directivity improvement of proposed PSNA in perpendicular plane of structure by using reflection metallic surface placed under the slot in fixed distance has been demonstrated. It is well known that a directivity improvement brings to the antenna gain increasing. This method of diagram improving is also well known from RF antenna design theory. Moreover the improvement of directivity in the perpendicular plane gives more flexibility in such application as improving the light and atom, ion, molecule interactions by using such type of plasmonic slot antenna. By the analogy of dipole type optical antennas the widening of working wavelengths has been realized by using bowtie geometry of slots, which made the antenna broadband.Keywords: broadband antenna, high gain, slot nano-antenna, plasmonics.
Procedia PDF Downloads 3702227 Advanced Data Visualization Techniques for Effective Decision-making in Oil and Gas Exploration and Production
Authors: Deepak Singh, Rail Kuliev
Abstract:
This research article explores the significance of advanced data visualization techniques in enhancing decision-making processes within the oil and gas exploration and production domain. With the oil and gas industry facing numerous challenges, effective interpretation and analysis of vast and diverse datasets are crucial for optimizing exploration strategies, production operations, and risk assessment. The article highlights the importance of data visualization in managing big data, aiding the decision-making process, and facilitating communication with stakeholders. Various advanced data visualization techniques, including 3D visualization, augmented reality (AR), virtual reality (VR), interactive dashboards, and geospatial visualization, are discussed in detail, showcasing their applications and benefits in the oil and gas sector. The article presents case studies demonstrating the successful use of these techniques in optimizing well placement, real-time operations monitoring, and virtual reality training. Additionally, the article addresses the challenges of data integration and scalability, emphasizing the need for future developments in AI-driven visualization. In conclusion, this research emphasizes the immense potential of advanced data visualization in revolutionizing decision-making processes, fostering data-driven strategies, and promoting sustainable growth and improved operational efficiency within the oil and gas exploration and production industry.Keywords: augmented reality (AR), virtual reality (VR), interactive dashboards, real-time operations monitoring
Procedia PDF Downloads 862226 Adomian’s Decomposition Method to Generalized Magneto-Thermoelasticity
Authors: Hamdy M. Youssef, Eman A. Al-Lehaibi
Abstract:
Due to many applications and problems in the fields of plasma physics, geophysics, and other many topics, the interaction between the strain field and the magnetic field has to be considered. Adomian introduced the decomposition method for solving linear and nonlinear functional equations. This method leads to accurate, computable, approximately convergent solutions of linear and nonlinear partial and ordinary differential equations even the equations with variable coefficients. This paper is dealing with a mathematical model of generalized thermoelasticity of a half-space conducting medium. A magnetic field with constant intensity acts normal to the bounding plane has been assumed. Adomian’s decomposition method has been used to solve the model when the bounding plane is taken to be traction free and thermally loaded by harmonic heating. The numerical results for the temperature increment, the stress, the strain, the displacement, the induced magnetic, and the electric fields have been represented in figures. The magnetic field, the relaxation time, and the angular thermal load have significant effects on all the studied fields.Keywords: Adomian’s decomposition method, magneto-thermoelasticity, finite conductivity, iteration method, thermal load
Procedia PDF Downloads 1502225 Numerical Investigation of Embankment Settlement Improved by Method of Preloading by Vertical Drains
Authors: Seyed Abolhasan Naeini, Saeideh Mohammadi
Abstract:
Time dependent settlement due to loading on soft saturated soils produces many problems such as high consolidation settlements and low consolidation rates. Also, long term consolidation settlement of soft soil underlying the embankment leads to unpredicted settlements and cracks on soil surface. Preloading method is an effective improvement method to solve this problem. Using vertical drains in preloading method is an effective method for improving soft soils. Applying deep soil mixing method on soft soils is another effective method for improving soft soils. There are little studies on using two methods of preloading and deep soil mixing simultaneously. In this paper, the concurrent effect of preloading with deep soil mixing by vertical drains is investigated through a finite element code, Plaxis2D. The influence of parameters such as deep soil mixing columns spacing, existence of vertical drains and distance between them, on settlement and stability factor of safety of embankment embedded on soft soil is investigated in this research.Keywords: preloading, soft soil, vertical drains, deep soil mixing, consolidation settlement
