Search results for: graph representation of circuit networks
1174 Mobile Systems: History, Technology, and Future
Authors: Shivendra Pratap Singh, Rishabh Sharma
Abstract:
The widespread adoption of mobile technology in recent years has revolutionized the way we communicate and access information. The evolution of mobile systems has been rapid and impactful, shaping our lives and changing the way we live and work. However, despite its significant influence, the history and development of mobile technology are not well understood by the general public. This research paper aims to examine the history, technology and future of mobile systems, exploring their evolution from early mobile phones to the latest smartphones and beyond. The study will analyze the technological advancements and innovations that have shaped the mobile industry, from the introduction of mobile internet and multimedia capabilities to the integration of artificial intelligence and 5G networks. Additionally, the paper will also address the challenges and opportunities facing the future of mobile technology, such as privacy concerns, battery life, and the increasing demand for high-speed internet. Finally, the paper will also provide insights into potential future developments and innovations in the mobile sector, such as foldable phones, wearable technology, and the Internet of Things (IoT). The purpose of this research paper is to provide a comprehensive overview of the history, technology, and future of mobile systems, shedding light on their impact on society and the challenges and opportunities that lie ahead.Keywords: mobile technology, artificial intelligence, networking, iot, technological advancements, smartphones
Procedia PDF Downloads 921173 Analog Railway Signal Object Controller Development
Authors: Ercan Kızılay, Mustafa Demi̇rel, Selçuk Coşkun
Abstract:
Railway signaling systems consist of vital products that regulate railway traffic and provide safe route arrangements and maneuvers of trains. SIL 4 signal lamps are produced by many manufacturers today. There is a need for systems that enable these signal lamps to be controlled by commands from the interlocking. These systems should act as fail-safe and give error indications to the interlocking system when an unexpected situation occurs for the safe operation of railway systems from the RAMS perspective. In the past, driving and proving the lamp in relay-based systems was typically done via signaling relays. Today, the proving of lamps is done by comparing the current values read over the return circuit, the lower and upper threshold values. The purpose is an analog electronic object controller with the possibility of easy integration with vital systems and the signal lamp itself. During the study, the EN50126 standard approach was considered, and the concept, definition, risk analysis, requirements, architecture, design, and prototyping were performed throughout this study. FMEA (Failure Modes and Effects Analysis) and FTA (Fault Tree) Analysis) have been used for safety analysis in accordance with EN 50129. Concerning these analyzes, the 1oo2D reactive fail-safe hardware design of a controller has been researched. Electromagnetic compatibility (EMC) effects on the functional safety of equipment, insulation coordination, and over-voltage protection were discussed during hardware design according to EN 50124 and EN 50122 standards. As vital equipment for railway signaling, railway signal object controllers should be developed according to EN 50126 and EN 50129 standards which identify the steps and requirements of the development in accordance with the SIL 4(Safety Integrity Level) target. In conclusion of this study, an analog railway signal object controller, which takes command from the interlocking system, is processed in driver cards. Driver cards arrange the voltage level according to desired visibility by means of semiconductors. Additionally, prover cards evaluate the current upper and lower thresholds. Evaluated values are processed via logic gates which are composed as 1oo2D by means of analog electronic technologies. This logic evaluates the voltage level of the lamp and mitigates the risks of undue dimming.Keywords: object controller, railway electronic, analog electronic, safety, railway signal
Procedia PDF Downloads 1001172 Satellite Photogrammetry for DEM Generation Using Stereo Pair and Automatic Extraction of Terrain Parameters
Authors: Tridipa Biswas, Kamal Pandey
Abstract:
A Digital Elevation Model (DEM) is a simple representation of a surface in 3 dimensional space with elevation as the third dimension along with X (horizontal coordinates) and Y (vertical coordinates) in rectangular coordinates. DEM has wide applications in various fields like disaster management, hydrology and watershed management, geomorphology, urban development, map creation and resource management etc. Cartosat-1 or IRS P5 (Indian Remote Sensing Satellite) is a state-of-the-art remote sensing satellite built by ISRO (May 5, 2005) which is mainly intended for cartographic applications.Cartosat-1 is equipped with two panchromatic cameras capable of simultaneous acquiring images of 2.5 meters spatial resolution. One camera is looking at +26 degrees forward while another looks at –5 degrees backward to acquire stereoscopic imagery with base to height ratio of 0.62. The time difference between acquiring of the stereopair images is approximately 52 seconds. The high resolution stereo data have great potential to produce high-quality DEM. The high-resolution Cartosat-1 stereo image data is expected to have significant impact in topographic mapping and watershed applications. The objective of the present study is to generate high-resolution DEM, quality evaluation in different elevation strata, generation of ortho-rectified image and associated accuracy assessment from CARTOSAT-1 data based Ground Control Points (GCPs) for Aglar watershed (Tehri-Garhwal and Dehradun district, Uttarakhand, India). The present study reveals that generated DEMs (10m and 30m) derived from the CARTOSAT-1 stereo pair is much better and accurate when compared with existing DEMs (ASTER and CARTO DEM) also for different terrain parameters like slope, aspect, drainage, watershed boundaries etc., which are derived from the generated DEMs, have better accuracy and results when compared with the other two (ASTER and CARTO) DEMs derived terrain parameters.Keywords: ASTER-DEM, CARTO-DEM, CARTOSAT-1, digital elevation model (DEM), ortho-rectified image, photogrammetry, RPC, stereo pair, terrain parameters
Procedia PDF Downloads 3091171 An Image Processing Based Approach for Assessing Wheelchair Cushions
Authors: B. Farahani, R. Fadil, A. Aboonabi, B. Hoffmann, J. Loscheider, K. Tavakolian, S. Arzanpour
Abstract:
Wheelchair users spend long hours in a sitting position, and selecting the right cushion is highly critical in preventing pressure ulcers in that demographic. Pressure mapping systems (PMS) are typically used in clinical settings by therapists to identify the sitting profile and pressure points in the sitting area to select the cushion that fits the best for the users. A PMS is a flexible mat composed of arrays of distributed networks of flexible sensors. The output of the PMS systems is a color-coded image that shows the intensity of the pressure concentration. Therapists use the PMS images to compare different cushions fit for each user. This process is highly subjective and requires good visual memory for the best outcome. This paper aims to develop an image processing technique to analyze the images of PMS and provide an objective measure to assess the cushions based on their pressure distribution mappings. In this paper, we first reviewed the skeletal anatomy of the human sitting area and its relation to the PMS image. This knowledge is then used to identify the important features that must be considered in image processing. We then developed an algorithm based on those features to analyze the images and rank them according to their fit to the users' needs.Keywords: dynamic cushion, image processing, pressure mapping system, wheelchair
Procedia PDF Downloads 1701170 Deep Supervision Based-Unet to Detect Buildings Changes from VHR Aerial Imagery
Authors: Shimaa Holail, Tamer Saleh, Xiongwu Xiao
Abstract:
Building change detection (BCD) from satellite imagery is an essential topic in urbanization monitoring, agricultural land management, and updating geospatial databases. Recently, methods for detecting changes based on deep learning have made significant progress and impressive results. However, it has the problem of being insensitive to changes in buildings with complex spectral differences, and the features being extracted are not discriminatory enough, resulting in incomplete buildings and irregular boundaries. To overcome these problems, we propose a dual Siamese network based on the Unet model with the addition of a deep supervision strategy (DS) in this paper. This network consists of a backbone (encoder) based on ImageNet pre-training, a fusion block, and feature pyramid networks (FPN) to enhance the step-by-step information of the changing regions and obtain a more accurate BCD map. To train the proposed method, we created a new dataset (EGY-BCD) of high-resolution and multi-temporal aerial images captured over New Cairo in Egypt to detect building changes for this purpose. The experimental results showed that the proposed method is effective and performs well with the EGY-BCD dataset regarding the overall accuracy, F1-score, and mIoU, which were 91.6 %, 80.1 %, and 73.5 %, respectively.Keywords: building change detection, deep supervision, semantic segmentation, EGY-BCD dataset
Procedia PDF Downloads 1201169 Comparing Image Processing and AI Techniques for Disease Detection in Plants
Authors: Luiz Daniel Garay Trindade, Antonio De Freitas Valle Neto, Fabio Paulo Basso, Elder De Macedo Rodrigues, Maicon Bernardino, Daniel Welfer, Daniel Muller
Abstract:
Agriculture plays an important role in society since it is one of the main sources of food in the world. To help the production and yield of crops, precision agriculture makes use of technologies aiming at improving productivity and quality of agricultural commodities. One of the problems hampering quality of agricultural production is the disease affecting crops. Failure in detecting diseases in a short period of time can result in small or big damages to production, causing financial losses to farmers. In order to provide a map of the contributions destined to the early detection of plant diseases and a comparison of the accuracy of the selected studies, a systematic literature review of the literature was performed, showing techniques for digital image processing and neural networks. We found 35 interesting tool support alternatives to detect disease in 19 plants. Our comparison of these studies resulted in an overall average accuracy of 87.45%, with two studies very closer to obtain 100%.Keywords: pattern recognition, image processing, deep learning, precision agriculture, smart farming, agricultural automation
Procedia PDF Downloads 3791168 Detecting Port Maritime Communities in Spain with Complex Network Analysis
Authors: Nicanor Garcia Alvarez, Belarmino Adenso-Diaz, Laura Calzada Infante
Abstract:
In recent years, researchers have shown an interest in modelling maritime traffic as a complex network. In this paper, we propose a bipartite weighted network to model maritime traffic and detect port maritime communities. The bipartite weighted network considers two different types of nodes. The first one represents Spanish ports, while the second one represents the countries with which there is major import/export activity. The flow among both types of nodes is modeled by weighting the volume of product transported. To illustrate the model, the data is segmented by each type of traffic. This will allow fine tuning and the creation of communities for each type of traffic and therefore finding similar ports for a specific type of traffic, which will provide decision-makers with tools to search for alliances or identify their competitors. The traffic with the greatest impact on the Spanish gross domestic product is selected, and the evolution of the communities formed by the most important ports and their differences between 2019 and 2009 will be analyzed. Finally, the set of communities formed by the ports of the Spanish port system will be inspected to determine global similarities between them, analyzing the sum of the membership of the different ports in communities formed for each type of traffic in particular.Keywords: bipartite networks, competition, infomap, maritime traffic, port communities
Procedia PDF Downloads 1481167 Novel Marketing Strategy To Increase Sales Revenue For SMEs Through Social Media
Authors: Kruti Dave
Abstract:
Social media marketing is an essential component of 21st-century business. Social media platforms enable small and medium-sized businesses to enhance brand recognition, generate leads and sales. However, the research on social media marketing is still fragmented and focuses on specific topics, such as effective communication techniques. Since the various ways in which social media impacts individuals and companies alike, the authors of this article focus on the origin, impacts, and current state of Social Media, emphasizing their significance as customer empowerment agents. It illustrates their potential and current responsibilities as part of the corporate business strategy and also suggests several methods to engage them as marketing tools. The focus of social media marketing ranges from defenders to explorers, the culture of Social media marketing encompasses the poles of conservatism and modernity, social media marketing frameworks lie between hierarchies and networks, and its management goes from autocracy to anarchy. This research proposes an integrative framework for small and medium-sized businesses through social media, and the influence of the same will be measured. This strategy will help industry experts to understand this new era. We propose an axiom: Social Media is always a function of marketing as a revenue generator.Keywords: social media, marketing strategy, media marketing, brand awareness, customer engagement, revenue generator, brand recognition
