Search results for: pollution reduction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6328

Search results for: pollution reduction

2578 Development of Rh/Ce-Zr-La/Al2O3 TWCs’ Wash Coat: Effect of Reactor on Catalytic and Thermal Stability

Authors: Su-Ning Wang, Yao-Qiang Chen

Abstract:

The CeO2-ZrO2-La2O3-Al2O3 composite oxides are synthesized using co-precipitation method by two different reactors (i.e. continuous stirred-tank reactor and batch reactor), and the corresponding Rh-only three-way catalysts are obtained by wet-impregnation approach. The textural, structural, morphology and redox properties of the support materials, as well as the catalytic performance of the Rh-only catalyst are investigated systematically. The results reveal that the materials (CZLA-C) synthesized by continuous stirred-tank reactor have a better physic-chemical properties than the counterpart material (CZLA-B) prepared by batch reactor. After aging treatment at 1000 ℃ for 5 h, the BET surface area and pore volume of S1 reach up to 76 m2 g-1 and 0.36 mL/g, respectively, which is higher than that of S2. The XRD and Raman results demonstrate that a high structural stability is obtained by S1 because of the negligible lattice variation and the slight grain growth after aging treatment. The SEM and TEM images display that the morphology of S1 is assembled by many homogeneous primary nanoparticles (about 6.12 nm) that are connected to form mesoporous structure The TPR measurement shows that S1 possesses a higher reduction ability than S2. Compared with the catalyst supported on the CZLA-B, the as-prepared CZLA-C demonstrates an improved three-way catalytic activity both before and after aging treatment.

Keywords: composite oxides, reactor, catalysis, catalytic performance

Procedia PDF Downloads 279
2577 Preparation and Properties of Chloroacetated Natural Rubber Rubber Foam Using Corn Starch as Curing Agent

Authors: Ploenpit Boochathum, Pitchayanad Kaolim, Phimjutha Srisangkaew

Abstract:

In general, rubber foam is produced based on the sulfur curing system. However, the remaining sulfur in the rubber product waste is burned to sulfur dioxide gas causing the environment pollution. To avoid using sulfur as curing agent in the rubber foam products, this research work proposes non-sulfur curing system by using corn starch as a curing agent. The ether crosslinks were proposed to be produced via the functional bonding between hydroxyl groups of the starch molecules and chloroacetate groups added on the natural rubber molecules. The chloroacetated natural rubber (CNR) latex was prepared via the epoxidation reaction of the concentrated natural rubber latex, subsequently, epoxy rings were attacked by chloroacetic acid to produce hydroxyl groups and chloroacetate groups on the rubber molecules. Foaming agent namely NaHCO3 was selected to add in the CNR latex due to the low decomposition temperature at about 50°C. The appropriate curing temperature was assigned to be 90°C that is above gelatinization temperature; 60-70°C, of starch. The effect of weight ratio of starch, i.e., 0 phr, 3 phr and 5 phr, on the physical properties of CNR rubber foam was investigated. It was found that density reduced from 0.81 g/cm3 for 0 phr to 0.75 g/cm3 for 3 phr and 0.79 g/cm3 for 5 phr. The ability to return to its original thickness after prolonged compressive stresses of CNR rubber foam cured with starch loading of 5 phr was found to be considerably better than that of CNR rubber foam cured with starch 3 phr and CNR rubber foam without addition of starch according to the compression set that was determined to decrease from 66.67% to 40% and 26.67% with the increase loading of starch. The mechanical properties including tensile strength and modulus of CNR rubber foams cured using starch were determined to increase except that the elongation at break was found to decrease. In addition, all mechanical properties of CNR rubber foams cured with the starch 3 phr and 5 phr were found to be slightly different and drastically higher than those of CNR rubber foam without the addition of starch. This research work indicates that starch can be applicable as a curing agent for CNR rubber. This is confirmed by the increase of the elastic modulus (G') of CNR rubber foams that was cured with the starch over the CNR rubber foam without curing agent. This type of rubber foam is believed to be one of the biodegradable and environment-friendly product that can be cured at low temperature of 90°C.

Keywords: chloroacetated natural rubber, corn starch, non-sulfur curing system, rubber foam

Procedia PDF Downloads 292
2576 Energy Analysis of Sugarcane Production: A Case Study in Metehara Sugar Factory in Ethiopia

Authors: Wasihun Girma Hailemariam

Abstract:

Energy is one of the key elements required for every agricultural activity, especially for large scale agricultural production such as sugarcane cultivation which mostly is used to produce sugar and bioethanol from sugarcane. In such kinds of resource (energy) intensive activities, energy analysis of the production system and looking for other alternatives which can reduce energy inputs of the sugarcane production process are steps forward for resource management. The purpose of this study was to determine input energy (direct and indirect) per hectare of sugarcane production sector of Metehara sugar factory in Ethiopia. Total energy consumption of the production system was 61,642 MJ/ha-yr. This total input energy is a cumulative value of different inputs (direct and indirect inputs) in the production system. The contribution of these different inputs is discussed and a scenario of substituting the most influential input by other alternative input which can replace the original input in its nutrient content was discussed. In this study the most influential input for increased energy consumption was application of organic fertilizer which accounted for 50 % of the total energy consumption. Filter cake which is a residue from the sugar production in the factory was used to substitute the organic fertilizer and the reduction in the energy consumption of the sugarcane production was discussed

Keywords: energy analysis, organic fertilizer, resource management, sugarcane

Procedia PDF Downloads 137
2575 A Systematic Approach to Mitigate the Impact of Increased Temperature and Air Pollution in Urban Settings

Authors: Samain Sabrin, Joshua Pratt, Joshua Bryk, Maryam Karimi

Abstract:

