Search results for: liquid cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5454

Search results for: liquid cell

1644 Conductometric Methanol Microsensor Based on Electrospun PVC-Nickel Phthalocyanine Composite Nanofiber Technology

Authors: Ibrahim Musa, Guy Raffin, Marie Hangouet, Nadia Zine, Nicole Jaffrezic-Renault, Abdelhamid Errachid

Abstract:

Due to its application in different domains, such as fuel cell configuration and adulteration of alcoholic beverages, a miniaturized sensor for methanol detection is urgently required. A conductometric microsensor for measuring volatile organic compounds (VOC) was conceived, based on electrospun composite nanofibers of polyvinyl chloride (PVC) doped with nickel phthalocyanine(NiPc) deposited on interdigitated electrodes (IDEs) used transducers. The nanofiber's shape, structure, percent atomic content and thermal properties were studied using analytical techniques, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA), respectively. The methanol sensor showed good sensitivity (505µS/cm(v/v) ⁻¹), low LOD (15 ppm), short response time (13 s), and short recovery time (15 s). The sensor was 4 times more sensitive to methanol than to ethanol and 19 times more sensitive to methanol than to acetone. Furthermore, the sensor response was unaffected by the interfering water vapor, making it more suitable for VOC sensing in the presence of humidity. The sensor was applied for conductometric detection of methanol in rubbing alcohol.

Keywords: composite, methanol, conductometric sensor, electrospun, nanofiber, nickel phthalocyanine, PVC

Procedia PDF Downloads 26
1643 Evaluation of the Relation between Serum and Saliva Levels of Sodium and Glucose in Healthy Referred Patients to Tabriz Faculty of Dentistry

Authors: Samaneh Nazemi, Ayla Bahramian, Marzieh Aghazadeh

Abstract:

Saliva is a clear liquid composed of water, electrolytes, glucose, amylase, glycoproteins, and antimicrobial enzymes. The presence of a wide range of molecules and proteins in saliva has made this fluid valuable in screening for some diseases as well as epidemiological studies. Saliva is easier than serum to collect in large populations. Due to the importance of sodium and glucose levels in many biological processes, this study investigates the relationship between sodium and glucose levels in salivary and serum samples of healthy individuals referring to Tabriz Dental School. This descriptive-analytical study was performed on 40 healthy individuals referred to the Oral Diseases Department of Tabriz Dental School. Serum and saliva samples were taken from these patients according to standard protocols. Data were presented as mean (standard deviation) and frequency (percentage) for quantitative and qualitative variables. Pearson test, paired-samples T-test and SPSS 24 software were used to determine the correlation between serum and salivary levels of these biomarkers. In this study, P less than 0.05% is considered significant. Out of 40 participants in this study, 14 (35%) were male, and 26 (65%) were female. According to the results of this study, the mean salivary sodium (127.53 ml/dl) was lower than the mean serum sodium (141.2725 ml/dl). In contrast, the mean salivary glucose (4.55 ml/dl) was lower than the mean serum glucose (89.7575 ml/dl). The result of paired samples T-test (p-value<0.05) showed that there is a statistically significant difference between the mean of serum sodium and salivary sodium, as well as between the serum glucose and salivary glucose. Pearson correlation test results showed that there is no significant correlation between serum sodium and salivary sodium (p-value >0.05), but here is a positive correlation between serum glucose and salivary glucose (p-value<0.001). Both serum sodium and glucose were higher than salivary sodium and glucose.In conclusion, this study found that there was not a statistical relationship between salivary glucose and serum glucose and also salivary sodium and serum sodium of healthy individuals. Perhaps salivary samples can’t be used to measure glucose and sodium in these individuals.

Keywords: glucose, saliva, serum, sodium

Procedia PDF Downloads 258
1642 Lipoic Acid Accelerates Wound Healing by Diminishing Pro-Inflammatory Markers and Chemokine Expression in Rheumatoid Arthritis Mouse Model

Authors: Khairy M. A. Zoheir

Abstract:

One of the most severe complications of Rheumatoid arthritis is delayed recovery. lipoic acid possesses antioxidant, hypoglycemic, and anti-inflammatory activity. In the present study, the effects of lipoic acid was investigated on the key mediators of Rheumatoid arthritis, namely, CD4+CD25+ T cell subsets, GITR expressing cells, CD4+CD25+Foxp3+ regulatory T (Treg) cells, T-helper-17 (Th17) cells, and pro-inflammatory cytokines Interleukin-1β (IL-1β), Interleukin-6 (IL-6) and Tumor Necrosis Factor- α (TNF-α)] through flow-cytometry and qPCR analyses. Lipoic acid treated mice showed a significant decrease in the Rheumatoid arthritis, the frequency of GITR-expressing cells, and Th1 cytokines (IL-17A, TNF-αand Interferon- γ (IFN-γ) compared with positive and negative controlled mice. Lipoic acid treatment also down regulated the mRNA expression of the inflammatory mediators compared with the Rheumatoid arthritis mouse model and untreated mice. The number of Tregs also found to be significantly upregulated in lipoic acid treated mice. Our results were confirmed by the histopathological examination. This study showed the beneficial role of lipoic acid in promoting a well-balanced tool for therapy Rheumatoid arthritis.

Keywords: lipoic acid, chemokines, inflammatory, rheumatoid arthritis

Procedia PDF Downloads 177
1641 A Parallel Cellular Automaton Model of Tumor Growth for Multicore and GPU Programming

Authors: Manuel I. Capel, Antonio Tomeu, Alberto Salguero

Abstract:

Tumor growth from a transformed cancer-cell up to a clinically apparent mass spans through a range of spatial and temporal magnitudes. Through computer simulations, Cellular Automata (CA) can accurately describe the complexity of the development of tumors. Tumor development prognosis can now be made -without making patients undergo through annoying medical examinations or painful invasive procedures- if we develop appropriate CA-based software tools. In silico testing mainly refers to Computational Biology research studies of application to clinical actions in Medicine. To establish sound computer-based models of cellular behavior, certainly reduces costs and saves precious time with respect to carrying out experiments in vitro at labs or in vivo with living cells and organisms. These aim to produce scientifically relevant results compared to traditional in vitro testing, which is slow, expensive, and does not generally have acceptable reproducibility under the same conditions. For speeding up computer simulations of cellular models, specific literature shows recent proposals based on the CA approach that include advanced techniques, such the clever use of supporting efficient data structures when modeling with deterministic stochastic cellular automata. Multiparadigm and multiscale simulation of tumor dynamics is just beginning to be developed by the concerned research community. The use of stochastic cellular automata (SCA), whose parallel programming implementations are open to yield a high computational performance, are of much interest to be explored up to their computational limits. There have been some approaches based on optimizations to advance in multiparadigm models of tumor growth, which mainly pursuit to improve performance of these models through efficient memory accesses guarantee, or considering the dynamic evolution of the memory space (grids, trees,…) that holds crucial data in simulations. In our opinion, the different optimizations mentioned above are not decisive enough to achieve the high performance computing power that cell-behavior simulation programs actually need. The possibility of using multicore and GPU parallelism as a promising multiplatform and framework to develop new programming techniques to speed-up the computation time of simulations is just starting to be explored in the few last years. This paper presents a model that incorporates parallel processing, identifying the synchronization necessary for speeding up tumor growth simulations implemented in Java and C++ programming environments. The speed up improvement that specific parallel syntactic constructs, such as executors (thread pools) in Java, are studied. The new tumor growth parallel model is proved using implementations with Java and C++ languages on two different platforms: chipset Intel core i-X and a HPC cluster of processors at our university. The parallelization of Polesczuk and Enderling model (normally used by researchers in mathematical oncology) proposed here is analyzed with respect to performance gain. We intend to apply the model and overall parallelization technique presented here to solid tumors of specific affiliation such as prostate, breast, or colon. Our final objective is to set up a multiparadigm model capable of modelling angiogenesis, or the growth inhibition induced by chemotaxis, as well as the effect of therapies based on the presence of cytotoxic/cytostatic drugs.

