Search results for: vector error correction model (VECM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18897

Search results for: vector error correction model (VECM)

15117 Predicting Radioactive Waste Glass Viscosity, Density and Dissolution with Machine Learning

Authors: Joseph Lillington, Tom Gout, Mike Harrison, Ian Farnan

Abstract:

The vitrification of high-level nuclear waste within borosilicate glass and its incorporation within a multi-barrier repository deep underground is widely accepted as the preferred disposal method. However, for this to happen, any safety case will require validation that the initially localized radionuclides will not be considerably released into the near/far-field. Therefore, accurate mechanistic models are necessary to predict glass dissolution, and these should be robust to a variety of incorporated waste species and leaching test conditions, particularly given substantial variations across international waste-streams. Here, machine learning is used to predict glass material properties (viscosity, density) and glass leaching model parameters from large-scale industrial data. A variety of different machine learning algorithms have been compared to assess performance. Density was predicted solely from composition, whereas viscosity additionally considered temperature. To predict suitable glass leaching model parameters, a large simulated dataset was created by coupling MATLAB and the chemical reactive-transport code HYTEC, considering the state-of-the-art GRAAL model (glass reactivity in allowance of the alteration layer). The trained models were then subsequently applied to the large-scale industrial, experimental data to identify potentially appropriate model parameters. Results indicate that ensemble methods can accurately predict viscosity as a function of temperature and composition across all three industrial datasets. Glass density prediction shows reliable learning performance with predictions primarily being within the experimental uncertainty of the test data. Furthermore, machine learning can predict glass dissolution model parameters behavior, demonstrating potential value in GRAAL model development and in assessing suitable model parameters for large-scale industrial glass dissolution data.

Keywords: machine learning, predictive modelling, pattern recognition, radioactive waste glass

Procedia PDF Downloads 120
15116 Loss Quantification Archaeological Sites in Watershed Due to the Use and Occupation of Land

Authors: Elissandro Voigt Beier, Cristiano Poleto

Abstract:

The main objective of the research is to assess the loss through the quantification of material culture (archaeological fragments) in rural areas, sites explored economically by machining on seasonal crops, and also permanent, in a hydrographic subsystem Camaquã River in the state of Rio Grande do Sul, Brazil. The study area consists of different micro basins and differs in area, ranging between 1,000 m² and 10,000 m², respectively the largest and the smallest, all with a large number of occurrences and outcrop locations of archaeological material and high density in intense farm environment. In the first stage of the research aimed to identify the dispersion of points of archaeological material through field survey through plot points by the Global Positioning System (GPS), within each river basin, was made use of concise bibliography on the topic in the region, helping theoretically in understanding the old landscaping with preferences of occupation for reasons of ancient historical people through the settlements relating to the practice observed in the field. The mapping was followed by the cartographic development in the region through the development of cartographic products of the land elevation, consequently were created cartographic products were to contribute to the understanding of the distribution of the absolute materials; the definition and scope of the material dispersed; and as a result of human activities the development of revolving letter by mechanization of in situ material, it was also necessary for the preparation of materials found density maps, linking natural environments conducive to ancient historical occupation with the current human occupation. The third stage of the project it is for the systematic collection of archaeological material without alteration or interference in the subsurface of the indigenous settlements, thus, the material was prepared and treated in the laboratory to remove soil excesses, cleaning through previous communication methodology, measurement and quantification. Approximately 15,000 were identified archaeological fragments belonging to different periods of ancient history of the region, all collected outside of its environmental and historical context and it also has quite changed and modified. The material was identified and cataloged considering features such as object weight, size, type of material (lithic, ceramic, bone, Historical porcelain and their true association with the ancient history) and it was disregarded its principles as individual lithology of the object and functionality same. As observed preliminary results, we can point out the change of materials by heavy mechanization and consequent soil disturbance processes, and these processes generate loading of archaeological materials. Therefore, as a next step will be sought, an estimate of potential losses through a mathematical model. It is expected by this process, to reach a reliable model of high accuracy which can be applied to an archeological site of lower density without encountering a significant error.

Keywords: degradation of heritage, quantification in archaeology, watershed, use and occupation of land

Procedia PDF Downloads 279
15115 The Strategy of Teaching Digital Art in Classroom as a Way of Enhancing Pupils’ Artistic Creativity

Authors: Aber Salem Aboalgasm, Rupert Ward

Abstract:

Teaching art by digital means is a big challenge for the majority of teachers of art and artistic design courses in primary education schools. These courses can clearly identify relationships between art, technology and creativity in the classroom .The aim of this article is to present a modern way of teaching art, using digital tools in the art classroom in order to improve creative ability in pupils aged between 9 and 11 years; it also presents a conceptual model for creativity based on digital art. The model could be useful for pupils interested in learning drawing and using an e-drawing package, and for teachers who are interested in teaching their students modern digital art, and improving children’s creativity. This model is designed to show the strategy of teaching art through technology, in order for children to learn how to be creative. This will also help education providers to make suitable choices about which technological approaches they should choose to teach students and enhance their creative ability. To define the digital art tools that can benefit children develop their technical skills. It is also expected that use of this model will help to develop social interactive qualities that may improve intellectual ability.