Procedia PDF Downloads 1971166 Tools and Techniques in Risk Assessment in Public Risk Management Organisations
Authors: Atousa Khodadadyan, Gabe Mythen, Hirbod Assa, Beverley Bishop
Abstract:
Risk assessment and the knowledge provided through this process is a crucial part of any decision-making process in the management of risks and uncertainties. Failure in assessment of risks can cause inadequacy in the entire process of risk management, which in turn can lead to failure in achieving organisational objectives as well as having significant damaging consequences on populations affected by the potential risks being assessed. The choice of tools and techniques in risk assessment can influence the degree and scope of decision-making and subsequently the risk response strategy. There are various available qualitative and quantitative tools and techniques that are deployed within the broad process of risk assessment. The sheer diversity of tools and techniques available to practitioners makes it difficult for organisations to consistently employ the most appropriate methods. This tools and techniques adaptation is rendered more difficult in public risk regulation organisations due to the sensitive and complex nature of their activities. This is particularly the case in areas relating to the environment, food, and human health and safety, when organisational goals are tied up with societal, political and individuals’ goals at national and international levels. Hence, recognising, analysing and evaluating different decision support tools and techniques employed in assessing risks in public risk management organisations was considered. This research is part of a mixed method study which aimed to examine the perception of risk assessment and the extent to which organisations practise risk assessment’ tools and techniques. The study adopted a semi-structured questionnaire with qualitative and quantitative data analysis to include a range of public risk regulation organisations from the UK, Germany, France, Belgium and the Netherlands. The results indicated the public risk management organisations mainly use diverse tools and techniques in the risk assessment process. The primary hazard analysis; brainstorming; hazard analysis and critical control points were described as the most practiced risk identification techniques. Within qualitative and quantitative risk analysis, the participants named the expert judgement, risk probability and impact assessment, sensitivity analysis and data gathering and representation as the most practised techniques.Keywords: decision-making, public risk management organisations, risk assessment, tools and techniques
Procedia PDF Downloads 2821165 Photovoltaic Modules Fault Diagnosis Using Low-Cost Integrated Sensors
Authors: Marjila Burhanzoi, Kenta Onohara, Tomoaki Ikegami
Abstract:
Faults in photovoltaic (PV) modules should be detected to the greatest extent as early as possible. For that conventional fault detection methods such as electrical characterization, visual inspection, infrared (IR) imaging, ultraviolet fluorescence and electroluminescence (EL) imaging are used, but they either fail to detect the location or category of fault, or they require expensive equipment and are not convenient for onsite application. Hence, these methods are not convenient to use for monitoring small-scale PV systems. Therefore, low cost and efficient inspection techniques with the ability of onsite application are indispensable for PV modules. In this study in order to establish efficient inspection technique, correlation between faults and magnetic flux density on the surface is of crystalline PV modules are investigated. Magnetic flux on the surface of normal and faulted PV modules is measured under the short circuit and illuminated conditions using two different sensor devices. One device is made of small integrated sensors namely 9-axis motion tracking sensor with a 3-axis electronic compass embedded, an IR temperature sensor, an optical laser position sensor and a microcontroller. This device measures the X, Y and Z components of the magnetic flux density (Bx, By and Bz) few mm above the surface of a PV module and outputs the data as line graphs in LabVIEW program. The second device is made of a laser optical sensor and two magnetic line sensor modules consisting 16 pieces of magnetic sensors. This device scans the magnetic field on the surface of PV module and outputs the data as a 3D surface plot of the magnetic flux intensity in a LabVIEW program. A PC equipped with LabVIEW software is used for data acquisition and analysis for both devices. To show the effectiveness of this method, measured results are compared to those of a normal reference module and their EL images. Through the experiments it was confirmed that the magnetic field in the faulted areas have different profiles which can be clearly identified in the measured plots. Measurement results showed a perfect correlation with the EL images and using position sensors it identified the exact location of faults. This method was applied on different modules and various faults were detected using it. The proposed method owns the ability of on-site measurement and real-time diagnosis. Since simple sensors are used to make the device, it is low cost and convenient to be sued by small-scale or residential PV system owners.Keywords: fault diagnosis, fault location, integrated sensors, PV modules
Procedia PDF Downloads 2241164 The Impact of Artificial Intelligence on Spare Parts Technology
Authors: Amir Andria Gad Shehata
Abstract:
Minimizing the inventory cost, optimizing the inventory quantities, and increasing system operational availability are the main motivations to enhance forecasting demand of spare parts in a major power utility company in Medina. This paper reports in an effort made to optimize the orders quantities of spare parts by improving the method of forecasting the demand. The study focuses on equipment that has frequent spare parts purchase orders with uncertain demand. The pattern of the demand considers a lumpy pattern which makes conventional forecasting methods less effective. A comparison was made by benchmarking various methods of forecasting based on experts’ criteria to select the most suitable method for the case study. Three actual data sets were used to make the forecast in this case study. Two neural networks (NN) approaches were utilized and compared, namely long short-term memory (LSTM) and multilayer perceptron (MLP). The results as expected, showed that the NN models gave better results than traditional forecasting method (judgmental method). In addition, the LSTM model had a higher predictive accuracy than the MLP model.Keywords: spare part, spare part inventory, inventory model, optimization, maintenanceneural network, LSTM, MLP, forecasting demand, inventory management
Procedia PDF Downloads 631163 User Selections on Social Network Applications
Authors: C. C. Liang
Abstract:
MSN used to be the most popular application for communicating among social networks, but Facebook chat is now the most popular. Facebook and MSN have similar characteristics, including usefulness, ease-of-use, and a similar function, which is the exchanging of information with friends. Facebook outperforms MSN in both of these areas. However, the adoption of Facebook and abandonment of MSN have occurred for other reasons. Functions can be improved, but users’ willingness to use does not just depend on functionality. Flow status has been established to be crucial to users’ adoption of cyber applications and to affects users’ adoption of software applications. If users experience flow in using software application, they will enjoy using it frequently, and even change their preferred application from an old to this new one. However, no investigation has examined choice behavior related to switching from Facebook to MSN based on a consideration of flow experiences and functions. This investigation discusses the flow experiences and functions of social-networking applications. Flow experience is found to affect perceived ease of use and perceived usefulness; perceived ease of use influences information ex-change with friends, and perceived usefulness; information exchange influences perceived usefulness, but information exchange has no effect on flow experience.Keywords: consumer behavior, social media, technology acceptance model, flow experience
Procedia PDF Downloads 3551162 Predictive Analytics in Traffic Flow Management: Integrating Temporal Dynamics and Traffic Characteristics to Estimate Travel Time
Authors: Maria Ezziani, Rabie Zine, Amine Amar, Ilhame Kissani
Abstract:
This paper introduces a predictive model for urban transportation engineering, which is vital for efficient traffic management. Utilizing comprehensive datasets and advanced statistical techniques, the model accurately forecasts travel times by considering temporal variations and traffic dynamics. Machine learning algorithms, including regression trees and neural networks, are employed to capture sequential dependencies. Results indicate significant improvements in predictive accuracy, particularly during peak hours and holidays, with the incorporation of traffic flow and speed variables. Future enhancements may integrate weather conditions and traffic incidents. The model's applications range from adaptive traffic management systems to route optimization algorithms, facilitating congestion reduction and enhancing journey reliability. Overall, this research extends beyond travel time estimation, offering insights into broader transportation planning and policy-making realms, empowering stakeholders to optimize infrastructure utilization and improve network efficiency.Keywords: predictive analytics, traffic flow, travel time estimation, urban transportation, machine learning, traffic management
Procedia PDF Downloads 841161 Application of Deep Neural Networks to Assess Corporate Credit Rating
Authors: Parisa Golbayani, Dan Wang, Ionut¸ Florescu
Abstract:
In this work we implement machine learning techniques to financial statement reports in order to asses company’s credit rating. Specifically, the work analyzes the performance of four neural network architectures (MLP, CNN, CNN2D, LSTM) in predicting corporate credit rating as issued by Standard and Poor’s. The paper focuses on companies from the energy, financial, and healthcare sectors in the US. The goal of this analysis is to improve application of machine learning algorithms to credit assessment. To accomplish this, the study investigates three questions. First, we investigate if the algorithms perform better when using a selected subset of important features or whether better performance is obtained by allowing the algorithms to select features themselves. Second, we address the temporal aspect inherent in financial data and study whether it is important for the results obtained by a machine learning algorithm. Third, we aim to answer if one of the four particular neural network architectures considered consistently outperforms the others, and if so under which conditions. This work frames the problem as several case studies to answer these questions and analyze the results using ANOVA and multiple comparison testing procedures.Keywords: convolutional neural network, long short term memory, multilayer perceptron, credit rating
Procedia PDF Downloads 2351160 Sea-Land Segmentation Method Based on the Transformer with Enhanced Edge Supervision
Authors: Lianzhong Zhang, Chao Huang
Abstract:
Sea-land segmentation is a basic step in many tasks such as sea surface monitoring and ship detection. The existing sea-land segmentation algorithms have poor segmentation accuracy, and the parameter adjustments are cumbersome and difficult to meet actual needs. Also, the current sea-land segmentation adopts traditional deep learning models that use Convolutional Neural Networks (CNN). At present, the transformer architecture has achieved great success in the field of natural images, but its application in the field of radar images is less studied. Therefore, this paper proposes a sea-land segmentation method based on the transformer architecture to strengthen edge supervision. It uses a self-attention mechanism with a gating strategy to better learn relative position bias. Meanwhile, an additional edge supervision branch is introduced. The decoder stage allows the feature information of the two branches to interact, thereby improving the edge precision of the sea-land segmentation. Based on the Gaofen-3 satellite image dataset, the experimental results show that the method proposed in this paper can effectively improve the accuracy of sea-land segmentation, especially the accuracy of sea-land edges. The mean IoU (Intersection over Union), edge precision, overall precision, and F1 scores respectively reach 96.36%, 84.54%, 99.74%, and 98.05%, which are superior to those of the mainstream segmentation models and have high practical application values.Keywords: SAR, sea-land segmentation, deep learning, transformer