Globally, extreme heat events have led to a surge in the number of heat-related moralities. These incidents are further exacerbated in high-density population centers due to the Urban Heat Island (UHI) effect. Varieties of anthropogenic activities such as unsupervised land surface modifications, expansion of impervious areas, and lack of use of vegetation are all contributors to an increase in the amount of heat flux trapped by an urban canopy which intensifies the UHI effect. This project aims to propose a systematic approach to measure the impact of air quality and increased temperature based on urban morphology in the selected metropolitan cities. This project will measure the impact of build environment for urban and regional planning using human biometeorological evaluations (mean radiant temperature, Tmrt). We utilized the Rayman model (capable of calculating short and long wave radiation fluxes affecting the human body) to estimate the Tmrt in an urban environment incorporating location and height of buildings and trees as a supplemental tool in urban planning, and street design. Our current results suggest a strong correlation between building height and increased surface temperature in megacities. This model will help with; 1. Quantify the impacts of the built environment and surface properties on surrounding temperature, 2. Identify priority urban neighborhoods by analyzing Tmrt and air quality data at pedestrian level, 3. Characterizing the need for urban green infrastructure or better urban planning- maximizing the cooling benefit from existing Urban Green Infrastructure (UGI), and 4. Developing a hierarchy of streets for new UGI integration and propose new UGI based on site characteristics and cooling potential.

Keywords: air quality, heat mitigation, human-biometeorological indices, increased temperature, mean radiant temperature, radiation flux, sustainable development, thermal comfort, urban canopy, urban planning

Procedia PDF Downloads 130
2574 Modelling and Simulation of Cascaded H-Bridge Multilevel Single Source Inverter Using PSIM

Authors: Gaddafi Sani Shehu, Tankut Yalcınoz, Abdullahi Bala Kunya

Abstract:

Multilevel inverters such as flying capacitor, diode-clamped, and cascaded H-bridge inverters are very popular particularly in medium and high power applications. This paper focuses on a cascaded H-bridge module using a single direct current (DC) source in order to generate an 11-level output voltage. The noble approach reduces the number of switches and gate drivers, in comparison with a conventional method. The anticipated topology produces more accurate result with an isolation transformer at high switching frequency. Different modulation techniques can be used for the multilevel inverter, but this work features modulation techniques known as selective harmonic elimination (SHE).This modulation approach reduces the number of carriers with reduction in Switching Losses, Total Harmonic Distortion (THD), and thereby increasing Power Quality (PQ). Based on the simulation result obtained, it appears SHE has the ability to eliminate selected harmonics by chopping off the fundamental output component. The performance evaluation of the proposed cascaded multilevel inverter is performed using PSIM simulation package and THD of 0.94% is obtained.

Keywords: cascaded H-bridge multilevel inverter, power quality, selective harmonic elimination

Procedia PDF Downloads 400
2573 Micropillar-Assisted Electric Field Enhancement for High-Efficiency Inactivation of Bacteria

Authors: Sanam Pudasaini, A. T. K. Perera, Ahmed Syed Shaheer Uddin, Sum Huan Ng, Chun Yang

Abstract:

Development of high-efficiency and environment friendly bacterial inactivation methods is of great importance for preventing waterborne diseases which are one of the leading causes of death in the world. Traditional bacterial inactivation methods (e.g., ultraviolet radiation and chlorination) have several limitations such as longer treatment time, formation of toxic byproducts, bacterial regrowth, etc. Recently, an electroporation-based inactivation method was introduced as a substitute. Here, an electroporation-based continuous flow microfluidic device equipped with an array of micropillars is developed, and the device achieved high bacterial inactivation performance ( > 99.9%) within a short exposure time ( < 1 s). More than 99.9% reduction of Escherichia coli bacteria was obtained for the flow rate of 1 mL/hr, and no regrowth of bacteria was observed. Images from scanning electron microscope confirmed the formation of electroporation-induced nano-pore within the cell membrane. Through numerical simulation, it has been shown that sufficiently large electric field strength (3 kV/cm), required for bacterial electroporation, were generated using PDMS micropillars for an applied voltage of 300 V. Further, in this method of inactivation, there is no involvement of chemicals and the formation of harmful by-products is also minimum.

Keywords: electroporation, high-efficiency, inactivation, microfluidics, micropillar

Procedia PDF Downloads 164
2572 The Impact of Gold Mining on Disability: Experiences from the Obuasi Municipal Area

Authors: Mavis Yaa Konadu Agyemang

Abstract:

Despite provisions to uphold and safeguard the rights of persons with disability in Ghana, there is evidence that they still encounter several challenges which limit their full and effective involvement in mainstream society, including the gold mining sector. The study sought to explore how persons with physical disability (PWPDs) experience gold mining in the Obuasi Municipal Area. A qualitative research design was used to discover and understand the experiences of PWPDs regarding mining. The purposive sampling technique was used to select five key informants for the study with the age range of (24-52 years) while snowball sampling aided the selection of 16 persons with various forms of physical disability with the age range of (24-60 years). In-depth interviews were used to gather data. The interviews lasted from forty-five minutes to an hour. In relation to the setting, the interviews of thirteen (13) of the participants with disability were done in their houses, two (2) were done on the phone, and one (1) was done in the office. Whereas the interviews of the five (5) key informants were all done in their offices. Data were analyzed using Creswell’s (2009) concept of thematic analysis. The findings suggest that even though land degradation affected everyone in the area, persons with mobility and visual impairment experienced many difficulties trekking the undulating land for long distances in search of arable land. Also, although mining activities are mostly labour-intensive, PWPDs were not employed even in areas where they could work. Further, the cost of items, in general, was high, affecting PWPDs more due to their economic immobility and paying for other sources of water due to land degradation and water pollution. The study also discovered that the peculiar conditions of PWPDs were not factored into compensation payments, and neither were females with physical disability engaged in compensation negotiations. Also, although some of the infrastructure provided by the gold mining companies in the area was physically accessible to some extent, it was not accessible in terms of information delivery. There is a need to educate the public on the effects of mining on PWPDs, their needs as well as disability issues in general. The Minerals and Mining Act (703) should be amended to include provisions that would consider the peculiar needs of PWPDs in compensation payment.