Procedia PDF Downloads 2162224 Prediction Fluid Properties of Iranian Oil Field with Using of Radial Based Neural Network
Authors: Abdolreza Memari
Abstract:
In this article in order to estimate the viscosity of crude oil,a numerical method has been used. We use this method to measure the crude oil's viscosity for 3 states: Saturated oil's viscosity, viscosity above the bubble point and viscosity under the saturation pressure. Then the crude oil's viscosity is estimated by using KHAN model and roller ball method. After that using these data that include efficient conditions in measuring viscosity, the estimated viscosity by the presented method, a radial based neural method, is taught. This network is a kind of two layered artificial neural network that its stimulation function of hidden layer is Gaussian function and teaching algorithms are used to teach them. After teaching radial based neural network, results of experimental method and artificial intelligence are compared all together. Teaching this network, we are able to estimate crude oil's viscosity without using KHAN model and experimental conditions and under any other condition with acceptable accuracy. Results show that radial neural network has high capability of estimating crude oil saving in time and cost is another advantage of this investigation.Keywords: viscosity, Iranian crude oil, radial based, neural network, roller ball method, KHAN model
Procedia PDF Downloads 5012223 Extent of Applying Evidence Based Practices in Inclusion Programs for Pupils with Intellectual Disability
Authors: Faris Algahtani
Abstract:
The current study aimed to reveal the extent to which evidence-based practices are applied in programs to integrate students with intellectual disabilities from the point of view of their teachers in Yanbu Governorate, and to reveal statistically significant differences in their application of evidence-based practices according to the following variables: gender, educational qualification, experience and training courses. The researcher used the descriptive approach, and accordingly; she designed a questionnaire consisting of 22 phrases applied it to a random sample of (97) teachers of intellectual disability in the integration programs of the Ministry of Education in the government sector in Yanbu Governorate, with (49) male teachers and (48) female teachers. The study showed that teachers of students with intellectual disabilities apply evidence-based practices in programs to integrate students with intellectual disabilities to a large extent. Among the most prominent of these practices came reinforcement in the first place, followed by using visual stimuli/aids, and in the third-place came starting with less complex or challenging skills then moving to more difficult skills. The results also showed no statistically significant differences over the extent of the application attributed to the variables of experience, qualification or training. On the other hand, there were statistically significant differences over the extent of the application attributed to gender in favor of females.Keywords: evidence-based practices, intellectual disability, inclusion programs, teachers of students with intellectual disabilities
Procedia PDF Downloads 892222 Design and Optimization of Flow Field for Cavitation Reduction of Valve Sleeves
Authors: Kamal Upadhyay, Zhou Hua, Yu Rui
Abstract:
This paper aims to improve the streamline linked with the flow field and cavitation on the valve sleeve. We observed that local pressure fluctuation produces a low-pressure zone, central to the formation of vapor volume fraction within the valve chamber led to air-bubbles (or cavities). Thus, it allows simultaneously to a severe negative impact on the inner surface and lifespan of the valve sleeves. Cavitation reduction is a vitally important issue to pressure control valves. The optimization of the flow field is proposed in this paper to reduce the cavitation of valve sleeves. In this method, the inner wall of the valve sleeve is changed from a cylindrical surface to the conical surface, leading to the decline of the fluid flow velocity and the rise of the outlet pressure. Besides, the streamline is distributed inside the sleeve uniformly. Thus, the bubble generation is lessened. The fluid models are built and analysis of flow field distribution, pressure, vapor volume and velocity was carried out using computational fluid dynamics (CFD) and numerical technique. The results indicate that this structure can suppress the cavitation of valve sleeves effectively.Keywords: streamline, cavitation, optimization, computational fluid dynamics
Procedia PDF Downloads 1452221 Theoretical Analysis of Self-Starting Busemann Intake Family
Authors: N. Moradian, E. Timofeev, R. Tahir