Keywords: digital tools, motivation, creative activity, technical skill

Procedia PDF Downloads 464
15114 Statistical Inferences for GQARCH-It\^{o} - Jumps Model Based on The Realized Range Volatility

Authors: Fu Jinyu, Lin Jinguan

Abstract:

This paper introduces a novel approach that unifies two types of models: one is the continuous-time jump-diffusion used to model high-frequency data, and the other is discrete-time GQARCH employed to model low-frequency financial data by embedding the discrete GQARCH structure with jumps in the instantaneous volatility process. This model is named “GQARCH-It\^{o} -Jumps mode.” We adopt the realized range-based threshold estimation for high-frequency financial data rather than the realized return-based volatility estimators, which entail the loss of intra-day information of the price movement. Meanwhile, a quasi-likelihood function for the low-frequency GQARCH structure with jumps is developed for the parametric estimate. The asymptotic theories are mainly established for the proposed estimators in the case of finite activity jumps. Moreover, simulation studies are implemented to check the finite sample performance of the proposed methodology. Specifically, it is demonstrated that how our proposed approaches can be practically used on some financial data.

Keywords: It\^{o} process, GQARCH, leverage effects, threshold, realized range-based volatility estimator, quasi-maximum likelihood estimate

Procedia PDF Downloads 166
15113 Comparative Analysis of Motor Insurance Claims using Machine Learning

Authors: Francis Kwame Bukari, Maclean Acheampong Yeboah

Abstract:

From collective hunting to contemporary financial markets, the concept of risk sharing in insurance has evolved significantly. In today's insurance landscape, statistical analysis plays a pivotal role in determining premiums and assessing the likelihood of insurance claims. Accurately estimating motor insurance claims remains a challenge, allowing insurance companies to pull much of their money to cover claims, which in the long run will affect their reserves and impact their profitability. Advanced machine learning algorithms can enhance accuracy and profitability. The primary objectives of this study encompassed the prediction of motor insurance claims through the utilization of Artificial Neural Networks (ANN) and Random Forest (RF). Additionally, a comparative analysis was conducted to assess the performance of these two models in the domain of claim prediction. The study drew upon secondary data derived from motor insurance claims, employing a range of techniques, including data preprocessing, model training, and model evaluation. To mitigate potential biases, a random over-sampler was used to balance the target variable within the preprocessed dataset. The Random Forest model outperformed the ANN model, achieving an accuracy rate of 90.33% compared to the ANN model's accuracy of 86.33%. This study highlights the importance of modern data-driven approaches in enhancing accuracy and profitability in the insurance industry.

Keywords: risk, insurance claims, artificial neural network, random forest, over-sampler, profitability

Procedia PDF Downloads 9
15112 Evaluation of Model-Based Code Generation for Embedded Systems–Mature Approach for Development in Evolution

Authors: Nikolay P. Brayanov, Anna V. Stoynova

Abstract:

Model-based development approach is gaining more support and acceptance. Its higher abstraction level brings simplification of systems’ description that allows domain experts to do their best without particular knowledge in programming. The different levels of simulation support the rapid prototyping, verifying and validating the product even before it exists physically. Nowadays model-based approach is beneficial for modelling of complex embedded systems as well as a generation of code for many different hardware platforms. Moreover, it is possible to be applied in safety-relevant industries like automotive, which brings extra automation of the expensive device certification process and especially in the software qualification. Using it, some companies report about cost savings and quality improvements, but there are others claiming no major changes or even about cost increases. This publication demonstrates the level of maturity and autonomy of model-based approach for code generation. It is based on a real live automotive seat heater (ASH) module, developed using The Mathworks, Inc. tools. The model, created with Simulink, Stateflow and Matlab is used for automatic generation of C code with Embedded Coder. To prove the maturity of the process, Code generation advisor is used for automatic configuration. All additional configuration parameters are set to auto, when applicable, leaving the generation process to function autonomously. As a result of the investigation, the publication compares the quality of generated embedded code and a manually developed one. The measurements show that generally, the code generated by automatic approach is not worse than the manual one. A deeper analysis of the technical parameters enumerates the disadvantages, part of them identified as topics for our future work.