Keywords: cellular automaton, tumor growth model, simulation, multicore and manycore programming, parallel programming, high performance computing, speed up

Procedia PDF Downloads 245
1640 Impact of Simulated Brain Interstitial Fluid Flow on the Chemokine CXC-Chemokine-Ligand-12 Release From an Alginate-Based Hydrogel

Authors: Wiam El Kheir, Anais Dumais, Maude Beaudoin, Bernard Marcos, Nick Virgilio, Benoit Paquette, Nathalie Faucheux, Marc-Antoine Lauzon

Abstract:

The high infiltrative pattern of glioblastoma multiforme cells (GBM) is the main cause responsible for the actual standard treatments failure. The tumor high heterogeneity, the interstitial fluid flow (IFF) and chemokines guides GBM cells migration in the brain parenchyma resulting in tumor recurrence. Drug delivery systems emerged as an alternative approach to develop effective treatments for the disease. Some recent studies have proposed to harness the effect CXC-lchemokine-ligand-12 to direct and control the cancer cell migration through delivery system. However, the dynamics of the brain environment on the delivery system remains poorly understood. Nanoparticles (NPs) and hydrogels are known as good carriers for the encapsulation of different agents and control their release. We studied the release of CXCL12 (free or loaded into NPs) from an alginate-based hydrogel under static and indirect perfusion (IP) conditions. Under static conditions, the main phenomena driving CXCL12 release from the hydrogel was diffusion with the presence of strong interactions between the positively charged CXCL12 and the negatively charge alginate. CXCL12 release profiles were independent from the initial mass loadings. Afterwards, we demonstrated that the release could tuned by loading CXCL12 into Alginate/Chitosan-Nanoparticles (Alg/Chit-NPs) and embedded them into alginate-hydrogel. The initial burst release was substantially attenuated and the overall cumulative release percentages of 21%, 16% and 7% were observed for initial mass loadings of 0.07, 0.13 and 0.26 µg, respectively, suggesting stronger electrostatic interactions. Results were mathematically modeled based on Fick’s second law of diffusion framework developed previously to estimate the effective diffusion coefficient (Deff) and the mass transfer coefficient. Embedding the CXCL12 into NPs decreased the Deff an order of magnitude, which was coherent with experimental data. Thereafter, we developed an in-vitro 3D model that takes into consideration the convective contribution of the brain IFF to study CXCL12 release in an in-vitro microenvironment that mimics as faithfully as possible the human brain. From is unique design, the model also allowed us to understand the effect of IP on CXCL12 release in respect to time and space. Four flow rates (0.5, 3, 6.5 and 10 µL/min) which may increase CXCL12 release in-vivo depending on the tumor location were assessed. Under IP, cumulative percentages varying between 4.5-7.3%, 23-58.5%, 77.8-92.5% and 89.2-95.9% were released for the three initial mass loadings of 0.08, 0.16 and 0.33 µg, respectively. As the flow rate increase, IP culture conditions resulted in a higher release of CXCL12 compared to static conditions as the convection contribution became the main driving mass transport phenomena. Further, depending on the flow rate, IP had a direct impact on CXCL12 distribution within the simulated brain tissue, which illustrates the importance of developing such 3D in-vitro models to assess the efficiency of a delivery system targeting the brain. In future work, using this very model, we aim to understand the impact of the different phenomenon occurring on GBM cell behaviors in response to the resulting chemokine gradient subjected to various flow while allowing them to express their invasive characteristics in an in-vitro microenvironment that mimics the in-vivo brain parenchyma.

Keywords: 3D culture system, chemokines gradient, glioblastoma multiforme, kinetic release, mathematical modeling

Procedia PDF Downloads 87
1639 Heart and Plasma LDH and CK in Response to Intensive Treadmill Running and Aqueous Extraction of Red Crataegus pentagyna in Male Rats

Authors: A. Abdi, A. Barari, A. Hojatollah Nikbakht, Khosro Ebrahim

Abstract:

Aim: The purpose of the current study was to investigate the effect of a high intensity treadmill running training (8 weeks) with or without aqueous extraction of Crataegus pentagyna on heart and plasma LDH and CK. Design: Thirty-two Wistar male rats (4-6 weeks old, 125-135 gr weight) were used. Animals were randomly assigned into training (n = 16) and control (n = 16) groups and further divided into saline-control (SC, n = 8), saline-training (ST, n = 8), red Crataegus pentagyna extraction -control (CPEC, n = 8), and red Crataegus pentagyna extraction -training (CPET, n = 8) groups. Training groups have performed a high-intensity running program 34 m/min on 0% grade, 60 min/day, 5 days/week) on a motor-driven treadmill for 8 weeks. Animals were fed orally with Crataegus extraction and saline solution (500mg/kg body weight/or 10ml/kg body weight) for last six weeks. Seventy- two hours after the last training session, rats were sacrificed; plasma and heart were excised and immediately frozen in liquid nitrogen. LDH and CK levels were measured by colorimetric method. Statistical analysis was performed using a one way analysis of variance and Tukey test. Significance was accepted at P = 0.05. Results: Result showed that consumption crataegus lowers LDH and CK in heart and plasma. Also the heart LDH and CK were lower in the CPET compared to the ST, while plasma LDH and CK in CPET was higher than the ST. The results of ANOVA showed that the due high-intensity exercise and consumption crataegus, there are significant differences between levels of hearth LDH (P < 0/001), plasma (P < 0/006) and hearth (P < 0/001) CK. Conclusion: It appears that high-intensity exercise led to increased tissue damage and inflammatory factors in plasma. In other hand, consumption aqueous extraction of Red Crataegus maybe inhibits these factors and prevents muscle and heart damage.