Keywords: mining, resettlement, compensation, environmental, social, disability

Procedia PDF Downloads 41
2571 Effect of Hydrogen-Diesel Dual Fuel Combustion on the Performance and Emission Characteristics of a Four Stroke-Single Cylinder Diesel Engine

Authors: Madhujit Deb, G. R. K. Sastry, R. S. Panua, Rahul Banerjee, P. K. Bose

Abstract:

The present work attempts to investigate the combustion, performance and emission characteristics of an existing single-cylinder four-stroke compression-ignition engine operated in dual-fuel mode with hydrogen as an alternative fuel. Environmental concerns and limited amount of petroleum fuels have caused interests in the development of alternative fuels like hydrogen for internal combustion (IC) engines. In this experimental investigation, a diesel engine is made to run using hydrogen in dual fuel mode with diesel, where hydrogen is introduced into the intake manifold using an LPG-CNG injector and pilot diesel is injected using diesel injectors. A Timed Manifold Injection (TMI) system has been developed to vary the injection strategies. The optimized timing for the injection of hydrogen was 100 CA after top dead center (ATDC). From the study it was observed that with increasing hydrogen rate, enhancement in brake thermal efficiency (BTHE) of the engine has been observed with reduction in brake specific energy consumption (BSEC). Furthermore, Soot contents decrease with an increase in indicated specific NOx emissions with the enhancement of hydrogen flow rate.

Keywords: diesel engine, hydrogen, BTHE, BSEC, soot, NOx

Procedia PDF Downloads 520
2570 Supplemental VisCo-friction Damping for Dynamical Structural Systems

Authors: Sharad Singh, Ajay Kumar Sinha

Abstract:

Coupled dampers like viscoelastic-frictional dampers for supplemental damping are a newer technique. In this paper, innovative Visco-frictional damping models have been presented and investigated. This paper attempts to couple frictional and fluid viscous dampers into a single unit of supplemental dampers. Visco-frictional damping model is developed by series and parallel coupling of frictional and fluid viscous dampers using Maxwell and Kelvin-Voigat models. The time analysis has been performed using numerical simulation on an SDOF system with varying fundamental periods, subject to a set of 12 ground motions. The simulation was performed using the direct time integration method. MATLAB programming tool was used to carry out the numerical simulation. The response behavior has been analyzed for the varying time period and added damping. This paper compares the response reduction behavior of the two modes of coupling. This paper highlights the performance efficiency of the suggested damping models. It also presents a mathematical modeling approach to visco-frictional dampers and simultaneously suggests the suitable mode of coupling between the two sub-units.

Keywords: hysteretic damping, Kelvin model, Maxwell model, parallel coupling, series coupling, viscous damping

Procedia PDF Downloads 141
2569 A Comprehensive Review of Foam Assisted Water Alternating Gas (FAWAG) Technique: Foam Applications and Mechanisms

Authors: A. Shabib-Asl, M. Abdalla Ayoub Mohammed, A. F. Alta’ee, I. Bin Mohd Saaid, P. Paulo Jose Valentim

Abstract:

In the last few decades, much focus has been placed on enhancing oil recovery from existing fields. This is accomplished by the study and application of various methods. As for recent cases, the study of fluid mobility control and sweep efficiency in gas injection process as well as water alternating gas (WAG) method have demonstrated positive results on oil recovery and thus gained wide interest in petroleum industry. WAG injection application results in an increased oil recovery. Its mechanism consists in reduction of gas oil ratio (GOR). However, there are some problems associated with this which includes poor volumetric sweep efficiency due to its low density and high mobility when compared with oil. This has led to the introduction of foam assisted water alternating gas (FAWAG) technique, which in contrast with WAG injection, acts in improving the sweep efficiency and reducing the gas oil ration therefore maximizing the production rate from the producer wells. This paper presents a comprehensive review of FAWAG process from perspective of Snorre field experience. In addition, some comparative results between FAWAG and the other EOR methods are presented including their setbacks. The main aim is to provide a solid background for future laboratory research and successful field application-extend.

Keywords: GOR, mobility ratio, sweep efficiency, WAG

Procedia PDF Downloads 430
2568 Effective Charge Coupling in Low Dimensional Doped Quantum Antiferromagnets

Authors: Suraka Bhattacharjee, Ranjan Chaudhury

Abstract:

The interaction between the charge degrees of freedom for itinerant antiferromagnets is investigated in terms of generalized charge stiffness constant corresponding to nearest neighbour t-J model and t1-t2-t3-J model. The low dimensional hole doped antiferromagnets are the well known systems that can be described by the t-J-like models. Accordingly, we have used these models to investigate the fermionic pairing possibilities and the coupling between the itinerant charge degrees of freedom. A detailed comparison between spin and charge couplings highlights that the charge and spin couplings show very similar behaviour in the over-doped region, whereas, they show completely different trends in the lower doping regimes. Moreover, a qualitative equivalence between generalized charge stiffness and effective Coulomb interaction is also established based on the comparisons with other theoretical and experimental results. Thus it is obvious that the enhanced possibility of fermionic pairing is inherent in the reduction of Coulomb repulsion with increase in doping concentration. However, the increased possibility can not give rise to pairing without the presence of any other pair producing mechanism outside the t-J model. Therefore, one can conclude that the t-J-like models themselves solely are not capable of producing conventional momentum-based superconducting pairing on their own.