Abstract:
In this work, startability of the Busemann intake family with weak/strong conical shock, as most efficient intakes, via overboard mass spillage method is theoretically analyzed. Masterix and Candifix codes are used to numerically simulate few models of this type of intake and verify the theoretical results. Portions of the intake corresponding to various flow capture angles are considered to have mass spillage in the starting process of this intake. This approach allows for overboard mass spillage via a V-shaped slot with the tip of V coinciding with the focal point of the Busemann flow. The theoretical results, achieved using two different theories, of self-started Busemann takes with weak/strong conical shock show that significant improve in intake startability using overboard spillage technique. The starting phenomena of Busemann intakes with weak conical shock and seven different capture angles are numerically simulated at freestream Mach number of 3 to find the minimum area ratios of self-started intakes. The numerical results confirm the theoretical ones achieved by authors.Keywords: Busemann intake, conical shock, overboard spillage, startability
Procedia PDF Downloads 2052220 Three Dimensional Flexible Dynamics of Continuous Cislunar Payloads Transfer System
Authors: Y. Yang, Dian Ming Xing, Qiu Hua Du
Abstract:
Based on the Motorized Momentum Exchange Tether (MMET), with the principle of momentum exchange, the three dimension flexible dynamics of continuous cislunar payloads transferring system (CCPTS) is built by Lagrange method and its numerical solution is solved by Mathematica software. In the derivation precession of potential energy, this paper uses the Tylor expansion method to simplify the Lagrange equation. Furthermore, the tension coming from the centripetal load is considered in the elastic potential energy. The comparison simulation results between the 3D rigid model and 3D flexible model of CCPTS shows that the tether flexibility has important influence on CCPTS’s orbital parameters (such as radius of CCPTS’s COM and the true anomaly) and the tether’s rotational movement, the relative deviation of radius and the true anomaly between the two dynamic models is about 0.00678% and 0.00259%, the relative deviation of the angle of tether-span and local gravity gradient is about 3.55%. Additionally, the external torque has an apparent influence on the tether’s axial vibration.Keywords: cislunar transfer, dynamics, momentum exchange, tether
Procedia PDF Downloads 2692219 Efficient Production of Cell-Adhesive Motif From Human Fibronectin Domains to Design a Bio-Functionalized Scaffold for Tissue Engineering
Authors: Amina Ben Abla, Sylvie Changotade, Geraldine Rohman, Guilhem Boeuf, Cyrine Dridi, Ahmed Elmarjou, Florence Dufour, Didier Lutomski, Abdellatif Elm’semi
Abstract:
Understanding cell adhesion and interaction with the extracellular matrix is essential for biomedical and biotechnological applications, including the development of biomaterials. In recent years, numerous biomaterials have emerged and were used in the field of tissue engineering. Nevertheless, the lack of interaction of biomaterials with cells still limits their bio-integration. Thus, the design of bioactive biomaterials to improve cell attachment and proliferation is of growing interest. In this study, bio-functionalized material was developed combining a synthetic polymer scaffold surface with selected domains of type III human fibronectin (FNIII-DOM) to promote cell adhesion and proliferation. Bioadhesive ligand includes cell-binding domains of human fibronectin, a major ECM protein that interacts with a variety of integrins cell-surface receptors, and ECM proteins through specific binding domains were engineered. FNIII-DOM was produced in bacterial system E. coli in 5L fermentor with a high yield level reaching 20mg/L. Bioactivity of the produced fragment was validated by studying cellular adhesion of human cells. The adsorption and immobilization of FNIII-DOM onto the polymer scaffold were evaluated in order to develop an innovative biomaterial.Keywords: biomaterials, cellular adhesion, fibronectin, tissue engineering
Procedia PDF Downloads 1522218 Microfluidic Construction of Responsive Photonic Microcapsules for Microsensors
Authors: Lingling Shui, Shuting Xie
Abstract:
As alternatives to electronic devices, optically active structures from responsive nanomaterials offer great opportunity buildup smart functional sensors. Hereby, we report on droplet microfluidics enabled construction and application of photonic microcapsules (PMCs) for colorimetric temperature microsensors, enabling miniaturization for injectable local micro-area sensing and integration for large-area sensing. Monodispersed PMCs are produced by in-situ photopolymerization of hydrogel shells of cholesteric liquid crystal (CLC)-in-water-in-oil double emulsion droplets prepared using microfluidic devices, with controllable physical structures and chemical compositions. Constructed PMCs exhibit thermal responsive structural color according to the selective Bragg reflection of CLC’s periodical helical structures within the microdroplet’s spherical confinement. Constructed PMCs with tunable size and composition have been successfully applied for monitoring the living cell extracellular temperature via co-incubation with cell suspension, and for detecting human body temperature via a flexible device from assembled PMCs. These PMCs could be flexibly applied in either micro-environment or large-area surface, enabling wide applications for precision temperature monitoring biological activities (e.g. cells or organs), optoelectronic devices working conditions (e.g. temperature indicators under extreme conditions), and etc.Keywords: droplet, microfluidics, assembly, soft materials, microsensor
Procedia PDF Downloads 812217 Programmable Microfluidic Device Based on Stimuli Responsive Hydrogels
Authors: Martin Elstner
Abstract:
Processing of information by means of handling chemicals is a ubiquitous phenomenon in nature. Technical implementations of chemical information processing lack of low integration densities compared to electronic devices. Stimuli responsive hydrogels are promising candidates for materials with information processing capabilities. These hydrogels are sensitive toward chemical stimuli like metal ions or amino acids. The binding of an analyte molecule induces conformational changes inside the polymer network and subsequently the water content and volume of the hydrogel varies. This volume change can control material flows, and concurrently information flows, in microfluidic devices. The combination of this technology with powerful chemical logic gates yields in a platform for highly integrated chemical circuits. The manufacturing process of such devices is very challenging and rapid prototyping is a key technology used in the study. 3D printing allows generating three-dimensional defined structures of high complexity in a single and fast process step. This thermoplastic master is molded into PDMS and the master is removed by dissolution in an organic solvent. A variety of hydrogel materials is prepared by dispenser printing of pre-polymer solutions. By a variation of functional groups or cross-linking units, the functionality of the hole circuit can be programmed. Finally, applications in the field of bio-molecular analytics were demonstrated with an autonomously operating microfluidic chip.Keywords: bioanalytics, hydrogels, information processing, microvalve
Procedia PDF Downloads 3092216 Study of Fire Propagation and Soot Flow in a Pantry Car of Railway Locomotive
Authors: Juhi Kaushik, Abhishek Agarwal, Manoj Sarda, Vatsal Sanjay, Arup Kumar Das
Abstract:
Fire accidents in trains bring huge disaster to human life and property. Evacuation becomes a major challenge in such incidents owing to confined spaces, large passenger density and trains moving at high speeds. The pantry car in Indian Railways trains carry inflammable materials like cooking fuel and LPG and electrical fittings. The pantry car is therefore highly susceptible to fire accidents. Numerical simulations have been done in a pantry car of Indian locomotive train using computational fluid dynamics based software. Different scenarios of a fire outbreak have been explored by varying Heat Release Rate per Unit Area (HRRPUA) of the fire source, introduction of exhaust in the cooking area, and taking a case of an air conditioned pantry car. Temporal statures of flame and soot have been obtained for each scenario and differences have been studied and reported. Inputs from this study can be used to assess casualties in fire accidents in locomotive trains and development of smoke control/detection systems in Indian trains.Keywords: fire propagation, flame contour, pantry fire, soot flow
Procedia PDF Downloads 3392215 Supply Chain and Performance Measurement: An Alignment With Sustainable Development Goals
Authors: Miriam Corrado, Roberta Ciccola, Maria Serena Chiucchi
Abstract:
SDGs represent the last edge in the sustainability corporate practices, including the supply chain management. Supply chains are becoming more global and complex, can create more inclusive markets and make contribution to the advance of the sustainable development. In corporate practices, the presence of sustainability criteria in supply chain management could offer an opportunity to increase competitiveness and to meet stakeholders’ expectations in terms of sustainability and corporate accountability. The research aims to understand how focal companies can integrate SDGs in their supply chain and how they can measure and assess their impacts on SDGs. The study adopts a multiple case study methodology based on four case studies referred to companies committed in measuring SDGs’ performance in their supply chains. Preliminary findings demonstrate the willingness and the need of companies to commit under a supply-chain perspective for the achievement of SDGs. Companies recognize their role in impacting the SDGs through their procurement choices by defining and implementing an SDGs scoring system. The contribution of the study is twofold: first, given the lack of research and studies addressing the integration of SDGs in the supply chain and in the performance measurement systems, the research provides a contribution to the current academic literature in relation to these emerging gaps; second, the research provides a practical guidance to implement a sustainable supply chain and advance towards the achievement of SDGs.Keywords: sustainable supply chains, sustainable development goals, performance measurement, performance management