Keywords: LDH, CK, crataegus, intensity

Procedia PDF Downloads 439
1638 pH and Thermo-Sensitive Nanogels for Anti-Cancer Therapy

Authors: V. Naga Sravan Kumar Varma, H. G. Shivakumar

Abstract:

The aim of the study was to develop dual sensitive poly (N-isopropylacrylamide-co-acrylic acid) (PNA) nanogels(NGs) and studying its applications for Anti-Cancer therapy. NGs were fabricated by free radical polymerization using different amount of N-isopropylacrylamide and acrylic acid. A study for polymer composition over the effect on LCST in different pH was evaluated by measuring the absorbance at 500nm using UV spectrophotometer. Further selected NG’s were evaluated for change in hydrodynamic diameters in response to pH and temperature. NGs which could sharply respond to low pH value of cancer cells at body temperature were loaded with Fluorouracil (5-FU) using equilibrium swelling method and studied for drug release behaviour in different pH. A significant influence of NGs polymer composition over pH dependent LCST was observed. NGs which were spherical with an average particle size of 268nm at room temperature, shrinked forming an irregular shape when heated above to their respective LCST. 5FU loaded NGs did not intervene any difference in pH depended LCST behaviour of NGs. The in vitro drug release of NGs exhibited a pH and thermo-dependent control release. The cytoxicity study of blank carrier to MCF7 cell line showed no cytotoxicity. The results indicated that PNA NGs could be used as a potential drug carrier for anti-cancer therapy.

Keywords: pH and thermo-sensitive, nanogels, P(NIPAM-co-AAc), anti-cancer, 5-FU

Procedia PDF Downloads 353
1637 Thymoquinone Prevented the Development of Symptoms in Animal Model of Parkinson’s Disease

Authors: Kambiz Hassanzadeh, Seyedeh Shohreh Ebrahimi, Shahrbanoo Oryan, Arman Rahimmi, Esmael Izadpanah

Abstract:

Parkinson’s disease is one of the most prevalent neurodegenerative diseases which occurs in elderly. There are convincing evidences that oxidative stress has an important role in both the initiation and progression of Parkinson’s disease. Thymoquinone (TQ) is shown to have antioxidant and anti-inflammatory properties in invitro and invivo studies. It is well documented that TQ acts as a free radical scavenger and prevents the cell damage. Therefore this study aimed to evaluate the effect of TQ on motor and non-motor symptoms in animal model of Parkinson’s disease. Male Wistar rats (10-12 months) received rotenone (1mg/kg/day, sc) to induce Parkinson’s disease model. Pretreatment with TQ (7.5 and 15 mg/kg/day, po) was administered one hour before the rotenone injection. Three motor tests (rotarod, rearing and bar tests) and two non-motor tests (forced swimming and elevated plus maze) were performed for behavioral assessment. Our results indicated that TQ significantly ameliorated the rotenone-induced motor dysfunction in rotarod and rearing tests also it could prevent the non-motor dysfunctions in forced swimming and elevated plus maze tests. In conclusion we found that TQ delayed the Parkinson's disease induction by rotenone and this effect might be related to its proved antioxidant effect.

Keywords: Parkinson's disease, thymoquinone, motor and non-motor symptoms, neurodegenerative disease

Procedia PDF Downloads 551
1636 Dairy Wastewater Treatment by Electrochemical and Catalytic Method

Authors: Basanti Ekka, Talis Juhna

Abstract:

Dairy industrial effluents originated by the typical processing activities are composed of various organic and inorganic constituents, and these include proteins, fats, inorganic salts, antibiotics, detergents, sanitizers, pathogenic viruses, bacteria, etc. These contaminants are harmful to not only human beings but also aquatic flora and fauna. Because consisting of large classes of contaminants, the specific targeted removal methods available in the literature are not viable solutions on the industrial scale. Therefore, in this on-going research, a series of coagulation, electrochemical, and catalytic methods will be employed. The bulk coagulation and electrochemical methods can wash off most of the contaminants, but some of the harmful chemicals may slip in; therefore, specific catalysts designed and synthesized will be employed for the removal of targeted chemicals. In the context of Latvian dairy industries, presently, work is under progress on the characterization of dairy effluents by total organic carbon (TOC), Inductively Coupled Plasma Mass Spectrometry (ICP-MS)/ Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), High-Performance Liquid Chromatography (HPLC), Gas Chromatography-Mass Spectrometry (GC-MS), and Mass Spectrometry. After careful evaluation of the dairy effluents, a cost-effective natural coagulant will be employed prior to advanced electrochemical technology such as electrocoagulation and electro-oxidation as a secondary treatment process. Finally, graphene oxide (GO) based hybrid materials will be used for post-treatment of dairy wastewater as graphene oxide has been widely applied in various fields such as environmental remediation and energy production due to the presence of various oxygen-containing groups. Modified GO will be used as a catalyst for the removal of remaining contaminants after the electrochemical process.

Keywords: catalysis, dairy wastewater, electrochemical method, graphene oxide

Procedia PDF Downloads 146
1635 Characterization of Electrical Transport across Ultra-Thin SrTiO₃ and BaTiO₃ Barriers in Tunnel Junctions

Authors: Henry Navarro, Martin Sirena, Nestor Haberkorn

Abstract:

We report the electrical transport through voltage-current curves (I-V) in tunnels junction GdBa₂Cu₃O₇-d/ insulator/ GdBa₂Cu₃O₇-d, and Nb/insulator/ GdBa₂Cu₃O₇-d is analyzed using a conducting atomic force microscope (CAFM) at room temperature. The measurements were obtained on tunnel junctions with different areas (900 μm², 400 μm² and 100 μm²). Trilayers with GdBa₂Cu₃O₇-d (GBCO) as the bottom electrode, SrTiO₃ (STO) or BaTiO₃ (BTO) as the insulator barrier (thicknesses between 1.6 nm and 4 nm), and GBCO or Nb as the top electrode were grown by DC sputtering on (100) SrTiO₃ substrates. For STO and BTO barriers, asymmetric IV curves at positive and negative polarization can be obtained using electrodes with different work function. The main difference is that the BTO is a ferroelectric material, while in the STO the ferroelectricity can be produced by stress or deformation at the interfaces. In addition, hysteretic IV curves are obtained for BTO barriers, which can be ascribed to a combined effect of the FE reversal switching polarization and an oxygen vacancy migration. For GBCO/ BTO/ GBCO heterostructures, the IV curves correspond to that expected for asymmetric interfaces, which indicates that the disorder affects differently the properties at the bottom and top interfaces. Our results show the role of the interface disorder on the electrical transport of conducting/ insulator/ conduction heterostructures, which is relevant for different applications, going from resistive switching memories (at room temperature) to Josephson junctions (at low temperatures). The superconducting transition of the GBCO electrode was characterized by electrical transport using the 4-prong configuration with low density of topological defects and with Tc over liquid N₂ can be obtained for thicknesses of 16 nm, our results demonstrate that GBCO films with an average root-mean-square (RMS) smaller than 1 nm and areas (up 100 um²) free of 3-D topological defects can be obtained.