Keywords: generalized charge stiffness constant, charge coupling, effective Coulomb interaction, t-J-like models, momentum-space pairing

Procedia PDF Downloads 145
2567 Advancing Environmental Remediation Through the Production of Functional Porous Materials from Phosphorite Residue Tailings

Authors: Ali Mohammed Yimer, Ayalew Assen, Youssef Belmabkhout

Abstract:

Environmental remediation is a pressing global concern, necessitating innovative strategies to address the challenges posed by industrial waste and pollution. This study aims to advance environmental remediation by developing cutting-edge functional porous materials from phosphorite residue tailings. Phosphorite mining activities generate vast amounts of waste, which pose significant environmental risks due to their contaminants. The proposed approach involved transforming these phosphorite residue tailings into valuable porous materials through a series of physico-chemical processes including milling, acid-base leaching, designing or templating as well as formation processes. The key components of the tailings were extracted and processed to produce porous arrays with high surface area and porosity. These materials were engineered to possess specific properties suitable for environmental remediation applications, such as enhanced adsorption capacity and selectivity for target contaminants. The synthesized porous materials were thoroughly characterized using advanced analytical techniques (XRD, SEM-EDX, N2 sorption, TGA, FTIR) to assess their structural, morphological, and chemical properties. The performance of the materials in removing various pollutants, including heavy metals and organic compounds, were evaluated through batch adsorption experiments. Additionally, the potential for material regeneration and reusability was investigated to enhance the sustainability of the proposed remediation approach. The outdoors of this research holds significant promise for addressing the environmental challenges associated with phosphorite residue tailings. By valorizing these waste materials into porous materials with exceptional remediation capabilities, this study contributes to the development of sustainable and cost-effective solutions for environmental cleanup. Furthermore, the utilization of phosphorite residue tailings in this manner offers a potential avenue for the remediation of other contaminated sites, thereby fostering a circular economy approach to waste management.

Keywords: functional porous materials, phosphorite residue tailings, adsorption, environmental remediation, sustainable solutions

Procedia PDF Downloads 43
2566 Yield, Biochemical Responses and Evaluation of Drought Tolerance of Two Barley Accessions 'Ardhaoui' under Deficit Drip Irrigation Using Saline Water in Southern Tunisia

Authors: Mohamed Bagues, Ikbel Souli, Feiza Boussora, Kamel Nagaz

Abstract:

In southern Tunisia, two local barley accessions CV. Ardhaoui; 'Bengardeni' and 'Karkeni' were cultivated in the field under deficit drip irrigation with saline water. Three treatments were used: control or full irrigation T0 (100%ETc) and stressed T1 (75%ETc), T2 (50%ETc). Proline and soluble sugars contents increase significantly under drought between accessions compared to control and varies between growth stages. Moreover, the increasing of Ca2+ concentration enhances the absorption of Na+ ion, consequently K+/Na+ decrease significantly between accessions, these results suggest that a high tolerance of Bengardeni accession to drought stress. Therefore, drought tolerance indices (STI, SSI, MP, GMP, YSI and TOL) were used to identify high yielding and drought tolerant between accessions. MP explained the variation of GYi. GMP and STI explained the variation of GYs. The high values of MP, STI and GMP were associated with higher yielding accession. Higher TOL value is associated with significant grain yield reduction in stressed environment suggesting higher stress responses of accessions. Significant positive correlations between MP, STI and GMP and negative between YSI and SSI. MP, STI, GMP and YSI, TOL, SSI are not correlated with each other.

Keywords: drought, proline, soluble sugars, minerals, yield, drought tolerance indices, barley

Procedia PDF Downloads 223
2565 Analysis of Replication Protein A (RPA): The Role of Homolog Interaction and Recombination during Meiosis

Authors: Jeong Hwan Joo, Keun Pil Kim

Abstract:

During meiosis, meiotic recombination is initiated by Spo11-mediated DSB formation and exonuclease-mediated DSB resection occurs to expose single stranded DNA formation. RPA is further required to inhibit secondary structure formation of ssDNA that can be formed Watson-Crick pairing. Rad51-Dmc1, RecA homologs in eukaryote and their accessory factors involve in searching homolog templates to mediate strand exchange. In this study, we investigate the recombinational roles of replication protein A (RPA), which is heterotrimeric protein that is composed of RPA1, RPA2, and RPA3. Here, we investigated meiotic recombination using DNA physical analysis at the HIS4LEU2 hot spot. In rfa1-119 (K45E, N316S) cells, crossover (CO) and non-crossover (NCO) products reduced than WT. rfa1-119 delayed in single end invasion-to-double holiday junction (SEI-to-dHJ) transition and exhibits a defect in second-end capture that is also modulated by Rad52. In the further experiment, we observed that in rfa1-119 mutant, RPA could not be released in timely manner. Furthermore, rfa1-119 exhibits failure in the second end capture, implying reduction of COs and NCOs. In this talk, we will discuss more detail how RPA involves in chromatin axis association via formation of axis-bridge and why RPA is required for Rad52-mediated second-end capture progression.

Keywords: homolog interaction, meiotic recombination, replication protein A, RPA1

Procedia PDF Downloads 192
2564 Experimental Study of the Efficacy and Emission Properties of a Compression Ignition Engine Running on Fuel Additives with Varying Engine Loads

Authors: Faisal Mahroogi, Mahmoud Bady, Yaser H. Alahmadi, Ahmed Alsisi, Sunny Narayan, Muhammad Usman Kaisan

Abstract:

The Kingdom of Saudi Arabia established Saudi Vision 2030, an initiative of the government with the goal of promoting more socioeconomic as well as cultural diversity. The kingdom, which is dedicated to sustainable development and clean energy, uses cutting-edge approaches to address energy-related issues, including the circular carbon economy (CCE) and a more varied energy mix. In order for Saudi Arabia to achieve its Vision 2030 goal of having a net zero future by 2060, sustainability is essential. By addressing the energy and climate issues of the modern world with responsibility and innovation, Vision 2030 is turning into a global role model for the transition to a sustainable future. As per the Ambitions of the National Environment Strategy of the Saudi Ministry of Environment, Agriculture, and Water (MEWA), raising environmental compliance across all sectors and reducing pollution and adverse environmental impacts are critical focus areas. As a result, the current study presents an experimental analysis of the performance and exhaust emissions of a diesel engine running mostly on waste cooking oil (WCO). A one-cylinder direct-injection diesel engine with constant speed and natural aspiration is the engine type utilized. Research was done on how the engine performed and emission parameters when fueled with a mixture of 10% butanol, 10% diesel, 10% WCO, and 10% diethyl ether (D70B10W10DD10). The study's findings demonstrated that engine emissions of nitrogen oxides (NOX) and carbon monoxide (CO) varied significantly depending on the load being applied. The brake thermal efficiency, cylinder pressure, and the brake power of the engine were all impacted by load change.

Keywords: ICE, waste cooking oil, fuel additives, butanol, combustion, emission characteristics

Procedia PDF Downloads 22
2563 Preparation of Zno/Ag Nanocomposite and Coating on Polymers for Anti-Infection Biomaterial Application

Authors: Babak Sadeghi, Parisa Ghayomipour

Abstract:

ZnO/Ag nanocomposites coated with polyvinyl chloride (PVC) were prepared by chemical reduction method, for anti-infection biomaterial application. There is a growing interest in attempts in using biomolecular as the templates to grow inorganic nanocomposites in controlled morphology and structure. By optimizing the experiment conditions, we successfully fabricated high yield of ZnO/Ag nanocomposite with full coverage of high-density polyvinyl chloride (PVC) coating. More importantly, ZnO/Ag nanocomposites were shown to significantly inhibit the growth of S. aureus in solution. It was further shown that ZnO/Ag nanocomposites induced thiol depletion that caused death of S. aureus. The coatings were fully characterized using techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Most importantly, compared to uncoated metals, the coatings on PVC promoted healthy antibacterial activity. Importantly, compared to ZnO-Ag -uncoated PVC, the ZnO/Ag nanocomposites coated was approximately triplet more effective in preventing bacteria attachment. The result of Thermal Gravimetric Analysis (TGA) indicates that, the ZnO/Ag nanocomposites are chemically stable in the temperature range from 50 to 900 ºC. This result, for the first time, demonstrates the potential of using ZnO/Ag nanocomposites as a coating material for numerous anti-bacterial applications.

Keywords: nanocomposites, antibacterial activity, scanning electron microscopy (SEM), x-ray diffraction (XRD)

Procedia PDF Downloads 457
2562 Synthesis of Erlotinib Analogues, Conjugation of BSA to Erlotinib Alcohol and Their Anti-Cancer Activity against NSCLC

Authors: Ramalingam Boobalan, Chinpiao Chen, Jui-I. Chiao

Abstract:

A series of erlotinib analogues that have structural modification at 6,7-alkoxyl positions is efficiently synthesized. The key reactions that involved in synthesis are one-pot oxime formation-dehydration for the formation of nitrile, quinazoline ring formation reaction between aniline and o-cyanoaniline via formamidine intermediate, Fe/NH4Cl catalyzed reduction-hetereocyclization-reductive ring opening reaction for the formation of o-aminobenzamide, high yielding seal tube reactions for O-demethylation, sodium iodide substitution, ammonia substitution. The in vitro anti-tumor activity of synthesized compounds is studied in two non-small cell lung cancer (NSCLC) cell lines (A549 and H1975). Among the synthesized compounds, the iodo compound 6 (ETN-6) exhibits higher anti-cancer activity compared to erlotinib. An efficient method is developed for the conjugation of erlotinib analogue-4, alcohol compound, with protein, bovine serum albumin (BSA), via succinic acid linker. The in vitro anti-tumor activity of the protein attached erlotinib analogue, 8 (ETN-4-Suc-BSA), showed stronger inhibitory activity in both A549 and H1975 NSCLC cell lines.

Keywords: anti-cancer, BSA, EGFR, Erlotinib

Procedia PDF Downloads 315
2561 Antagonistic Potential of Trichoderma Strains against Colletotrichum musae

Authors: Shah Md. Asraful Islam, Shabina Yeasmin, Fatima Aktar Mousumi

Abstract:

The experiment was conducted to evaluate the antagonistic potential of three commercially available Trichoderma strains viz., T. harzianum (armigera), T. harzianum (Ispahani), and T. viride against Colletotrichum musae isolates from three banana varieties viz., sagar, sobri, and katali. Mycelial growth rates of C. musae isolates were observed, the highest mycelial growth (11.62, 15.75, and 23.12 mm diameter) was observed by C. musae from sagor banana at 1, 2 and 3 days after inoculation, respectively. All the Trichoderma strains were capable of growth inhibition of C. musae isolates. After 4 days of duel culture, the highest mycelial growth reduction (10.33 mm diameter) was observed by the interaction between T. harzianum (armigera) with C. musae from sagor banana. Moreover, the highest growth inhibition (46.29%) was observed by the interaction between T. harzianum (armigera) with C. musae from the sobri banana. All the Trichoderma strains fully affected the viability of all the Colletotrichum isolates. Interestingly, both cultural filtrates and mycelial powders of all the Trichoderma strains showed a very nice inhibitory effect against C. musae isolates, where cultural filtrates were more potential than that of mycelial powders. So, all the tested Trichoderma strains may be used for the control of banana anthracnose disease.