Keywords: embedded code generation, embedded C code quality, embedded systems, model-based development

Procedia PDF Downloads 247
15111 Predictive Semi-Empirical NOx Model for Diesel Engine

Authors: Saurabh Sharma, Yong Sun, Bruce Vernham

Abstract:

Accurate prediction of NOx emission is a continuous challenge in the field of diesel engine-out emission modeling. Performing experiments for each conditions and scenario cost significant amount of money and man hours, therefore model-based development strategy has been implemented in order to solve that issue. NOx formation is highly dependent on the burn gas temperature and the O2 concentration inside the cylinder. The current empirical models are developed by calibrating the parameters representing the engine operating conditions with respect to the measured NOx. This makes the prediction of purely empirical models limited to the region where it has been calibrated. An alternative solution to that is presented in this paper, which focus on the utilization of in-cylinder combustion parameters to form a predictive semi-empirical NOx model. The result of this work is shown by developing a fast and predictive NOx model by using the physical parameters and empirical correlation. The model is developed based on the steady state data collected at entire operating region of the engine and the predictive combustion model, which is developed in Gamma Technology (GT)-Power by using Direct Injected (DI)-Pulse combustion object. In this approach, temperature in both burned and unburnt zone is considered during the combustion period i.e. from Intake Valve Closing (IVC) to Exhaust Valve Opening (EVO). Also, the oxygen concentration consumed in burnt zone and trapped fuel mass is also considered while developing the reported model.  Several statistical methods are used to construct the model, including individual machine learning methods and ensemble machine learning methods. A detailed validation of the model on multiple diesel engines is reported in this work. Substantial numbers of cases are tested for different engine configurations over a large span of speed and load points. Different sweeps of operating conditions such as Exhaust Gas Recirculation (EGR), injection timing and Variable Valve Timing (VVT) are also considered for the validation. Model shows a very good predictability and robustness at both sea level and altitude condition with different ambient conditions. The various advantages such as high accuracy and robustness at different operating conditions, low computational time and lower number of data points requires for the calibration establishes the platform where the model-based approach can be used for the engine calibration and development process. Moreover, the focus of this work is towards establishing a framework for the future model development for other various targets such as soot, Combustion Noise Level (CNL), NO2/NOx ratio etc.

Keywords: diesel engine, machine learning, NOₓ emission, semi-empirical

Procedia PDF Downloads 116
15110 Unsteady Rayleigh-Bénard Convection of Nanoliquids in Enclosures

Authors: P. G. Siddheshwar, B. N. Veena

Abstract:

Rayleigh-B´enard convection of a nanoliquid in shallow, square and tall enclosures is studied using the Khanafer-Vafai-Lightstone single-phase model. The thermophysical properties of water, copper, copper-oxide, alumina, silver and titania at 3000 K under stagnant conditions that are collected from literature are used in calculating thermophysical properties of water-based nanoliquids. Phenomenological laws and mixture theory are used for calculating thermophysical properties. Free-free, rigid-rigid and rigid-free boundary conditions are considered in the study. Intractable Lorenz model for each boundary combination is derived and then reduced to the tractable Ginzburg-Landau model. The amplitude thus obtained is used to quantify the heat transport in terms of Nusselt number. Addition of nanoparticles is shown not to alter the influence of the nature of boundaries on the onset of convection as well as on heat transport. Amongst the three enclosures considered, it is found that tall and shallow enclosures transport maximum and minimum energy respectively. Enhancement of heat transport due to nanoparticles in the three enclosures is found to be in the range 3% - 11%. Comparison of results in the case of rigid-rigid boundaries is made with those of an earlier work and good agreement is found. The study has limitations in the sense that thermophysical properties are calculated by using various quantities modelled for static condition.

Keywords: enclosures, free-free, rigid-rigid, rigid-free boundaries, Ginzburg-Landau model, Lorenz model

Procedia PDF Downloads 258
15109 Evaluation of Turbulence Prediction over Washington, D.C.: Comparison of DCNet Observations and North American Mesoscale Model Outputs

Authors: Nebila Lichiheb, LaToya Myles, William Pendergrass, Bruce Hicks, Dawson Cagle

Abstract:

Atmospheric transport of hazardous materials in urban areas is increasingly under investigation due to the potential impact on human health and the environment. In response to health and safety concerns, several dispersion models have been developed to analyze and predict the dispersion of hazardous contaminants. The models of interest usually rely on meteorological information obtained from the meteorological models of NOAA’s National Weather Service (NWS). However, due to the complexity of the urban environment, NWS forecasts provide an inadequate basis for dispersion computation in urban areas. A dense meteorological network in Washington, DC, called DCNet, has been operated by NOAA since 2003 to support the development of urban monitoring methodologies and provide the driving meteorological observations for atmospheric transport and dispersion models. This study focuses on the comparison of wind observations from the DCNet station on the U.S. Department of Commerce Herbert C. Hoover Building against the North American Mesoscale (NAM) model outputs for the period 2017-2019. The goal is to develop a simple methodology for modifying NAM outputs so that the dispersion requirements of the city and its urban area can be satisfied. This methodology will allow us to quantify the prediction errors of the NAM model and propose adjustments of key variables controlling dispersion model calculation.