Keywords: thin film, sputtering, conductive atomic force microscopy, tunnel junctions

Procedia PDF Downloads 156
1634 Numerical Analysis of Real-Scale Polymer Electrolyte Fuel Cells with Cathode Metal Foam Design

Authors: Jaeseung Lee, Muhammad Faizan Chinannai, Mohamed Hassan Gundu, Hyunchul Ju

Abstract:

In this paper, we numerically investigated the effect of metal foams on a real scale 242.57cm2 (19.1 cm × 12.7 cm) polymer electrolyte membrane fuel cell (PEFCs) using a three-dimensional two-phase PEFC model to substantiate design approach for PEFCs using metal foam as the flow distributor. The simulations were conducted under the practical low humidity hydrogen, and air gases conditions in order to observe the detailed operation result in the PEFCs using the serpentine flow channel in the anode and metal foam design in the cathode. The three-dimensional contours of flow distribution in the channel, current density distribution in the membrane and hydrogen and oxygen concentration distribution are provided. The simulation results revealed that the use of highly porous and permeable metal foam can be beneficial to achieve a more uniform current density distribution and better hydration in the membrane under low inlet humidity conditions. This study offers basic directions to design channel for optimal water management of PEFCs.

Keywords: polymer electrolyte fuel cells, metal foam, real-scale, numerical model

Procedia PDF Downloads 244
1633 A Furaneol-Containing Glass-Ionomer Cement for Enhanced Antibacterial Activity

Authors: Dong Xie, Yuling Xu, Leah Howard

Abstract:

Secondary caries is found to be one of the main reasons to the restoration failure of dental restoratives. To prevent secondary caries formation, dental restoratives ought to be made antibacterial. In this study, a natural fruit component furaneol was tethered onto polyacid, the formed polyacid was used to formulate the light-curable glass-ionomer cements, and then the effect of this new antibacterial compound on compressive strength (CS) and antibacterial activity of the formed cement was evaluated. Fuji II LC glass powders were used as fillers. Compressive strength (CS) and S. mutans viability were used to evaluate the mechanical strength and antibacterial activity of the formed cement. The experimental cement showed a significant antibacterial activity, accompanying with an initial CS reduction. Increasing the compound loading significantly decreased the S. mutans viability from 5 to 81% and also reduced the initial CS of the formed cements from 4 to 58%. The cement loading with 7% antibacterial polymer showed 168 MPa, 7.8 GPa, 243 MPa, 46 MPa, and 57 MPa in yield strength, modulus, CS, diametral tensile strength and flexural strength, respectively, as compared to 141, 6.9, 236, 42 and 53 for Fuji II LC. The cement also showed an antibacterial function to other bacteria. No human saliva effect was noticed. It is concluded that the experimental cement may potentially be developed to a permanent antibacterial cement.

Keywords: antibacterial, dental materials, strength, cell viability

Procedia PDF Downloads 320
1632 Meticulous Doxorubicin Release from pH-Responsive Nanoparticles Entrapped within an Injectable Thermoresponsive Depot

Authors: Huayang Yu, Nicola Ingram, David C. Green, Paul D. Thornton

Abstract:

The dual stimuli-controlled release of doxorubicin from gel-embedded nanoparticles is reported. Non-cytotoxic polymer nanoparticles are formed from poly(ethylene glycol)-b-poly(benzyl glutamate) that, uniquely, contain a central ester link. This connection renders the nanoparticles pH-responsive, enabling extensive doxorubicin release in acidic solutions (pH 6.5), but not in solutions of physiological pH (pH 7.4). Doxorubicin loaded nanoparticles were found to be stable for at least 31 days and lethal against the three breast cancer cell lines tested. Furthermore, doxorubicin-loaded nanoparticles could be incorporated within a thermoresponsive poly(2-hydroxypropyl methacrylate) gel depot, which forms immediately upon injection of poly(2-hydroxypropyl methacrylate) into aqueous solution. The combination of the poly(2-hydroxypropyl methacrylate) gel and poly(ethylene glycol)-b-poly(benzyl glutamate) nanoparticles yields an injectable doxorubicin delivery system that facilities near-complete drug release when maintained at elevated temperatures (37 °C) in acidic solution (pH 6.5). In contrast, negligible payload release occurs when the material is stored at room temperature in a non-acidic solution (pH 7.4). The system has great potential as a vehicle for the prolonged, site-specific release of chemotherapeutics.

Keywords: biodegradable, nanoparticle, polymer, thermoresponsive

Procedia PDF Downloads 138
1631 Finite Element Method (FEM) Simulation, design and 3D Print of Novel Highly Integrated PV-TEG Device with Improved Solar Energy Harvest Efficiency

Authors: Jaden Lu, Olivia Lu

Abstract:

Despite the remarkable advancement of solar cell technology, the challenge of optimizing total solar energy harvest efficiency persists, primarily due to significant heat loss. This excess heat not only diminishes solar panel output efficiency but also curtails its operational lifespan. A promising approach to address this issue is the conversion of surplus heat into electricity. In recent years, there is growing interest in the use of thermoelectric generators (TEG) as a potential solution. The integration of efficient TEG devices holds the promise of augmenting overall energy harvest efficiency while prolonging the longevity of solar panels. While certain research groups have proposed the integration of solar cells and TEG devices, a substantial gap between conceptualization and practical implementation remains, largely attributed to low thermal energy conversion efficiency of TEG devices. To bridge this gap and meet the requisites of practical application, a feasible strategy involves the incorporation of a substantial number of p-n junctions within a confined unit volume. However, the manufacturing of high-density TEG p-n junctions presents a formidable challenge. The prevalent solution often leads to large device sizes to accommodate enough p-n junctions, consequently complicating integration with solar cells. Recently, the adoption of 3D printing technology has emerged as a promising solution to address this challenge by fabricating high-density p-n arrays. Despite this, further developmental efforts are necessary. Presently, the primary focus is on the 3D printing of vertically layered TEG devices, wherein p-n junction density remains constrained by spatial limitations and the constraints of 3D printing techniques. This study proposes a novel device configuration featuring horizontally arrayed p-n junctions of Bi2Te3. The structural design of the device is subjected to simulation through the Finite Element Method (FEM) within COMSOL Multiphysics software. Various device configurations are simulated to identify optimal device structure. Based on the simulation results, a new TEG device is fabricated utilizing 3D Selective laser melting (SLM) printing technology. Fusion 360 facilitates the translation of the COMSOL device structure into a 3D print file. The horizontal design offers a unique advantage, enabling the fabrication of densely packed, three-dimensional p-n junction arrays. The fabrication process entails printing a singular row of horizontal p-n junctions using the 3D SLM printing technique in a single layer. Subsequently, successive rows of p-n junction arrays are printed within the same layer, interconnected by thermally conductive copper. This sequence is replicated across multiple layers, separated by thermal insulating glass. This integration created in a highly compact three-dimensional TEG device with high density p-n junctions. The fabricated TEG device is then attached to the bottom of the solar cell using thermal glue. The whole device is characterized, with output data closely matching with COMSOL simulation results. Future research endeavors will encompass the refinement of thermoelectric materials. This includes the advancement of high-resolution 3D printing techniques tailored to diverse thermoelectric materials, along with the optimization of material microstructures such as porosity and doping. The objective is to achieve an optimal and highly integrated PV-TEG device that can substantially increase the solar energy harvest efficiency.