Procedia PDF Downloads 1952214 Performance of Constant Load Feed Machining for Robotic Drilling
Authors: Youji Miyake
Abstract:
In aircraft assembly, a large number of preparatory holes are required for screw and rivet joints. Currently, many holes are drilled manually because it is difficult to machine the holes using conventional computerized numerical control(CNC) machines. The application of industrial robots to drill the hole has been considered as an alternative to the CNC machines. However, the rigidity of robot arms is so low that vibration is likely to occur during drilling. In this study, it is proposed constant-load feed machining as a method to perform high-precision drilling while minimizing the thrust force, which is considered to be the cause of vibration. In this method, the drill feed is realized by a constant load applied onto the tool so that the thrust force is theoretically kept below the applied load. The performance of the proposed method was experimentally examined through the deep hole drilling of plastic and simultaneous drilling of metal/plastic stack plates. It was confirmed that the deep hole drilling and simultaneous drilling could be performed without generating vibration by controlling the tool feed rate in the appropriate range.Keywords: constant load feed machining, robotic drilling, deep hole, simultaneous drilling
Procedia PDF Downloads 1942213 Gas-Liquid Flow Void Fraction Identification Using Slippage Number Froud Mixture Number Relation in Bubbly Flow
Authors: Jaber Masoud Alyami, Abdelsalam H. Alsrkhi
Abstract:
Characterizing and modeling multi-phase flow is a complicated scientific and technical phenomenon represented by a variety of interrelated elements. Yet, the introduction of dimensionless numbers used to grasp gas-liquid flow is a significant step in controlling and improving the multi-phase flow area. SL (Slippage number), for instance is a strong dimensionless number defined as a the ratio of the difference in gravitational forces between slip and no-slip conditions to the inertial force of the gas. The fact that plotting SL versus Frm provides a single acceptable curve for all of the data provided proves that SL may be used to realize the behavior of gas-liquid flow. This paper creates a numerical link between SL and Froud mixing number using vertical gas-liquid flow and then utilizes that relationship to validate its reliability in practice. An improved correlation in drift flux model generated from the experimental data and its rationality has been verified. The method in this paper is to approach for predicting the void fraction in bubbly flow through SL/Frm relation and the limitations of this method, as well as areas for development, are stated.Keywords: multiphase flow, gas-liquid flow, slippage, void farction
Procedia PDF Downloads 852212 Transverse Vibration of Elastic Beam Resting on Variable Elastic Foundation Subjected to moving Load
Authors: Idowu Ibikunle Albert, Atilade Adesanya Oluwafemi, Okedeyi Abiodun Sikiru, Mustapha Rilwan Adewale
Abstract:
These present-day all areas of transport have experienced large advances characterized by increases in the speeds and weight of vehicles. As a result, this paper considered the Transverse Vibration of an Elastic Beam Resting on a Variable Elastic Foundation Subjected to a moving Load. The beam is presumed to be uniformly distributed and has simple support at both ends. The moving distributed moving mass is assumed to move with constant velocity. The governing equations, which are fourth-order partial differential equations, were reduced to second-order partial differential equations using an analytical method in terms of series solution and solved by a numerical method using mathematical software (Maple). Results show that an increase in the values of beam parameters, moving Mass M, and k-stiffness K, significantly reduces the deflection profile of the vibrating beam. In the results, it was equally found that moving mass is greater than moving force.Keywords: elastic beam, moving load, response of structure, variable elastic foundation
Procedia PDF Downloads 1212211 Mixed Convective Heat Transfer of Flow around a Radial Heat Sink
Authors: Benkherbache Souad
Abstract:
This work presents the numerical results of the mixed convective heat transfer of a three-dimensional flow around a radial heat sink composed of horizontal circular base fitted with rectangular fins. The governing equations of mass, momentum, and energy equation are solved by the finite volume method using the commercially available CFD software Fluent 6.3.26. The circular base of the heat sink is subjected to uniform heat generation; the flow enters through the sides of the heat sink around the fins then the heat is transmitted from the base to the fins afterwards the fluid. In this study two fluids are utilized, in the first case, the air for the following Reynolds numbers Re=600,900,1200 and a Grashof number Gr=3.7x10⁶, in the second case a water based nano fluid for which two types of nano particles (Cu and Al₂O₃) are carried out for Re=25 and a Richardson number Ri=2.7(Ri=Gr/Re²). The effect of the number of the fins of the heat sink as well as the type and the volume fraction of nano particles of the nano fluid were investigated. Results have been presented for N=15 and N=20 fins. The effect of the nano particles concentrations and the number of fins on the temperature in the heat sink and the Nusselt number has been studied.Keywords: heat sink, mixed convection, nano fluid, volumetric heat generation
Procedia PDF Downloads 1832210 Modeling of Polyethylene Particle Size Distribution in Fluidized Bed Reactors
Authors: R. Marandi, H. Shahrir, T. Nejad Ghaffar Borhani, M. Kamaruddin
Abstract:
In the present study, a steady state population balance model was developed to predict the polymer particle size distribution (PSD) in ethylene gas phase fluidized bed olefin polymerization reactors. The multilayer polymeric flow model (MPFM) was used to calculate the growth rate of a single polymer particle under intra-heat and mass transfer resistance. The industrial plant data were used to calculate the growth rate of polymer particle and the polymer PSD. Numerical simulations carried out to describe the influence of effective monomer diffusion coefficient, polymerization rate and initial catalyst size on the catalyst particle growth and final polymer PSD. The results present that the intra-heat and mass limitation is important for the ethylene polymerization, the growth rate of particle and the polymer PSD in the fluidized bed reactor. The effect of the agglomeration on the PSD is also considered. The result presents that the polymer particle size distribution becomes broader as the agglomeration exits.Keywords: population balance, olefin polymerization, fluidized bed reactor, particle size distribution, agglomeration
Procedia PDF Downloads 3332209 Elastoplastic and Ductile Damage Model Calibration of Steels for Bolt-Sphere Joints Used in China’s Space Structure Construction
Authors: Huijuan Liu, Fukun Li, Hao Yuan
Abstract:
The bolted spherical node is a common type of joint in space steel structures. The bolt-sphere joint portion almost always controls the bearing capacity of the bolted spherical node. The investigation of the bearing performance and progressive failure in service often requires high-fidelity numerical models. This paper focuses on the constitutive models of bolt steel and sphere steel used in China’s space structure construction. The elastoplastic model is determined by a standard tensile test and calibrated Voce saturated hardening rule. The ductile damage is found dominant based on the fractography analysis. Then Rice-Tracey ductile fracture rule is selected and the model parameters are calibrated based on tensile tests of notched specimens. These calibrated material models can benefit research or engineering work in similar fields.Keywords: bolt-sphere joint, steel, constitutive model, ductile damage, model calibration
Procedia PDF Downloads 1362208 Comparison on Electrode and Ground Arrangements Effect on Heat Transfer under Electric Force in a Channel and a Cavity Flow
Authors: Suwimon Saneewong Na Ayuttaya, Chainarong Chaktranond, Phadungsak Rattanadecho
Abstract:
This study numerically investigates the effects of Electrohydrodynamic on flow patterns and heat transfer enhancement within a cavity which is on the lower wall of channel. In this simulation, effects of using ground wire and ground plate on the flow patterns are compared. Moreover, the positions of electrode wire respecting with ground are tested in the range of angles θ = 0 - 180°. High electrical voltage exposes to air is 20 kV. Bulk mean velocity and temperature of inlet air are controlled at 0.1 m/s and 60°C, respectively. The result shows when electric field is applied, swirling flow is appeared in the channel. In addition, swirling flow patterns in the main flow of using ground plate are widely spreader than that of using ground wire. Moreover, direction of swirling flow also affects the flow pattern and heat transfer in a cavity. These cause the using ground wire to give the maximum temperature and heat transfer higher than using ground plate. Furthermore, when the angle is at θ = 60°, high shear flow effect is obtained. This results show high strength of swirling flow and effective heat transfer enhancement.Keywords: swirling flow, heat transfer, electrohydrodynamic, numerical analysis
Procedia PDF Downloads 292