Keywords: meteorological data, Washington D.C., DCNet data, NAM model

Procedia PDF Downloads 237
15108 Development on the Modeling Driven Architecture

Authors: Sahar Shahsavaripour Ghazanfarpour

Abstract:

As our daily life depends on quality of built services by systems and using devices in our environment; so education and model of software′s quality will be so important. By daily growth in software′s systems and using them so much, progressing process and requirements′ evaluation in primary level of progress especially architecture level in software get more important. Modern driver architecture changes an in dependent model of a level into some specific models that their purpose is reducing number of software changes into an executive model. Process of designing software engineering is mid-automated. The needed quality attribute in designing architecture and quality attribute in representation are in architecture models. The main problem is the relationship between needs, and elements in some aspect with implicit models and input sources in process. It’s because there is no detection ability. The MART profile is use to describe real-time properties and perform plat form modeling.

Keywords: MDA, DW, OMG, UML, AKB, software architecture, ontology, evaluation

Procedia PDF Downloads 498
15107 Comparison of Johnson-Cook and Barlat Material Model for 316L Stainless Steel

Authors: Yiğit Gürler, İbrahim Şimşek, Müge Savaştaer, Ayberk Karakuş, Alper Taşdemirci

Abstract:

316L steel is frequently used in the industry due to its easy formability and accessibility in sheet metal forming processes. Numerical and experimental studies are frequently encountered in the literature to examine the mechanical behavior of 316L stainless steel during the forming process. 316L stainless steel is the most common material used in the production of plate heat exchangers and plate heat exchangers are produced by plastic deformation of the stainless steel. The motivation in this study is to determine the appropriate material model during the simulation of the sheet metal forming process. For this reason, two different material models were examined and Ls-Dyna material cards were created using material test data. These are MAT133_BARLAT_YLD2000 and MAT093_SIMPLIFIED_JOHNSON_COOK. In order to compare results of the tensile test & hydraulic bulge test performed both numerically and experimentally. The obtained results were evaluated comparatively and the most suitable material model was selected for the forming simulation. In future studies, this material model will be used in the numerical modeling of the sheet metal forming process.

Keywords: 316L, mechanical characterization, metal forming, Ls-Dyna

Procedia PDF Downloads 341
15106 Comparative Analysis of Dissimilarity Detection between Binary Images Based on Equivalency and Non-Equivalency of Image Inversion

Authors: Adnan A. Y. Mustafa

Abstract:

Image matching is a fundamental problem that arises frequently in many aspects of robot and computer vision. It can become a time-consuming process when matching images to a database consisting of hundreds of images, especially if the images are big. One approach to reducing the time complexity of the matching process is to reduce the search space in a pre-matching stage, by simply removing dissimilar images quickly. The Probabilistic Matching Model for Binary Images (PMMBI) showed that dissimilarity detection between binary images can be accomplished quickly by random pixel mapping and is size invariant. The model is based on the gamma binary similarity distance that recognizes an image and its inverse as containing the same scene and hence considers them to be the same image. However, in many applications, an image and its inverse are not treated as being the same but rather dissimilar. In this paper, we present a comparative analysis of dissimilarity detection between PMMBI based on the gamma binary similarity distance and a modified PMMBI model based on a similarity distance that does distinguish between an image and its inverse as being dissimilar.

Keywords: binary image, dissimilarity detection, probabilistic matching model for binary images, image mapping

Procedia PDF Downloads 156
15105 Aerodynamic Design an UAV and Stability Analysis with Method of Genetic Algorithm Optimization

Authors: Saul A. Torres Z., Eduardo Liceaga C., Alfredo Arias M.

Abstract:

We seek to develop a UAV for agricultural spraying at a maximum altitude of 5000 meters above sea level, with a payload of 100 liters of fumigant. For the developing the aerodynamic design of the aircraft is using computational tools such as the "Vortex Lattice Athena" software, "MATLAB", "ANSYS FLUENT", "XFoil" package among others. Also methods are being used structured programming, exhaustive analysis of optimization methods and search. The results have a very low margin of error, and the multi-objective problems can be helpful for future developments. Also we developed method for Stability Analysis (Lateral-Directional and Longitudinal).