Procedia PDF Downloads 1811159 Nighttime Dehaze - Enhancement
Authors: Harshan Baskar, Anirudh S. Chakravarthy, Prateek Garg, Divyam Goel, Abhijith S. Raj, Kshitij Kumar, Lakshya, Ravichandra Parvatham, V. Sushant, Bijay Kumar Rout
Abstract:
In this paper, we introduce a new computer vision task called nighttime dehaze-enhancement. This task aims to jointly perform dehazing and lightness enhancement. Our task fundamentally differs from nighttime dehazing – our goal is to jointly dehaze and enhance scenes, while nighttime dehazing aims to dehaze scenes under a nighttime setting. In order to facilitate further research on this task, we release a new benchmark dataset called Reside-β Night dataset, consisting of 4122 nighttime hazed images from 2061 scenes and 2061 ground truth images. Moreover, we also propose a new network called NDENet (Nighttime Dehaze-Enhancement Network), which jointly performs dehazing and low-light enhancement in an end-to-end manner. We evaluate our method on the proposed benchmark and achieve SSIM of 0.8962 and PSNR of 26.25. We also compare our network with other baseline networks on our benchmark to demonstrate the effectiveness of our approach. We believe that nighttime dehaze-enhancement is an essential task, particularly for autonomous navigation applications, and we hope that our work will open up new frontiers in research. Our dataset and code will be made publicly available upon acceptance of our paper.Keywords: dehazing, image enhancement, nighttime, computer vision
Procedia PDF Downloads 1571158 Observationally Constrained Estimates of Aerosol Indirect Radiative Forcing over Indian Ocean
Authors: Sofiya Rao, Sagnik Dey
Abstract:
Aerosol-cloud-precipitation interaction continues to be one of the largest sources of uncertainty in quantifying the aerosol climate forcing. The uncertainty is increasing from global to regional scale. This problem remains unresolved due to the large discrepancy in the representation of cloud processes in the climate models. Most of the studies on aerosol-cloud-climate interaction and aerosol-cloud-precipitation over Indian Ocean (like INDOEX, CAIPEEX campaign etc.) are restricted to either particular to one season or particular to one region. Here we developed a theoretical framework to quantify aerosol indirect radiative forcing using Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol and cloud products of 15 years (2000-2015) period over the Indian Ocean. This framework relies on the observationally constrained estimate of the aerosol-induced change in cloud albedo. We partitioned the change in cloud albedo into the change in Liquid Water Path (LWP) and Effective Radius of Clouds (Reff) in response to an aerosol optical depth (AOD). Cloud albedo response to an increase in AOD is most sensitive in the range of LWP between 120-300 gm/m² for a range of Reff varying from 8-24 micrometer, which means aerosols are most sensitive to this range of LWP and Reff. Using this framework, aerosol forcing during a transition from indirect to semi-direct effect is also calculated. The outcome of this analysis shows best results over the Arabian Sea in comparison with the Bay of Bengal and the South Indian Ocean because of heterogeneity in aerosol spices over the Arabian Sea. Over the Arabian Sea during Winter Season the more absorbing aerosols are dominating, during Pre-monsoon dust (coarse mode aerosol particles) are more dominating. In winter and pre-monsoon majorly the aerosol forcing is more dominating while during monsoon and post-monsoon season meteorological forcing is more dominating. Over the South Indian Ocean, more or less same types of aerosol (Sea salt) are present. Over the Arabian Sea the Aerosol Indirect Radiative forcing are varying from -5 ± 4.5 W/m² for winter season while in other seasons it is reducing. The results provide observationally constrained estimates of aerosol indirect forcing in the Indian Ocean which can be helpful in evaluating the climate model performance in the context of such complex interactions.Keywords: aerosol-cloud-precipitation interaction, aerosol-cloud-climate interaction, indirect radiative forcing, climate model
Procedia PDF Downloads 1751157 Developing a Secure Iris Recognition System by Using Advance Convolutional Neural Network
Authors: Kamyar Fakhr, Roozbeh Salmani
Abstract:
Alphonse Bertillon developed the first biometric security system in the 1800s. Today, many governments and giant companies are considering or have procured biometrically enabled security schemes. Iris is a kaleidoscope of patterns and colors. Each individual holds a set of irises more unique than their thumbprint. Every single day, giant companies like Google and Apple are experimenting with reliable biometric systems. Now, after almost 200 years of improvements, face ID does not work with masks, it gives access to fake 3D images, and there is no global usage of biometric recognition systems as national identity (ID) card. The goal of this paper is to demonstrate the advantages of iris recognition overall biometric recognition systems. It make two extensions: first, we illustrate how a very large amount of internet fraud and cyber abuse is happening due to bugs in face recognition systems and in a very large dataset of 3.4M people; second, we discuss how establishing a secure global network of iris recognition devices connected to authoritative convolutional neural networks could be the safest solution to this dilemma. Another aim of this study is to provide a system that will prevent system infiltration caused by cyber-attacks and will block all wireframes to the data until the main user ceases the procedure.Keywords: biometric system, convolutional neural network, cyber-attack, secure
Procedia PDF Downloads 2191156 Disaster Resilience Analysis of Atlanta Interstate Highway System within the Perimeter
Authors: Mengmeng Liu, J. David Frost
Abstract:
Interstate highway system within the Atlanta Perimeter plays an important role in residents’ daily life. The serious influence of Atlanta I-85 Collapses implies that transportation system in the region lacks a cohesive and comprehensive transportation plan. Therefore, disaster resilience analysis of the transportation system is necessary. Resilience is the system’s capability to persist or to maintain transportation services when exposed to changes or shocks. This paper analyzed the resilience of the whole transportation system within the Perimeter and see how removing interstates within the Perimeter will affect the resilience of the transportation system. The data used in the paper are Atlanta transportation networks and LEHD Origin-Destination Employment Statistics data. First, we calculate the traffic flow on each road section based on LEHD data assuming each trip travel along the shortest travel time paths. Second, we calculate the measure of resilience, which is flow-based connectivity and centrality of the transportation network, and see how they will change if we remove each section of interstates from the current transportation system. Finally, we get the resilience function curve of the interstates and identify the most resilient interstates section. The resilience analysis results show that the framework of calculation resilience is effective and can provide some useful information for the transportation planning and sustainability analysis of the transportation infrastructures.Keywords: connectivity, interstate highway system, network analysis, resilience analysis