Keywords: thermoelectric, finite element method, 3d print, energy conversion

Procedia PDF Downloads 70
1630 Identification of a Panel of Epigenetic Biomarkers for Early Detection of Hepatocellular Carcinoma in Blood of Individuals with Liver Cirrhosis

Authors: Katarzyna Lubecka, Kirsty Flower, Megan Beetch, Lucinda Kurzava, Hannah Buvala, Samer Gawrieh, Suthat Liangpunsakul, Tracy Gonzalez, George McCabe, Naga Chalasani, James M. Flanagan, Barbara Stefanska

Abstract:

Hepatocellular carcinoma (HCC), the most prevalent type of primary liver cancer, is the second leading cause of cancer death worldwide. Late onset of clinical symptoms in HCC results in late diagnosis and poor disease outcome. Approximately 85% of individuals with HCC have underlying liver cirrhosis. However, not all cirrhotic patients develop cancer. Reliable early detection biomarkers that can distinguish cirrhotic patients who will develop cancer from those who will not are urgently needed and could increase the cure rate from 5% to 80%. We used Illumina-450K microarray to test whether blood DNA, an easily accessible source of DNA, bear site-specific changes in DNA methylation in response to HCC before diagnosis with conventional tools (pre-diagnostic). Top 11 differentially methylated sites were selected for validation by pyrosequencing. The diagnostic potential of the 11 pyrosequenced probes was tested in blood samples from a prospective cohort of cirrhotic patients. We identified 971 differentially methylated CpG sites in pre-diagnostic HCC cases as compared with healthy controls (P < 0.05, paired Wilcoxon test, ICC ≥ 0.5). Nearly 76% of differentially methylated CpG sites showed lower levels of methylation in cases vs. controls (P = 2.973E-11, Wilcoxon test). Classification of the CpG sites according to their location relative to CpG islands and transcription start site revealed that those hypomethylated loci are located in regulatory regions important for gene transcription such as CpG island shores, promoters, and 5’UTR at higher frequency than hypermethylated sites. Among 735 CpG sites hypomethylated in cases vs. controls, 482 sites were assigned to gene coding regions whereas 236 hypermethylated sites corresponded to 160 genes. Bioinformatics analysis using GO, KEGG and DAVID knowledgebase indicate that differentially methylated CpG sites are located in genes associated with functions that are essential for gene transcription, cell adhesion, cell migration, and regulation of signal transduction pathways. Taking into account the magnitude of the difference, statistical significance, location, and consistency across the majority of matched pairs case-control, we selected 11 CpG loci corresponding to 10 genes for further validation by pyrosequencing. We established that methylation of CpG sites within 5 out of those 10 genes distinguish cirrhotic patients who subsequently developed HCC from those who stayed cancer free (cirrhotic controls), demonstrating potential as biomarkers of early detection in populations at risk. The best predictive value was detected for CpGs located within BARD1 (AUC=0.70, asymptotic significance ˂0.01). Using an additive logistic regression model, we further showed that 9 CpG loci within those 5 genes, that were covered in pyrosequenced probes, constitute a panel with high diagnostic accuracy (AUC=0.887; 95% CI:0.80-0.98). The panel was able to distinguish pre-diagnostic cases from cirrhotic controls free of cancer with 88% sensitivity at 70% specificity. Using blood as a minimally invasive material and pyrosequencing as a straightforward quantitative method, the established biomarker panel has high potential to be developed into a routine clinical test after validation in larger cohorts. This study was supported by Showalter Trust, American Cancer Society (IRG#14-190-56), and Purdue Center for Cancer Research (P30 CA023168) granted to BS.

Keywords: biomarker, DNA methylation, early detection, hepatocellular carcinoma

Procedia PDF Downloads 306
1629 Nonclassical Antifolates: Synthesis, Biological Evaluation and Molecular Modeling Study of Some New Quinazolin-4-One Analogues as Dihydrofolate Reductase Inhibitors

Authors: Yomna Ibrahim El-Gazzar, Hussien Ibrahim El-Subbagh, Hanan Hanaa Georgey, Ghada S. Hassan Hassan

Abstract:

Dihydrofolate reductase (DHFR) is an enzyme that has pivotal importance in biochemistry and medicinal chemistry. It catalyzes the reduction of dihydrofolate to tetrahydrofolate and intimately couples with thymidylate synthase. Thymidylate synthase is a crucial enzyme that catalyzes the reductive methylation of (dUMP) to (dTMP) utilizing N5, N10-methylenetetrahydrofolate as a cofactor. A new series of 2-substituted thio-quinazolin-4-one analogs was designed that possessed electron withdrawing or donating functional groups (Cl or OCH3) at position 6- or 7-, 4-methoxyphenyl function at position 3-.The thiol function is used to connect to either 1,2,4-triazole, or 1,3,4-thiadiazole via a methylene bridge. Most of the functional groups designed to be accommodated on the quinazoline ring such as thioether, alkyl to increase lipid solubility of polar compounds, a character very much needed in the nonclassical DHFR inhibitors. The target compounds were verified with spectral data and elemental analysis. DHFR inhibitions, as well as antitumor activity, were applied on three cell lines (MCF-7, CACO-2, HEPG-2).

Keywords: nonclassical antifolates, DHFR Inhibitors, antitumor activity, quinazoline ring

Procedia PDF Downloads 396
1628 Haemoperitoneum in a Case of Dengue Fever

Authors: Sagarjyoti Roy

Abstract:

Dengue is an arboviral infection, belonging to family flaviviridae, comprising of four serotypes; DENV1, DENV2, DENV3 and DENV4. All four serotypes are capable of causing full-spectrum of clinical features, ranging from self-limiting fever to severe dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Complications may affect any organ system, including those involving gastrointestinal system and serositis. We report a case, of a 28 years, non-alcoholic male, presenting with a 7 day history of fever and malaise followed by abdominal pain and distension, from 4th day of fever. He was admitted in medicine department of RG KAR medical college hospital. Dengue fever was confirmed by NS1 and dengue IgM positivity. Platelet count was 30,000/cc (1.5- 4 lac/cc) and haematocrit was 52% (38- 50% for men). Clinicoradiological findings revealed bilateral pleural effusion, ascites and splenomegaly. Ascitic fluid was hemorrhagic in nature, with a high protein and RBC content. Liver function tests revealed mild transaminitis with normal coagulation profile. Patient was managed conservatively. A diagnosis of dengue fever complicated by serositis and spontaneous haemoperitoneum was made. The symptoms subsided after a hospital stay of 10 days. The case highlights haemorrhage into peritoneal cavity as a possible complication of dengue fever. Although a definite explanation requires more detailed studies, platelet or endothelial cell dysfunction might be contributory.