Keywords: aerodynamics design, optimization, algorithm genetic, multi-objective problem, longitudinal stability, lateral-directional stability

Procedia PDF Downloads 596
15104 Tree Species Classification Using Effective Features of Polarimetric SAR and Hyperspectral Images

Authors: Milad Vahidi, Mahmod R. Sahebi, Mehrnoosh Omati, Reza Mohammadi

Abstract:

Forest management organizations need information to perform their work effectively. Remote sensing is an effective method to acquire information from the Earth. Two datasets of remote sensing images were used to classify forested regions. Firstly, all of extractable features from hyperspectral and PolSAR images were extracted. The optical features were spectral indexes related to the chemical, water contents, structural indexes, effective bands and absorption features. Also, PolSAR features were the original data, target decomposition components, and SAR discriminators features. Secondly, the particle swarm optimization (PSO) and the genetic algorithms (GA) were applied to select optimization features. Furthermore, the support vector machine (SVM) classifier was used to classify the image. The results showed that the combination of PSO and SVM had higher overall accuracy than the other cases. This combination provided overall accuracy about 90.56%. The effective features were the spectral index, the bands in shortwave infrared (SWIR) and the visible ranges and certain PolSAR features.

Keywords: hyperspectral, PolSAR, feature selection, SVM

Procedia PDF Downloads 423
15103 Towards End-To-End Disease Prediction from Raw Metagenomic Data

Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker

Abstract:

Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.

Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine

Procedia PDF Downloads 130
15102 Probabilistic Graphical Model for the Web

Authors: M. Nekri, A. Khelladi

Abstract:

The world wide web network is a network with a complex topology, the main properties of which are the distribution of degrees in power law, A low clustering coefficient and a weak average distance. Modeling the web as a graph allows locating the information in little time and consequently offering a help in the construction of the research engine. Here, we present a model based on the already existing probabilistic graphs with all the aforesaid characteristics. This work will consist in studying the web in order to know its structuring thus it will enable us to modelize it more easily and propose a possible algorithm for its exploration.

Keywords: clustering coefficient, preferential attachment, small world, web community

Procedia PDF Downloads 272
15101 Application of Data Mining Techniques for Tourism Knowledge Discovery

Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee

Abstract:

Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.

Keywords: classification algorithms, data mining, knowledge discovery, tourism

Procedia PDF Downloads 300
15100 Integrated Management of Diseases of Vegetables and Flower Crops Grown in Protected Condition under Organic Production System

Authors: Shripad Kulkarni

Abstract:

Plant disease is an impairment of the normal state of a plant that interrupts or modifies its vital functions. Disease occurs on different parts of plants and cause heavy losses. Diagnosis of Problem is very important before planning any management practice and this can be done based on appearance of the crop, examination of the root and examination of the soil. There are various types of diseases such as biotic (transmissible) which accounts for ~30% whereas , abiotic (not transmissible) diseases are the major one with ~70% incidence. Plant diseases caused by different groups of organism’s belonging fungi, bacteria, viruses, nematodes and few others have remained important in causing significant losses in different crops indicating the urgent need of their integrated management. Various factors favor disease development and different steps and methods are involved in management of diseases under protected condition. Management of diseases through botanicals and bioagents by modifying root and aerial environment, vector management along with care to be taken while managing the disease are analysed.

Keywords: organic production system, diseases, bioagents and polyhouse, agriculture

Procedia PDF Downloads 411
15099 A Literature Review of the Trend towards Indoor Dynamic Thermal Comfort

Authors: James Katungyi

Abstract:

The Steady State thermal comfort model which dominates thermal comfort practice and which posits the ideal thermal conditions in a narrow range of thermal conditions does not deliver the expected comfort levels among occupants. Furthermore, the buildings where this model is applied consume a lot of energy in conditioning. This paper reviews significant literature about thermal comfort in dynamic indoor conditions including the adaptive thermal comfort model and alliesthesia. A major finding of the paper is that the adaptive thermal comfort model is part of a trend from static to dynamic indoor environments in aspects such as lighting, views, sounds and ventilation. Alliesthesia or thermal delight is consistent with this trend towards dynamic thermal conditions. It is within this trend that the two fold goal of increased thermal comfort and reduced energy consumption lies. At the heart of this trend is a rediscovery of the link between the natural environment and human well-being, a link that was partially severed by over-reliance on mechanically dominated artificial indoor environments. The paper concludes by advocating thermal conditioning solutions that integrate mechanical with natural thermal conditioning in a balanced manner in order to meet occupant thermal needs without endangering the environment.