Keywords: biological control, banana, anthracnose, Trichoderma, Colletotrichum

Procedia PDF Downloads 126
2560 Human Activities Damaging the Ecosystem of Isheri Ogun River, South West Nigeria

Authors: N. B. Ikenweiwe, A. A. Alimi, N. A. Bamidele, O. A. Ewumi, K. Fasina, S. O. Otubusin

Abstract:

A study on the physical, chemical and biological parameters of the lower course of Ogun River, Isheri-Olofin was carried out between January and December 2014 in order to determine the effects of the anthropogenic activities of the Kara abattoir and domestic waste depositions on the quality of the water. Water samples were taken twice each month at three selected stations A, B and C (based on characteristic features or activity levels) along the water course. Samples were analysed using standard methods for chemical and biological parameters the same day in the laboratory while physical parameters were determined in-situ with water parameters kit. Generally, results of Transparency, Dissolved Oxygen, Nitrates, TDS and Alkalinity fall below the permissible limits of WHO and FEPA standards for drinking and fish production. Results of phosphates, lead and cadmium were also low but still within the permissible limit. Only Temperature and pH were within limit. Low plankton community, (phytoplankton, zooplankton), which ranges from 3, 5 to 40, 23 were as a result of low levels of DO, transparency and phosphate. The presence of coliform bacteria of public health importance like Escherichia coli, Proteus vulgaris, Aeromonas sp., Shigella sp, Enterobacter aerogenes as well as gram negative bacteria Proteus morganii are mainly indicators of faecal pollution. Fish and other resources obtained from this water stand the risk of being contaminated with these organisms and man is at the receiving end. The results of the physical, chemical and some biological parameters of Isheri, Ogun River, according to this study showed that the live forms of aquatic and fisheries resources there are dwelling under stress as a result of deposition of bones, horns, faecal components, slurry of suspended solids, fat and blood into the water. Government should therefore establish good monitoring system against illegal waste depositions and create education programmes that will enlighten the community on the social, ecological and economic values of the river.

Keywords: damage, ecosystem, human activities, Isheri ogun river

Procedia PDF Downloads 526
2559 Smart Demand Response: A South African Pragmatic, Non-Destructive and Alternative Advanced Metering Infrastructure-Based Maximum Demand Reduction Methodology

Authors: Christo Nicholls

Abstract:

The National Electricity Grid (NEG) in South Africa has been under strain for the last five years. This overburden of the NEG led Eskom (the State-Owned Entity responsible for the NEG) to implement a blunt methodology to assist them in reducing the maximum demand (MD) on the NEG, when required, called Loadshedding. The challenge of this methodology is that not only does it lead to immense technical issues with the distribution network equipment, e.g., transformers, due to the frequent abrupt off and on switching, it also has a broader negative fiscal impact on the distributors, as their key consumers (commercial & industrial) are now grid defecting due to the lack of Electricity Security Provision (ESP). This paper provides a pragmatic alternative methodology utilizing specific functionalities embedded within direct-connect single and three-phase Advanced Meter Infrastructure (AMI) Solutions deployed within the distribution network, in conjunction with a Multi-Agent Systems Based AI implementation focused on Automated Negotiation Peer-2-Peer trading. The results of this research clearly illustrate, not only does methodology provide a factual percentage contribution towards the NEG MD at the point of consideration, it also allows the distributor to leverage the real-time MD data from key consumers to activate complex, yet impact-measurable Demand Response (DR) programs.

Keywords: AI, AMI, demand response, multi-agent

Procedia PDF Downloads 98
2558 Determinants of Infrastructure Provision in Ghana

Authors: Clifford Kwakwa Amoah, De-Graft Owusu-Manu, Prince Antwi-Afari

Abstract:

Infrastructure is the lifeline for economic development of any country. Hence, obtaining infrastructure quality cannot be overemphasized. Nevertheless, challenges of infrastructure quality persist, and it is worse in developing countries despite the diverse study on the subject matter. Therefore, this study was formulated to identify the prevalent determinants of infrastructure quality using synthesis of extant literature (to identify key variables), and analysis of survey questionnaire of data collected by means of the inductive methodology approach, mean score ranking and descriptive statistics. The variables “partner with the private sector, growth stimulation and poverty reduction, and adherence to procurement core principles” were the most significant challenges that the government faces. Moreover, it would be of utmost concern to adopt some stringent measures to help improve and accelerate on the growth and development of the nation, thereby achieving the best quality required. This study is novel conducted to provide insight into some of the punitive measures, considered in ensuring that quality infrastructure is obtained in both developing (specifically) and developed economies. The research findings therefore provide some guidance for overcoming the accumulative challenges. Application of the stated findings will help bridge the gap of infrastructure challenges; this is because the study found strong empirical evidence that infrastructure plays a pivotal role in the productivity enhancement.

Keywords: challenges, development, economic growth, government, infrastructure quality

Procedia PDF Downloads 116
2557 Reducing Greenhouse Gass Emissions by Recyclable Material Bank Project of Universities in Central Region of Thailand

Authors: Ronbanchob Apiratikul

Abstract:

This research studied recycled waste by the Recyclable Material Bank Project of 4 universities in the central region of Thailand for the evaluation of reducing greenhouse gas emissions compared with landfilling activity during July 2012 to June 2013. The results showed that the projects collected total amount of recyclable wastes of about 911,984.80 kilograms. Office paper had the largest amount among these recycled wastes (50.68% of total recycled waste). Groups of recycled waste can be prioritized from high to low according to their amount as paper, plastic, glass, mixed recyclables, and metal, respectively. The project reduced greenhouse gas emissions equivalent to about 2814.969 metric tons of carbon dioxide. The most significant recycled waste that affects the reduction of greenhouse gas emissions is office paper which is 70.16% of total reduced greenhouse gasses emission. According to amount of reduced greenhouse gasses emission, groups of recycled waste can be prioritized from high to low significances as paper, plastic, metals, mixed recyclables, and glass, respectively.