Keywords: ascites, dengue, haemoperitoneum, serositis

Procedia PDF Downloads 264
1627 Tritium Activities in Romania, Potential Support for Development of ITER Project

Authors: Gheorghe Ionita, Sebastian Brad, Ioan Stefanescu

Abstract:

In any fusion device, tritium plays a key role both as a fuel component and, due to its radioactivity and easy incorporation, as tritiated water (HTO). As for the ITER project, to reduce the constant potential of tritium emission, there will be implemented a Water Detritiation System (WDS) and an Isotopic Separation System (ISS). In the same time, during operation of fission CANDU reactors, the tritium content increases in the heavy water used as moderator and cooling agent (due to neutron activation) and it has to be reduced, too. In Romania, at the National Institute for Cryogenics and Isotopic Technologies (ICIT Rm-Valcea), there is an Experimental Pilot Plant for Tritium Removal (Exp. TRF), with the aim of providing technical data on the design and operation of an industrial plant for heavy water depreciation of CANDU reactors from Cernavoda NPP. The selected technology is based on the catalyzed isotopic exchange process between deuterium and liquid water (LPCE) combined with the cryogenic distillation process (CD). This paper presents an updated review of activities in the field carried out in Romania after the year 2000 and in particular those related to the development and operation of Tritium Removal Experimental Pilot Plant. It is also presented a comparison between the experimental pilot plant and industrial plant to be implemented at Cernavoda NPP. The similarities between the experimental pilot plant from ICIT Rm-Valcea and water depreciation and isotopic separation systems from ITER are also presented and discussed. Many aspects or 'opened issues' relating to WDS and ISS could be checked and clarified by a special research program, developed within ExpTRF. By these achievements and results, ICIT Rm - Valcea has proved its expertise and capability concerning tritium management therefore its competence may be used within ITER project.

Keywords: ITER project, heavy water detritiation, tritium removal, isotopic exchange

Procedia PDF Downloads 414
1626 Cloning and Expression of Human Interleukin 15: A Promising Candidate for Cytokine Immunotherapy

Authors: Sadaf Ilyas

Abstract:

Recombinant cytokines have been employed successfully as potential therapeutic agent. Some cytokine therapies are already used as a part of clinical practice, ranging from early exploratory trials to well established therapies that have already received approval. Interleukin 15 is a pleiotropic cytokine having multiple roles in peripheral innate and adaptive immune cell function. It regulates the activation, proliferation and maturation of NK cells, T-cells, monocytes/macrophages and granulocytes, and the interactions between them thus acting as a bridge between innate and adaptive immune responses. Unraveling the biology of IL-15 has revealed some interesting surprises that may point toward some of the first therapeutic applications for this cytokine. In this study, the human interleukin 15 gene was isolated, amplified and ligated to a TA vector which was then transfected to a bacterial host, E. coli Top10F’. The sequence of cloned gene was confirmed and it showed 100% homology with the reported sequence. The confirmed gene was then subcloned in pET Expression system to study the IPTG induced expression of IL-15 gene. Positive expression was obtained for number of clones that showed 15 kd band of IL-15 in SDS-PAGE analysis, indicating the successful strain development that can be studied further to assess the potential therapeutic intervention of this cytokine in relevance to human diseases.

Keywords: Interleukin 15, pET expression system, immune therapy, protein purification

Procedia PDF Downloads 416
1625 Curcumin and Methotrexate Loaded Montmollilite Clay for Sustained Oral Drug Delivery Application

Authors: Subrata Kar, Banani Kundu, Papiya Nandy, Ruma Basu, Sukhen Das

Abstract:

Natural montmorilollite clay is a common ingredient in pharmaceutical products, both as excipients and active support; hence considered as suitable candidate for Drug Delivery System. In this work, cationic detergent CTAB is used to increase the interlayer spacing of Na+-Montmoriollite clay to intercalate curcumin and methotrexate. Methotrexate is a folic acid antagonist, anti-proliferative and immunosuppressive agent; while curcumin is a bioactive constituent of rhizomes of Curcuma longa, possessing remarkable chemo-preventive and anti-inflammatory properties. The resultant inorganic-organic hybrids are characterized by X-ray diffraction (XRD), Infrared spectroscopy (FTIR) and Thermo Gravimetric Analysis (TGA) to confirm successful intercalation of curcumin and Methotrexate within clay layers. Pharmaceutical investigation of the hybrids is explored by studying the drug loading (%), encapsulation efficiency and release kinetics. Finally in-vitro studies are performed using cancer cells to find the effect of released curcumin to improve the sensitivity of clay bound methotrexate to ameliorate cell death compared to their effectiveness when used without the inorganic aluminosilicate vehicle.

Keywords: montmorillonite, methotrexate, curcumin, loading efficiency, release kinetics, anticancer activity

Procedia PDF Downloads 516
1624 Mathematical Model for Flow and Sediment Yield Estimation on Tel River Basin, India

Authors: Santosh Kumar Biswal, Ramakar Jha

Abstract:

Soil erosion is a slow and continuous process and one of the prominent problems across the world leading to many serious problems like loss of soil fertility, loss of soil structure, poor internal drainage, sedimentation deposits etc. In this paper remote sensing and GIS based methods have been applied for the determination of soil erosion and sediment yield. Tel River basin which is the second largest tributary of the river Mahanadi laying between latitude 19° 15' 32.4"N and, 20° 45' 0"N and longitude 82° 3' 36"E and 84° 18' 18"E chosen for the present study. The catchment was discretized into approximately homogeneous sub-areas (grid cells) to overcome the catchment heterogeneity. The gross soil erosion in each cell was computed using Universal Soil Loss Equation (USLE). Various parameters for USLE was determined as a function of land topography, soil texture, land use/land cover, rainfall, erosivity and crop management and practice in the watershed. The concept of transport limited accumulation was formulated and the transport capacity maps were generated. The gross soil erosion was routed to the catchment outlet. This study can help in recognizing critical erosion prone areas of the study basin so that suitable control measures can be implemented.

Keywords: Universal Soil Loss Equation (USLE), GIS, land use, sediment yield,

Procedia PDF Downloads 312
1623 Characterization of a Novel Hemin-Binding Protein, HmuX, in Porphyromonas gingivalis W50

Authors: Kah Yan How, Peh Fern Ong, Keang Peng Song

Abstract:

Porphyromonas gingivalis is a black-pigmented, anaerobic Gram-negative bacterium that is important in the progression of chronic and severe periodontitis. This organism has an essential requirement for iron, which is usually obtained from hemin, using specific membrane receptors, proteases, and lipoproteins. In this study, we report the characterization of a novel 24 kDa hemin-binding protein, HmuX, in P. gingivalis W50. The hmuX gene is 651 bp long which encodes for a 217 amino acid protein. HmuX was found to be identical at the C-terminus to the previously reported HmuY protein, differing by an additional 74 amino acids at the N-terminus. Recombinant HmuX demonstrated hemin-binding ability by LDS- PAGE and TMBZ staining. Sequence analysis of HmuX revealed a putative lipoprotein attachment site, suggesting its possible role as a lipoprotein. HmuX was also localized to the outer cell surface by transmission electron microscopy. Northern analysis showed hmuX to be transcribed as a single gene and that hmuX mRNA was tightly regulated by the availability of extra-cellular hemin. P. gingivalis isogenic mutant deficient in hmuX gene exhibited significant growth retardation under hemin-limited conditions. Taken together, these results suggest that HmuX is a hemin-binding lipoprotein, important in hemin utilization for the growth of P. gingivalis.