Keywords: adaptive thermal comfort, alliesthesia, energy, natural environment

Procedia PDF Downloads 221
15098 GAC Adsorption Modelling of Metsulfuron Methyl from Water

Authors: Nathaporn Areerachakul

Abstract:

In this study, the adsorption capacity of GAC with metsulfuron methyl was evaluated by using adsorption equilibrium and a fixed bed. Mathematical modelling was also used to simulate the GAC adsorption behavior. Adsorption equilibrium experiment of GAC was conducted using a constant concentration of metsulfuron methyl of 10 mg/L. The purpose of this study was to find the single component equilibrium concentration of herbicide. The adsorption behavior was simulated using the Langmuir, Freundlich, and Sips isotherm. The Sips isotherm fitted the experimental data reasonably well with an error of 6.6 % compared with 15.72 % and 7.07% for the Langmuir isotherm and Freudrich isotherm. Modelling using GAC adsorption theory could not replicate the experimental results in fixed bed column of 10 and 15 cm bed depths after a period more than 10 days of operation. This phenomenon is attributed to the formation of micro-organism (BAC) on the surface of GAC in addition to GAC alone.

Keywords: isotherm, adsorption equilibrium, GAC, metsulfuron methyl

Procedia PDF Downloads 314
15097 Quantum Decision Making with Small Sample for Network Monitoring and Control

Authors: Tatsuya Otoshi, Masayuki Murata

Abstract:

With the development and diversification of applications on the Internet, applications that require high responsiveness, such as video streaming, are becoming mainstream. Application responsiveness is not only a matter of communication delay but also a matter of time required to grasp changes in network conditions. The tradeoff between accuracy and measurement time is a challenge in network control. We people make countless decisions all the time, and our decisions seem to resolve tradeoffs between time and accuracy. When making decisions, people are known to make appropriate choices based on relatively small samples. Although there have been various studies on models of human decision-making, a model that integrates various cognitive biases, called ”quantum decision-making,” has recently attracted much attention. However, the modeling of small samples has not been examined much so far. In this paper, we extend the model of quantum decision-making to model decision-making with a small sample. In the proposed model, the state is updated by value-based probability amplitude amplification. By analytically obtaining a lower bound on the number of samples required for decision-making, we show that decision-making with a small number of samples is feasible.

Keywords: quantum decision making, small sample, MPEG-DASH, Grover's algorithm

Procedia PDF Downloads 84
15096 Exploring a Teaching Model in Cultural Education Using Video-Focused Social Networking Apps: An Example of Chinese Language Teaching for African Students

Authors: Zhao Hong

Abstract:

When international students study Chinese as a foreign or second language, it is important for them to form constructive viewpoints and possess an open mindset on Chinese culture. This helps them to make faster progress in their language acquisition. Observations from African students at Liaoning Institute of Science and Technology show that by integrating video-focused social networking apps such as Tiktok (“Douyin”) on a controlled basis, students raise their interest not only in making an effort in learning the Chinese language, but also in the understanding of the Chinese culture. During the last twelve months, our research group explored a teaching model using selected contents in certain classroom settings, including virtual classrooms during lockdown periods due to the COVID-19 pandemic. Using interviews, a survey was conducted on international students from African countries at the Liaoning Institute of Science and Technology in Chinese language courses. Based on the results, a teaching model was built for Chinese language acquisition by entering the "mobile Chinese culture".

Keywords: Chinese as a foreign language, cultural education, social networking apps, teaching model

Procedia PDF Downloads 77
15095 Three-Dimensional Positioning Method of Indoor Personnel Based on Millimeter Wave Radar Sensor

Authors: Chao Wang, Zuxue Xia, Wenhai Xia, Rui Wang, Jiayuan Hu, Rui Cheng

Abstract:

Aiming at the application of indoor personnel positioning under smog conditions, this paper proposes a 3D positioning method based on the IWR1443 millimeter wave radar sensor. The problem that millimeter-wave radar cannot effectively form contours in 3D point cloud imaging is solved. The results show that the method can effectively achieve indoor positioning and scene construction, and the maximum positioning error of the system is 0.130m.