Keywords: recycling, garbage bank, waste management, recyclable wastes, greenhouse gases

Procedia PDF Downloads 413
2556 Characterizing the Fracture Toughness Properties of Aluminum I-Rod Removed from National Research Universal Reactor

Authors: Michael Bach

Abstract:

Extensive weld repair was carried out in 2009 after a leak was detected in the aluminum 5052 vessel of the National Research Universal (NRU) reactor. This was the second vessel installed since 1974. In support of the NRU vessel leak repair and fitness for service assessments, an estimate of property changes due to irradiation exposure is required to extend the service of the reactor until 2018. In order to fully evaluate the property changes in the vessel wall, an Iodine-125 rod (I rod) made from the same material and irradiated in the NRU reactor from 1974 1991, was retrieved and sectioned for microstructure characterization and mechanical testing. The different sections of the I rod were exposed to various levels of thermal neutron fluences from 0 to a maximum of 11.9 x 1022 n/cm2. The end of life thermal neutron fluence of the NRU vessel is estimated to be 2.2 x 1022 n/cm2 at 35 years of service. Tensile test and fracture toughness test was performed on the I-rod material at various axial locations. The changes in tensile properties were attributed primarily to the creation of finely dispersed Mg-Si precipitates that harden the material and reduced the ductility. Despite having a reduction in fracture toughness, the NRU vessel is still operation at the current fluence levels.

Keywords: aluminum alloy, fitness-for-service assessment , fracutre toughness, nuclear reactor, precipitate strengthening, radiation damage, tensile strength

Procedia PDF Downloads 176
2555 Comparative Techno-Economic Assessment and LCA of Selected Integrated Sugarcane-Based Biorefineries

Authors: Edgard Gnansounoua, Pavel Vaskan, Elia Ruiz Pachón

Abstract:

This work addresses the economic and environmental performance of integrated biorefineries based on sugarcane juice and residues in the context of Brazil. We have considered four multiproduct scenarios; two from existing Brazilian sugar mills and the others from ethanol autonomous distilleries. They are integrated biorefineries producing first (1G) and second (2G) generation ethanol, sugar, molasses (for animal feed) and electricity. We show the results for the analysis and comparison of the different scenarios using a techno-economic value-based approach and LCA methodology. We have found that all the analysed scenarios show positive values of Climate change and Fossil depletion reduction as compared to the reference systems. However the scenario producing only ethanol shows less efficiency in Human toxicity, Freshwater ecotoxicity and Freshwater eutrophication impacts. The best economic configuration is provided by the scenario with the largest ethanol production. On the other hand, the best environmental performance is presented by the scenario with full integration sugar – 1G2G ethanol production. The integration of 2G based residues in a 1G ethanol production plant leads to positive environmental impacts compared to the conventional 1G industrial plant but proves to be more expensive.

Keywords: sugarcane, biorefinery, 1G/2G bioethanol integration, LCA, Brazil

Procedia PDF Downloads 338
2554 Averting Food Crisis in Nigeria and Beyond, Activities of the National Food Security Programme

Authors: Musa M. Umar, S. G. Ado

Abstract:

The paper examines the activities of the National Programme for food security (NPFS) for averting food insecurity in Nigeria and beyond. The components of the NPFS include site development, outreach, community development and management support. On each site, core activities comprise crop productivity, production diversification and agro-processing. The outreach activities consist of inputs and commodity marketing, rural finance, strengthening research-extension-farmers-inputs linkages, health and nutrition and expansion of site activities. The community development activities include small-scale rural infrastructure, micro-earth dams and community forestry. The overall benefits include food security, improved productivity, marketing and processing, enhanced land and water use, increased animal production and fish catches, improved nutrition, reduction in post-harvest losses and value addition, improved rural infrastructure and diversification of production leading to improved livelihood. The NPFS would poster sustained development of small-holder agricultural and income generation.

Keywords: food-security, community development, post-harvest, production

Procedia PDF Downloads 340
2553 Numerical and Experimental Approach to Evaluate Forming Coil of Electromagnetic Forming Process

Authors: H. G. Noh, H. G. Park, B. S. Kang, J. Kim

Abstract:

Electromagnetic forming process (EMF) is one of high-velocity forming processes using Lorentz force. Advantages of EMF are summarized as improvement of formability, reduction in wrinkling, non-contact forming. In this study, numerical simulations were conducted to determine the practical parameters for EMF process. A 2-D axis-symmetric electromagnetic model was considered based on the spiral type forming coil. In the numerical simulation, RLC circuit coupled with spiral coil was made to consider the design parameters such as system input current and electromagnetic force. In order to deform the sheet in the patter shape die, two types of spiral shape coil were considered to deform the pattern shape sheet. One is a spiral coil that has 6turns with dead zone at centre point. Another is a normal spiral coil without dead zone that has 8 turns. In the electric analysis, input current and magnetic force were compared and then plastic deformation was treated in the mechanical analysis for two coil cases. Deformation behaviour of dead zone coil case has good agreement with pattern shape die. As a result, deformation behaviour could be controlled by giving dead zone at centre of the coil in spiral shape coil case.

Keywords: electromagnetic forming, spiral coil, Lorentz force, manufacturing

Procedia PDF Downloads 292
2552 Influence of Hydrogen Ion Concentration on the Production of Bio-Synthesized Nano-Silver

Authors: M.F. Elkady, Sahar Zaki, Desouky Abd-El-Haleem

Abstract:

Silver nanoparticles (AgNPs) are already widely prepared using different technologies. However, there are limited data on the effects of hydrogen ion concentration on nano-silver production. In this investigation, the impact of the pH reaction medium toward the particle size, agglomeration and the yield of the produced bio-synthesized silver were established. Quasi-spherical silver nanoparticles were synthesized through the biosynthesis green production process using the Egyptian E. coli bacterial strain 23N at different pH values. The formation of AgNPs has been confirmed with ultraviolet–visible spectra through identification of their characteristic peak at 410 nm. The quantitative production yield and the orientation planes of the produced nano-silver were examined using X-ray spectroscopy (EDS) and X-ray diffraction (XRD). Quantitative analyses indicated that the silver production yield was promoted at elevated pH regarded to increase the reduction rate of silver precursor through both chemical and biological processes. As a result, number of the nucleus and thus the size of the silver nanoparticles were tunable through changing pH of the reaction system. Accordingly, the morphological structure and size of the produced silver and its aggregates were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. It was considered that the increment in pH value of the reaction media progress the aggregation of silver clusters. However, the presence of stain 23N biomass decreases the possibility of silver aggregation at the pH 7.