Procedia PDF Downloads 2611155 An Effective and Efficient Web Platform for Monitoring, Control, and Management of Drones Supported by a Microservices Approach
Authors: Jorge R. Santos, Pedro Sebastiao
Abstract:
In recent years there has been a great growth in the use of drones, being used in several areas such as security, agriculture, or research. The existence of some systems that allow the remote control of drones is a reality; however, these systems are quite simple and directed to specific functionality. This paper proposes the development of a web platform made in Vue.js and Node.js to control, manage, and monitor drones in real time. Using a microservice architecture, the proposed project will be able to integrate algorithms that allow the optimization of processes. Communication with remote devices is suggested via HTTP through 3G, 4G, and 5G networks and can be done in real time or by scheduling routes. This paper addresses the case of forest fires as one of the services that could be included in a system similar to the one presented. The results obtained with the elaboration of this project were a success. The communication between the web platform and drones allowed its remote control and monitoring. The incorporation of the fire detection algorithm in the platform proved possible a real time analysis of the images captured by the drone without human intervention. The proposed system has proved to be an asset to the use of drones in fire detection. The architecture of the application developed allows other algorithms to be implemented, obtaining a more complex application with clear expansion.Keywords: drone control, microservices, node.js, unmanned aerial vehicles, vue.js
Procedia PDF Downloads 1481154 Bibliometric Analysis of Global Research Trends on Organization Culture, Strategic Leadership and Performance Using Scopus Database
Authors: Anyia Nduka, Aslan Bin Amad Senin
Abstract:
Taking a behavioral perspective of Organization Culture, Strategic Leadership, and performance (OC, SLP). We examine the role of Strategic Leadership as key vicious mechanism linking OC,SLP to the organizational capacities. Given the increasing degree of dependence of modern businesses on the use and scientific discovery of relevant data, research efforts around the entire globe have been accelerated. In today's corporate world, Strategic Leadership is still the most sustainable option of performance and competitive advantage. This is why it is critical to gain a deep understanding of research area and to strengthen new collaborative networks in efforts to support research transition towards these integrative efforts. This bibliometric analysis is aimed to examine global trends in OC,SLP research based on publication output, author co-authorships, and co-occurrences of author keywords among authors and affiliated countries. 2829 journal articles were retrieved from the Scopus database Between 1974 and 2021. From the research findings, there is a significant increase in number of publications with strong global collaboration (e.g., USA & UK). We also discovered that while most countries/territories without affiliations were centered in developing countries, the outstanding performance of Asian countries and the volume of their collaborations should be emulated.Keywords: organizational culture, strategic leadership, organizational resilience, performance
Procedia PDF Downloads 851153 Modelling Forest Fire Risk in the Goaso Forest Area of Ghana: Remote Sensing and Geographic Information Systems Approach
Authors: Bernard Kumi-Boateng, Issaka Yakubu
Abstract:
Forest fire, which is, an uncontrolled fire occurring in nature has become a major concern for the Forestry Commission of Ghana (FCG). The forest fires in Ghana usually result in massive destruction and take a long time for the firefighting crews to gain control over the situation. In order to assess the effect of forest fire at local scale, it is important to consider the role fire plays in vegetation composition, biodiversity, soil erosion, and the hydrological cycle. The occurrence, frequency and behaviour of forest fires vary over time and space, primarily as a result of the complicated influences of changes in land use, vegetation composition, fire suppression efforts, and other indigenous factors. One of the forest zones in Ghana with a high level of vegetation stress is the Goaso forest area. The area has experienced changes in its traditional land use such as hunting, charcoal production, inefficient logging practices and rural abandonment patterns. These factors which were identified as major causes of forest fire, have recently modified the incidence of fire in the Goaso area. In spite of the incidence of forest fires in the Goaso forest area, most of the forest services do not provide a cartographic representation of the burned areas. This has resulted in significant amount of information being required by the firefighting unit of the FCG to understand fire risk factors and its spatial effects. This study uses Remote Sensing and Geographic Information System techniques to develop a fire risk hazard model using the Goaso Forest Area (GFA) as a case study. From the results of the study, natural forest, agricultural lands and plantation cover types were identified as the major fuel contributing loads. However, water bodies, roads and settlements were identified as minor fuel contributing loads. Based on the major and minor fuel contributing loads, a forest fire risk hazard model with a reasonable accuracy has been developed for the GFA to assist decision making.Keywords: forest, GIS, remote sensing, Goaso
Procedia PDF Downloads 4571152 COVID-19 Case: A Definition of Infodemia through Online Italian Journalism
Authors: Concetta Papapicco
Abstract:
The spreading of new Coronavirus (COVID-19) in addition to becoming a global phenomenon, following the declaration of a pandemic state, has generated excessive access to information, sometimes not thoroughly screened, which makes it difficult to navigate a given topic because of the difficulty of finding reliable sources. As a result, there is a high level of contagion, understood as the spread of the virus, but also as the spread of information in a viral and harmful way, which prompted the World Health Organization to coin the term Infodemia to give 'a name' the phenomenon of excessive information. With neologism 'Infodemia', the World Health Organization (OMS) wanted, in these days when fear of the coronavirus is raging, point out that perhaps the greatest danger of global society in the age of social media. This phenomenon is the distortion of reality in the rumble of echoes and comments of the global community on real or often invented facts. The general purpose of the exploratory study is to investigate how the coronavirus situation is described from journalistic communication. Starting from La Repubblica online, as a reference journalistic magazine, as a specific objective, the research aims to understand the way in which journalistic communication describes the phenomenon of the COVID-19 virus spread, the spread of contagion and restrictive measures of social distancing in the Italian context. The study starts from the hypothesis that if the circulation of information helps to create a social representation of the phenomenon, the excessive accessibility to sources of information (Infodemia) can be modulated by the 'how' the phenomenon is described by the journalists. The methodology proposed, in fact, in the exploratory study is a quanti-qualitative (mixed) method. A Content Analysis with the SketchEngine software is carried out first. In support of the Content Analysis, a Diatextual Analysis was carried out. The Diatextual Analysis is a qualitative analysis useful to detect in the analyzed texts, that is the online articles of La Repubblica on the topic of coronavirus, Subjectivity, Argomentativity, and Mode. The research focuses mainly on 'Mode' or 'How' are the events related to coronavirus in the online articles of La Repubblica about COVID-19 phenomenon. The results show the presence of the contrast vision about COVID-19 situation in Italy.Keywords: coronavirus, Italian infodemia, La Republica online, mix method
Procedia PDF Downloads 1221151 Swelling Hydrogels on the Base Nitron Fiber Wastes for Water Keeping in Sandy Soils
Authors: Alim Asamatdinov
Abstract:
Superabsorbent polymer hydrogels can swell to absorb huge volumes of water or aqueous solutions. This property has led to many practical applications of these new materials, particularly in agriculture for improving the water retention of soils and the water supply of plants. This article reviews the methods of polymeric hydrogels, measurements and treatments of their properties, as well as their effects on soil and on plant growth. The thermodynamic approach used to describe the swelling behaviour of polymer networks proves to be quite helpful in modelling the hydrogel efficiency of water-absorbing additives. The paper presents the results of a study of the physical and chemical properties of hydrogels based on of the production of "Nitron" (Polyacrylonitrile) wastes fibre and salts of the 3-rd transition metals and formalin. The developed hydrogels HG-Al, HG-Cr and HG-formalin have been tested for water holding the capacity of sand. Such a conclusion was also confirmed by data from the method of determining the wilting point by vegetative thumbnails. In the entering process using a dose of 0.1% of the swelling polymeric hydrogel in sand with a culture of barley the difference between the wilting point in comparison with the control was negligible. This indicates that the moisture which was contained in the hydrogel is involved in moisture availability for plant growth, to the same extent as that in the capillaries.Keywords: hydrogel, chemical, polymer, sandy, colloid
Procedia PDF Downloads 1431150 A Corpus-Linguistic Analysis of Online Iranian News Coverage on Syrian Revolution
Authors: Amaal Ali Al-Gamde
Abstract:
The Syrian revolution is a major issue in the Middle East, which draws in world powers and receives a great focus in international mass media since 2011. The heavy global reliance on cyber news and digital sources plays a key role in conveying a sense of bias to a wide range of online readers. Thus, based on the assumption that media discourse possesses ideological implications, this study investigates the representation of Syrian revolution in online media. The paper explores the discursive constructions of anti and pro-government powers in Syrian revolution in 1000,000-word corpus of Fars online reports (an Iranian news agency), issued between 2013 and 2015. Taking a corpus assisted discourse analysis approach, the analysis investigates three types of lexicosemantic relations, the semantic macrostructures within which the two social actors are framed, the lexical collocations characterizing the news discourse and the discourse prosodies they tell about the two sides of the conflict. The study utilizes computer-based approaches, sketch engine and AntConc software to minimize the bias of the subjective analysis. The analysis moves from the insights of lexical frequencies and keyness scores to examine themes and the collocational patterns. The findings reveal the Fars agency’s ideological mode of representations in reporting events of Syrian revolution in two ways. The first is by stereotyping the opposition groups under the umbrella of terrorism, using words such as (law breakers, foreign-backed groups, militant groups, terrorists) to legitimize the atrocities of security forces against protesters and enhance horror among civilians. The second is through emphasizing the power of the government and depicting it as the defender of the Arab land by foregrounding the discourse of international conspiracy against Syria. The paper concludes discussing the potential importance of triangulating corpus linguistic tools with critical discourse analysis to elucidate more about discourses and reality.Keywords: discourse prosody, ideology, keyness, semantic macrostructure
Procedia PDF Downloads 1311149 An Application for Risk of Crime Prediction Using Machine Learning
Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento
Abstract:
The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.Keywords: crime prediction, machine learning, public safety, smart city
Procedia PDF Downloads 1121148 Urban Resilince and Its Prioritised Components: Analysis of Industrial Township Greater Noida
Authors: N. Mehrotra, V. Ahuja, N. Sridharan
Abstract:
Resilience is an all hazard and a proactive approach, require a multidisciplinary input in the inter related variables of the city system. This research based to identify and operationalize indicators for assessment in domain of institutions, infrastructure and knowledge, all three operating in task oriented community networks. This paper gives a brief account of the methodology developed for assessment of Urban Resilience and its prioritized components for a target population within a newly planned urban complex integrating Surajpur and Kasna village as nodes. People’s perception of Urban Resilience has been examined by conducting questionnaire survey among the target population of Greater Noida. As defined by experts, Urban Resilience of a place is considered to be both a product and process of operation to regain normalcy after an event of disturbance of certain level. Based on this methodology, six indicators are identified that contribute to perception of urban resilience both as in the process of evolution and as an outcome. The relative significance of 6 R’ has also been identified. The dependency factor of various resilience indicators have been explored in this paper, which helps in generating new perspective for future research in disaster management. Based on the stated factors this methodology can be applied to assess urban resilience requirements of a well planned town, which is not an end in itself, but calls for new beginnings.Keywords: disaster, resilience, system, urban
Procedia PDF Downloads 4581147 Critical Parameters of a Square-Well Fluid
Authors: Hamza Javar Magnier, Leslie V. Woodcock
Abstract:
We report extensive molecular dynamics (MD) computational investigations into the thermodynamic description of supercritical properties for a model fluid that is the simplest realistic representation of atoms or molecules. The pair potential is a hard-sphere repulsion of diameter σ with a very short attraction of length λσ. When λ = 1.005 the range is so short that the model atoms are referred to as “adhesive spheres”. Molecular dimers, trimers …etc. up to large clusters, or droplets, of many adhesive-sphere atoms are unambiguously defined. This then defines percolation transitions at the molecular level that bound the existence of gas and liquid phases at supercritical temperatures, and which define the existence of a supercritical mesophase. Both liquid and gas phases are seen to terminate at the loci of percolation transitions, and below a second characteristic temperature (Tc2) are separated by the supercritical mesophase. An analysis of the distribution of clusters in gas, meso- and liquid phases confirms the colloidal nature of this mesophase. The general phase behaviour is compared with both experimental properties of the water-steam supercritical region and also with formally exact cluster theory of Mayer and Mayer. Both are found to be consistent with the present findings that in this system the supercritical mesophase narrows in density with increasing T > Tc and terminates at a higher Tc2 at a confluence of the primary percolation loci. The expended plot of the MD data points in the mesophase of 7 critical and supercritical isotherms in highlight this narrowing in density of the linear-slope region of the mesophase as temperature is increased above the critical. This linearity in the mesophase implies the existence of a linear combination rule between gas and liquid which is an extension of the Lever rule in the subcritical region, and can be used to obtain critical parameters without resorting to experimental data in the two-phase region. Using this combination rule, the calculated critical parameters Tc = 0.2007 and Pc = 0.0278 are found be agree with the values found by of Largo and coworkers. The properties of this supercritical mesophase are shown to be consistent with an alternative description of the phenomenon of critical opalescence seen in the supercritical region of both molecular and colloidal-protein supercritical fluids.Keywords: critical opalescence, supercritical, square-well, percolation transition, critical parameters.
Procedia PDF Downloads 5211146 Tsunami Vulnerability of Critical Infrastructure: Development and Application of Functions for Infrastructure Impact Assessment
Authors: James Hilton Williams
Abstract:
Recent tsunami events, including the 2011 Tohoku Tsunami, Japan, and the 2015 Illapel Tsunami, Chile, have highlighted the potential for tsunami impacts on the built environment. International research in the tsunami impacts domain has been largely focused toward impacts on buildings and casualty estimations, while only limited attention has been placed on the impacts on infrastructure which is critical for the recovery of impacted communities. New Zealand, with 75% of the population within 10 km of the coast, has a large amount of coastal infrastructure exposed to local, regional and distant tsunami sources. To effectively manage tsunami risk for New Zealand critical infrastructure, including energy, transportation, and communications, the vulnerability of infrastructure networks and components must first be determined. This research develops infrastructure asset vulnerability, functionality and repair- cost functions based on international post-event tsunami impact assessment data from technologically similar countries, including Japan and Chile, and adapts these to New Zealand. These functions are then utilized within a New Zealand based impact framework, allowing for cost benefit analyses, effective tsunami risk management strategies and mitigation options for exposed critical infrastructure to be determined, which can also be applied internationally.Keywords: impact assessment, infrastructure, tsunami impacts, vulnerability functions
Procedia PDF Downloads 1611145 Effect of Electronic Banking on the Performance of Deposit Money Banks in Nigeria: Using ATM and Mobile Phone as a Case Study
Authors: Charity Ifunanya Osakwe, Victoria Ogochuchukwu Obi-Nwosu, Chima Kenneth Anachedo
Abstract:
The study investigates how automated teller machines (ATM) and mobile banking affect deposit money banks in the Nigerian economy. The study made use of time series data which were obtained from the Central Bank of Nigeria Statistical Bulletin from 2009 to 2021. The Central Bank of Nigeria (CBN) data on automated teller machine and mobile phones were used to proxy electronic banking while total deposit in banks proxied the performance of deposit money banks. The analysis for the study was done using ordinary least square econometric technique with the aid of economic view statistical package. The results show that the automated teller machine has a positive and significant effect on the total deposits of deposit money banks in Nigeria and that making use of deposits of deposit money banks in Nigeria. It was concluded in the study that e-banking has equally increased banking access to customers and also created room for banks to expand their operations to more customers. The study recommends that banks in Nigeria should prioritize the expansion and maintenance of ATM networks as well as continue to invest in and develop more mobile banking services.Keywords: electronic, banking, automated teller machines, mobile, deposit
Procedia PDF Downloads 54