Keywords: indoor positioning, millimeter wave radar, IWR1443 sensor, point cloud imaging

Procedia PDF Downloads 121
15094 Reliability Modeling on Drivers’ Decision during Yellow Phase

Authors: Sabyasachi Biswas, Indrajit Ghosh

Abstract:

The random and heterogeneous behavior of vehicles in India puts up a greater challenge for researchers. Stop-and-go modeling at signalized intersections under heterogeneous traffic conditions has remained one of the most sought-after fields. Vehicles are often caught up in the dilemma zone and are unable to take quick decisions whether to stop or cross the intersection. This hampers the traffic movement and may lead to accidents. The purpose of this work is to develop a stop and go prediction model that depicts the drivers’ decision during the yellow time at signalised intersections. To accomplish this, certain traffic parameters were taken into account to develop surrogate model. This research investigated the Stop and Go behavior of the drivers by collecting data from 4-signalized intersections located in two major Indian cities. Model was developed to predict the drivers’ decision making during the yellow phase of the traffic signal. The parameters used for modeling included distance to stop line, time to stop line, speed, and length of the vehicle. A Kriging base surrogate model has been developed to investigate the drivers’ decision-making behavior in amber phase. It is observed that the proposed approach yields a highly accurate result (97.4 percent) by Gaussian function. It was observed that the accuracy for the crossing probability was 95.45, 90.9 and 86.36.11 percent respectively as predicted by the Kriging models with Gaussian, Exponential and Linear functions.

Keywords: decision-making decision, dilemma zone, surrogate model, Kriging

Procedia PDF Downloads 311
15093 A Study on Improvement of the Torque Ripple and Demagnetization Characteristics of a PMSM

Authors: Yong Min You

Abstract:

The study on the torque ripple of Permanent Magnet Synchronous Motors (PMSMs) has been rapidly progressed, which effects on the noise and vibration of the electric vehicle. There are several ways to reduce torque ripple, which are the increase in the number of slots and poles, the notch of the rotor and stator teeth, and the skew of the rotor and stator. However, the conventional methods have the disadvantage in terms of material cost and productivity. The demagnetization characteristic of PMSMs must be attained for electric vehicle application. Due to rare earth supply issue, the demand for Dy-free permanent magnet has been increasing, which can be applied to PMSMs for the electric vehicle. Dy-free permanent magnet has lower the coercivity; the demagnetization characteristic has become more significant. To improve the torque ripple as well as the demagnetization characteristics, which are significant parameters for electric vehicle application, an unequal air-gap model is proposed for a PMSM. A shape optimization is performed to optimize the design variables of an unequal air-gap model. Optimal design variables are the shape of an unequal air-gap and the angle between V-shape magnets. An optimization process is performed by Latin Hypercube Sampling (LHS), Kriging Method, and Genetic Algorithm (GA). Finite element analysis (FEA) is also utilized to analyze the torque and demagnetization characteristics. The torque ripple and the demagnetization temperature of the initial model of 45kW PMSM with unequal air-gap are 10 % and 146.8 degrees, respectively, which are reaching a critical level for electric vehicle application. Therefore, the unequal air-gap model is proposed, and then an optimization process is conducted. Compared to the initial model, the torque ripple of the optimized unequal air-gap model was reduced by 7.7 %. In addition, the demagnetization temperature of the optimized model was also increased by 1.8 % while maintaining the efficiency. From these results, a shape optimized unequal air-gap PMSM has shown the usefulness of an improvement in the torque ripple and demagnetization temperature for the electric vehicle.

Keywords: permanent magnet synchronous motor, optimal design, finite element method, torque ripple

Procedia PDF Downloads 278
15092 Using Combination of Sets of Features of Molecules for Aqueous Solubility Prediction: A Random Forest Model

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Generally, absorption and bioavailability increase if solubility increases; therefore, it is crucial to predict them in drug discovery applications. Molecular descriptors and Molecular properties are traditionally used for the prediction of water solubility. There are various key descriptors that are used for this purpose, namely Drogan Descriptors, Morgan Descriptors, Maccs keys, etc., and each has different prediction capabilities with differentiating successes between different data sets. Another source for the prediction of solubility is structural features; they are commonly used for the prediction of solubility. However, there are little to no studies that combine three or more properties or descriptors for prediction to produce a more powerful prediction model. Unlike available models, we used a combination of those features in a random forest machine learning model for improved solubility prediction to better predict and, therefore, contribute to drug discovery systems.

Keywords: solubility, random forest, molecular descriptors, maccs keys

Procedia PDF Downloads 53
15091 WhatsApp as Part of a Blended Learning Model to Help Programming Novices

Authors: Tlou J. Ramabu

Abstract:

Programming is one of the challenging subjects in the field of computing. In the higher education sphere, some programming novices’ performance, retention rate, and success rate are not improving. Most of the time, the problem is caused by the slow pace of learning, difficulty in grasping the syntax of the programming language and poor logical skills. More importantly, programming forms part of major subjects within the field of computing. As a result, specialized pedagogical methods and innovation are highly recommended. Little research has been done on the potential productivity of the WhatsApp platform as part of a blended learning model. In this article, the authors discuss the WhatsApp group as a part of blended learning model incorporated for a group of programming novices. We discuss possible administrative activities for productive utilisation of the WhatsApp group on the blended learning overview. The aim is to take advantage of the popularity of WhatsApp and the time students spend on it for their educational purpose. We believe that blended learning featuring a WhatsApp group may ease novices’ cognitive load and strengthen their foundational programming knowledge and skills. This is a work in progress as the proposed blended learning model with WhatsApp incorporated is yet to be implemented.