Keywords: silver nanoparticles, biosynthesis, reaction media pH, nano-silver characterization

Procedia PDF Downloads 358
2551 Ecocentric Principles for the Change of the Anthropocentric Design Within the Other Species Related Fields

Authors: Armando Cuspinera

Abstract:

Humans are nature itself, being with non-human species part of the same ecosystem, but the praxis reflects that not all relations are the same. In fields of design such as Biomimicry, Biodesign, and Biophilic design exist different approaches towards nature, nevertheless, anthropocentric principles such as domination, objectivization, or exploitation are defined in the same as ecocentric principles of inherent importance in life itself. Anthropocentrism has showed humanity with pollution of the earth, water, air, and the destruction of whole ecosystems from monocultures and rampant production of useless objects that life cannot outstand this unaware rhythm of life focused only for the human benefits. Even if by nature the biosphere is resilient, studies showed in the Paris Agreement explain that humanity will perish in an unconscious way of praxis. This is why is important to develop a differentiation between anthropocentric and ecocentricprinciples in the praxis of design, in order to enhance respect, valorization, and positive affectivity towards other life forms is necessary to analyze what principles are reproduced from each practice of design. It is only from the study of immaterial dimensions of design such as symbolism, epistemology, and ontology that the relation towards nature can be redesigned, and in order to do so, it must be studies from the dimensions of ontological design what principles –anthropocentric or ecocentric- through what the objects enhance or focus the perception humans have to its surrounding. The things we design also design us is the principle of ontological design, and in order to develop a way of ecological design in which is possible to consider other species as users, designers or collaborators is important to extend the studies and relation to other living forms from a transdisciplinary perspective of techniques, knowledge, practice, and disciplines in general. Materials, technologies, and any kind of knowledge have the principle of a tool: is not good nor bad, but is in the way of using it the possibilities that exist within them. The collaboration of disciplines and fields of study gives the opportunity to connect principles from other cultures such as Deep Ecology and Environmental Humanities in the development of methodologies of design that study nature, integrates their strategies to our own species, and considers life of other species as important as human life, and is only form the studies of ontological design that material and immaterial dimensions can be analyzed and imbued with structures that already exist in other fields.

Keywords: design, antropocentrism, ecocentrism, ontological design

Procedia PDF Downloads 138
2550 Soil Moisture Control System: A Product Development Approach

Authors: Swapneel U. Naphade, Dushyant A. Patil, Satyabodh M. Kulkarni

Abstract:

In this work, we propose the concept and geometrical design of a soil moisture control system (SMCS) module by following the product development approach to develop an inexpensive, easy to use and quick to install product targeted towards agriculture practitioners. The module delivers water to the agricultural land efficiently by sensing the soil moisture and activating the delivery valve. We start with identifying the general needs of the potential customer. Then, based on customer needs we establish product specifications and identify important measuring quantities to evaluate our product. Keeping in mind the specifications, we develop various conceptual solutions of the product and select the best solution through concept screening and selection matrices. Then, we develop the product architecture by integrating the systems into the final product. In the end, the geometric design is done using human factors engineering concepts like heuristic analysis, task analysis, and human error reduction analysis. The result of human factors analysis reveals the remedies which should be applied while designing the geometry and software components of the product. We find that to design the best grip in terms of comfort and applied force, for a power-type grip, a grip-diameter of 35 mm is the most ideal.

Keywords: agriculture, human factors, product design, soil moisture control

Procedia PDF Downloads 161
2549 Vertical Urbanization Over Public Structures: The Example of Mostar Junction in Belgrade, Serbia

Authors: Sladjana Popovic

Abstract:

The concept of vertical space urbanization, defined in English as "air rights development," can be considered a mechanism for the development of public spaces in urban areas of high density. A chronological overview of the transformation of space within the vertical projection of the existing traffic infrastructure that penetrates through the central areas of a city is given in this paper through the analysis of two illustrative case studies: more advanced and recent - "Plot 13" in Boston, and less well-known European example of structures erected above highways throughout Italy - the "Pavesi auto grill" chain. The backbone of this analysis is the examination of the possibility of yielding air rights within the vertical projection of public structures in the two examples by considering the factors that would enable its potential application in capitals in Southeastern Europe. The cession of air rights in the Southeastern Europe region, as a phenomenon, has not been a recognized practice in urban planning. In a formal sense, legal and physical feasibility can be seen to some extent in local models of structures built above protected historical heritage (i.e., archaeological sites); however, the mechanisms of the legal process of assigning the right to use and develop air rights above public structures is not a recognized concept. The goal of the analysis is to shed light on the influence of institutional participants in the implementation of innovative solutions for vertical urbanization, as well as strategic planning mechanisms in public-private partnership models that would enable the implementation of the concept in the region. The main question is whether the manipulation of the vertical projection of space could provide for innovative urban solutions that overcome the deficit and excessive use of the available construction land, particularly above the dominant public spaces and traffic infrastructure that penetrate central parts of a city. Conclusions reflect upon vertical urbanization that can bridge the spatial separation of the city, reduce noise pollution and contribute to more efficient urban planning along main transportation corridors.

Keywords: air rights development, innovative urbanism, public-private partnership, transport infrastructure, vertical urbanization

Procedia PDF Downloads 59