Keywords: Porphyromonas gingivalis, periodontal diseases, HmuX, protein characterization

Procedia PDF Downloads 224
1622 The Impact of Lipids on Lung Fibrosis

Authors: G. Wojcik, J. Gindlhuber, A. Syarif, K. Hoetzenecker, P. Bohm, P. Vesely, V. Biasin, G. Kwapiszewska

Abstract:

Pulmonary fibrosis is a rare disease where uncontrolled wound healing processes damage the lung structure. Intensive changes within the extracellular matrix (ECM) and its interaction with fibroblasts have a major role in pulmonary fibrosis development. Among others, collagen is one of the main components of the ECM, and it is important for lung structure. In IPF, constant production of collagen by fibroblast, through TGFβ1-SMAD2/3 pathways, leads to an uncontrolled deposition of matrix and hence lung remodeling. Abnormal changes in lipid production, alterations in fatty acids (FAs) metabolism, enhanced oxidative stress, and lipid peroxidation in fibrotic lung and fibrotic fibroblasts have been reported; however, the interplay between the collagen and lipids is not yet established. One of the FAs influx regulators is Angiopoietin-like 4 (ANGPTL4), which inhibits lipoprotein lipase work, decreasing the availability of FAs. We hypothesized that altered lipid composition or availability could have the capability to influence the phenotype of different fibroblast populations in the lung and hence influence lung fibrosis. To prove our hypothesis, we aim to investigate lipids and their influence on human, animal, and in vitro levels. In the bleomycin model, treatment with the well-known metabolic drugs Rosiglitazone or Metformin significantly lower collagen production. Similar results were noticed in ANGPTL4 KO animals, where the KO of ANGPTL4 leads to an increase of FAs availability and lower collagen deposition after the bleomycin challenge. Currently, we study the treatment of different FAs on human lung para fibroblasts (hPF) isolated from donors. To understand the lipid composition, we are collecting human lung tissue from donors and pulmonary fibrosis patients for Liquid chromatography-mass spectrometry. In conclusion, our results suggest the lipid influence on collagen deposition during lung fibrosis, but further research needs to be conducted to understand the matter of this relationship.

Keywords: collagen, fibroblasts, lipidomics, lung, pulmonary fibrosis

Procedia PDF Downloads 86
1621 Efficient Compact Micro Dielectric Barrier Discharge (DBD) Plasma Reactor for Ozone Generation for Industrial Application in Liquid and Gas Phase Systems

Authors: D. Kuvshinov, A. Siswanto, J. Lozano-Parada, W. Zimmerman

Abstract:

Ozone is well known as a powerful fast reaction rate oxidant. The ozone based processes produce no by-product left as a non-reacted ozone returns back to the original oxygen molecule. Therefore an application of ozone is widely accepted as one of the main directions for a sustainable and clean technologies development. There are number of technologies require ozone to be delivered to specific points of a production network or reactors construction. Due to space constrains, high reactivity and short life time of ozone the use of ozone generators even of a bench top scale is practically limited. This requires development of mini/micro scale ozone generator which can be directly incorporated into production units. Our report presents a feasibility study of a new micro scale rector for ozone generation (MROG). Data on MROG calibration and indigo decomposition at different operation conditions are presented. At selected operation conditions with residence time of 0.25 s the process of ozone generation is not limited by reaction rate and the amount of ozone produced is a function of power applied. It was shown that the MROG is capable to produce ozone at voltage level starting from 3.5kV with ozone concentration of 5.28E-6 (mol/L) at 5kV. This is in line with data presented on numerical investigation for a MROG. It was shown that in compare to a conventional ozone generator, MROG has lower power consumption at low voltages and atmospheric pressure. The MROG construction makes it applicable for emerged and dry systems. With a robust compact design MROG can be used as incorporated unit for production lines of high complexity.

Keywords: dielectric barrier discharge (DBD), micro reactor, ozone, plasma

Procedia PDF Downloads 340
1620 Grey Relational Analysis Coupled with Taguchi Method for Process Parameter Optimization of Friction Stir Welding on 6061 AA

Authors: Eyob Messele Sefene, Atinkut Atinafu Yilma

Abstract:

The highest strength-to-weight ratio criterion has fascinated increasing curiosity in virtually all areas where weight reduction is indispensable. One of the recent advances in manufacturing to achieve this intention endears friction stir welding (FSW). The process is widely used for joining similar and dissimilar non-ferrous materials. In FSW, the mechanical properties of the weld joints are impelled by property-selected process parameters. This paper presents verdicts of optimum process parameters in attempting to attain enhanced mechanical properties of the weld joint. The experiment was conducted on a 5 mm 6061 aluminum alloy sheet. A butt joint configuration was employed. Process parameters, rotational speed, traverse speed or feed rate, axial force, dwell time, tool material and tool profiles were utilized. Process parameters were also optimized, making use of a mixed L18 orthogonal array and the Grey relation analysis method with larger is better quality characteristics. The mechanical properties of the weld joint are examined through the tensile test, hardness test and liquid penetrant test at ambient temperature. ANOVA was conducted in order to investigate the significant process parameters. This research shows that dwell time, rotational speed, tool shape, and traverse speed have become significant, with a joint efficiency of about 82.58%. Nine confirmatory tests are conducted, and the results indicate that the average values of the grey relational grade fall within the 99% confidence interval. Hence the experiment is proven reliable.

Keywords: friction stir welding, optimization, 6061 AA, Taguchi

Procedia PDF Downloads 104
1619 Development of Calcium Carbonate Molecular Sheets via Wet Chemical Route

Authors: Sudhir Kumar Sharma, Ramesh Jagannathan

Abstract:

The interaction of organic and inorganic matrices of biological origin resulting in self-assembled structures with unique properties is well established. The development of such self-assembled nanostructures by synthetic and bio-inspired techniques is an established field of active research. Among bio-materials, nacre, a laminar stack of calcium carbonate nanosheets, which are interleaved with organic material, has long been focused research due to its unique mechanical properties. In this paper, we present the development of nacre-like lamellar structures made up of calcium carbonate via a wet chemical route. We used the binding affinity of carboxylate anions and calcium cations using poly (acrylic) acid (PAA) to lead CaCO₃ crystallization. In these experiments, we selected calcium acetate as the precursor molecule along with PAA (Mw ~ 8000 Da). We found that Ca⁺²/COO⁻ ratio provided a tunable control for the morphology and growth of CaCO₃ nanostructures. Drop casting one such formulation on a silicon substrate followed by calcination resulted in co-planner, molecular sheets of CaCO₃, separated by a spacer layer of carbon. The scope of our process could be expanded to produce unit cell thick molecular sheets of other important inorganic materials.