Keywords: blended learning, higher education, WhatsApp, programming, novices, lecturers

Procedia PDF Downloads 175
15090 Establishing Multi-Leveled Computability as a Living-System Evolutionary Context

Authors: Ron Cottam, Nils Langloh, Willy Ranson, Roger Vounckx

Abstract:

We start by formally describing the requirements for environmental-reaction survival computation in a natural temporally-demanding medium, and develop this into a more general model of the evolutionary context as a computational machine. The effect of this development is to replace deterministic logic by a modified form which exhibits a continuous range of dimensional fractal diffuseness between the isolation of perfectly ordered localization and the extended communication associated with nonlocality as represented by pure causal chaos. We investigate the appearance of life and consciousness in the derived general model, and propose a representation of Nature within which all localizations have the character of quasi-quantal entities. We compare our conclusions with Heisenberg’s uncertainty principle and nonlocal teleportation, and maintain that computability is the principal influence on evolution in the model we propose.

Keywords: computability, evolution, life, localization, modeling, nonlocality

Procedia PDF Downloads 400
15089 Verification and Proposal of Information Processing Model Using EEG-Based Brain Activity Monitoring

Authors: Toshitaka Higashino, Naoki Wakamiya

Abstract:

Human beings perform a task by perceiving information from outside, recognizing them, and responding them. There have been various attempts to analyze and understand internal processes behind the reaction to a given stimulus by conducting psychological experiments and analysis from multiple perspectives. Among these, we focused on Model Human Processor (MHP). However, it was built based on psychological experiments and thus the relation with brain activity was unclear so far. To verify the validity of the MHP and propose our model from a viewpoint of neuroscience, EEG (Electroencephalography) measurements are performed during experiments in this study. More specifically, first, experiments were conducted where Latin alphabet characters were used as visual stimuli. In addition to response time, ERPs (event-related potentials) such as N100 and P300 were measured by using EEG. By comparing cycle time predicted by the MHP and latency of ERPs, it was found that N100, related to perception of stimuli, appeared at the end of the perceptual processor. Furthermore, by conducting an additional experiment, it was revealed that P300, related to decision making, appeared during the response decision process, not at the end. Second, by experiments using Japanese Hiragana characters, i.e. Japan's own phonetic symbols, those findings were confirmed. Finally, Japanese Kanji characters were used as more complicated visual stimuli. A Kanji character usually has several readings and several meanings. Despite the difference, a reading-related task and a meaning-related task exhibited similar results, meaning that they involved similar information processing processes of the brain. Based on those results, our model was proposed which reflects response time and ERP latency. It consists of three processors: the perception processor from an input of a stimulus to appearance of N100, the cognitive processor from N100 to P300, and the decision-action processor from P300 to response. Using our model, an application system which reflects brain activity can be established.

Keywords: brain activity, EEG, information processing model, model human processor

Procedia PDF Downloads 104
15088 Examining K-12 In-Service Teachers’ Comfort Level with the Social Model of Disability and Its Impact on Inclusive Measures in the Classroom

Authors: Frederic Fovet

Abstract:

Inclusive provisions have been statutorily mandated in North America for now over two decades. Despite a growing body of literature around inclusive practices, many in-service teachers continue to express difficulties when it comes to tangible implementation of inclusion in the everyday classroom. While there is debate around the various forms inclusion can take (UDL, differentiation, personalization, etc.), there appears to be a more significant hurdle in getting in-service teachers to fully embrace inclusion both as a goal and a practice. This paper investigates teachers’ degree of awareness around the Social Model of Disability. It argues that teachers often lack basic awareness of disability studies, more particularly of the Social Model of Disability, and that this has a direct impact on their capacity to conceptualize and embrace inclusion. The paper draws from the researcher’s experience as a graduate instructor with in-service teachers, as well as from his experience as a consultant working with schools and school boards. The methodology chosen here is phenomenology, and it draws on tools such as auto-ethnography. The paper opens a discussion around the reform and transformation of pre-service teacher training. It argues that disability studies should be integrated into teacher training as it plays a key role in having teachers develop a theoretical understanding of disability as a social construct.

Keywords: disability, K-12, inclusion, social model, in-service teachers

Procedia PDF Downloads 195