Keywords: self-assembled structures, bio-inspired materials, calcium carbonate, wet chemical route

Procedia PDF Downloads 141
1618 The Prognostic Values of Current Staging Schemes in Temporal Bone Carcinoma: A Real-World Evidence-Based Study

Authors: Minzi Mao, Jianjun Ren, Yu Zhao

Abstract:

Objectives: The absence of a uniform staging scheme for temporal bone carcinoma (TBC) seriously impedes the improvement of its management strategies. Therefore, this research was aimed to investigate the prognostic values of two currently applying staging schemes, namely, the modified Pittsburgh staging system (MPB) and Stell’s T classification (Stell-T) in patients with TBC. Methods: Areal-world single-institution retrospectivereview of patientsdiagnosed with TBC between2008 and 2019 was performed. Baseline characteristics were extracted, and patients were retrospectively staged by both the MPB and Stell-T classifications. Cox regression analyseswereconductedtocomparetheoverall survival (OS). Results: A total of 69 consecutive TBC patients were included in thisstudy. Univariate analysis showed that both Stell-T and T- classifications of the modified Pittsburgh staging system (MPB-T) were significant prognostic factors for all TBC patients as well as temporal bone squamous cell carcinoma (TBSCC, n=50) patients (P < 0.05). However, only Stell-T was confirmed to be an independent prognostic factor in TBSCC patients (P = 0.004). Conclusions: Tumor extensions, quantified by both Stell-T and MPB-T classifications, are significant prognostic factors for TBC patients, especially for TBSCC patients. However, only the Stell-T classification is an independent prognostic factor for TBSCC patients.

Keywords: modified pittsburgh staging system, overall survival, prognostic factor, stell’s T- classification, temporal bone carcinoma

Procedia PDF Downloads 131
1617 Nanomaterial Based Electrochemical Sensors for Endocrine Disrupting Compounds

Authors: Gaurav Bhanjana, Ganga Ram Chaudhary, Sandeep Kumar, Neeraj Dilbaghi

Abstract:

Main sources of endocrine disrupting compounds in the ecosystem are hormones, pesticides, phthalates, flame retardants, dioxins, personal-care products, coplanar polychlorinated biphenyls (PCBs), bisphenol A, and parabens. These endocrine disrupting compounds are responsible for learning disabilities, brain development problems, deformations of the body, cancer, reproductive abnormalities in females and decreased sperm count in human males. Although discharge of these chemical compounds into the environment cannot be stopped, yet their amount can be retarded through proper evaluation and detection techniques. The available techniques for determination of these endocrine disrupting compounds mainly include high performance liquid chromatography (HPLC), mass spectroscopy (MS) and gas chromatography-mass spectrometry (GC–MS). These techniques are accurate and reliable but have certain limitations like need of skilled personnel, time consuming, interference and requirement of pretreatment steps. Moreover, these techniques are laboratory bound and sample is required in large amount for analysis. In view of above facts, new methods for detection of endocrine disrupting compounds should be devised that promise high specificity, ultra sensitivity, cost effective, efficient and easy-to-operate procedure. Nowadays, electrochemical sensors/biosensors modified with nanomaterials are gaining high attention among researchers. Bioelement present in this system makes the developed sensors selective towards analyte of interest. Nanomaterials provide large surface area, high electron communication feature, enhanced catalytic activity and possibilities of chemical modifications. In most of the cases, nanomaterials also serve as an electron mediator or electrocatalyst for some analytes.

Keywords: electrochemical, endocrine disruptors, microscopy, nanoparticles, sensors

Procedia PDF Downloads 275
1616 Structural and Histochemical Alterations in the Development of the Stigma in Vibirnum tinus

Authors: Aslihan Cetinbas Genc, Meral Unal

Abstract:

This study presents the structural and cytochemical alterations of stigma at the stages of pre-anthesis, anthesis and post-anthesis in Vibirnum tinus. Capitate stigma continues with a closed style. The receptive surface of stigma is composed of unicellular papillae which are short and flattened at pre-anthesis stage. The papillae in this stage have dense cytoplasm with small vacuoles and a centrally located nucleus. With the start of anthesis, the stigma widens, papillae lengthen and become cylindrical. At anthesis stage, vacuoles enlarge, and nucleus moves to the base of the cell. At post-anthesis stage, the boundaries of the papillae become less noticeable. As proved by Periodic Acid Schiff procedure, the cytoplasm of papillae is rich in insoluble polysaccharides at all stages of development but it becomes remarkable at post-anthesis, particularly at the sub-papillar area. Although there is no significant difference in the content of protein in all stages of the development, it is more abundant at post-anthesis stage, as in Coomassie Brillant Blue stained sections. The surface of papillae is covered by a cuticle which becomes thicker at post-anthesis, and it gives positive reaction with Sudan Black B and Auramine O. The cuticle is covered by a pellicle stained by Coomassie Brillant Blue, indicating dry type of stigma.

Keywords: develeopmental features, histochemistry, stigma, Vibirnum tinus

Procedia PDF Downloads 248
1615 Exergy Analysis of a Vapor Absorption Refrigeration System Using Carbon Dioxide as Refrigerant

Authors: Samsher Gautam, Apoorva Roy, Bhuvan Aggarwal

Abstract:

Vapor absorption refrigeration systems can replace vapor compression systems in many applications as they can operate on a low-grade heat source and are environment-friendly. Widely used refrigerants such as CFCs and HFCs cause significant global warming. Natural refrigerants can be an alternative to them, among which carbon dioxide is promising for use in automotive air conditioning systems. Its inherent safety, ability to withstand high pressure and high heat transfer coefficient coupled with easy availability make it a likely choice for refrigerant. Various properties of the ionic liquid [bmim][PF₆], such as non-toxicity, stability over a wide temperature range and ability to dissolve gases like carbon dioxide, make it a suitable absorbent for a vapor absorption refrigeration system. In this paper, an absorption chiller consisting of a generator, condenser, evaporator and absorber was studied at an operating temperature of 70⁰C. A thermodynamic model was set up using the Peng-Robinson equations of state to predict the behavior of the refrigerant and absorbent pair at different points in the system. A MATLAB code was used to obtain the values of enthalpy and entropy at selected points in the system. The exergy destruction in each component and exergetic coefficient of performance (ECOP) of the system were calculated by performing an exergy analysis based on the second law of thermodynamics. Graphs were plotted between varying operating conditions and the ECOP obtained in each case. The effect of every component on the ECOP was examined. The exergetic coefficient of performance was found to be lesser than the coefficient of performance based on the first law of thermodynamics.

Keywords: [bmim][PF₆] as absorbent, carbon dioxide as refrigerant, exergy analysis, Peng-Robinson equations of state, vapor absorption refrigeration

Procedia PDF Downloads 290