Search results for: maximum stiffness
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4814

Search results for: maximum stiffness

1064 Fragility Analysis of a Soft First-Story Building in Mexico City

Authors: Rene Jimenez, Sonia E. Ruiz, Miguel A. Orellana

Abstract:

On 09/19/2017, a Mw = 7.1 intraslab earthquake occurred in Mexico causing the collapse of about 40 buildings. Many of these were 5- or 6-story buildings with soft first story; so, it is desirable to perform a structural fragility analysis of typical structures representative of those buildings and to propose a reliable structural solution. Here, a typical 5-story building constituted by regular R/C moment-resisting frames in the first story and confined masonry walls in the upper levels, similar to the collapsed structures on the 09/19/2017 Mexico earthquake, is analyzed. Three different structural solutions of the 5-story building are considered: S1) it is designed in accordance with the Mexico City Building Code-2004; S2) then, the column dimensions of the first story corresponding to S1 are reduced, and S3) viscous dampers are added at the first story of solution S2. A number of dynamic incremental analyses are performed for each structural solution, using a 3D structural model. The hysteretic behavior model of the masonry was calibrated with experiments performed at the Laboratory of Structures at UNAM. Ten seismic ground motions are used to excite the structures; they correspond to ground motions recorded in intermediate soil of Mexico City with a dominant period around 1s, where the structures are located. The fragility curves of the buildings are obtained for different values of the maximum inter-story drift demands. Results show that solutions S1 and S3 give place to similar probabilities of exceedance of a given value of inter-story drift for the same seismic intensity, and that solution S2 presents a higher probability of exceedance for the same seismic intensity and inter-story drift demand. Therefore, it is concluded that solution S3 (which corresponds to the building with soft first story and energy dissipation devices) can be a reliable solution from the structural point of view.

Keywords: demand hazard analysis, fragility curves, incremental dynamic analyzes, soft-first story, structural capacity

Procedia PDF Downloads 178
1063 Identification of Avian Fauna of Bara Gali Summer Campus, University of Peshawar

Authors: Saif Ullah

Abstract:

Survey of avian fauna of Bara Gali Summer Campus, University of Peshawar in the Hazara District was conducted from April to October, 2013. A total of 21 species belonging to 5 orders and 15 families were recorded. Out of these 6 were resident, 12 were summer visitor and 3 were rare. Order Passeriformes was represented by 16 species which are Certhia himalayana, Megalaima virens, Phylloscopus trochiloides, Garrulax lineatus, Passer rutilans, Corvus macrorhynchos, Hypsipetes leucocephalus, Acridotheres tristis, Delichon dasypus cashmeriensis, Hirundo rustica, Muscicapa thalassina, Saxicola ferrea, Myiophoneus caeruleus, Parus melonolophus, Parus rufonuchalis, Parus monticolus, belonging to 11 families. Two species Dendrocopos himalayansis and Picus squamatus belongs to only 1 family of order Piciformes. Only one species from the remaining 3 orders were recorded i.e. Accipiter virgatus belongs to order Accipitriformes, Upupa epops from order Coraciformes, while order Psittaciformes represented by Psittacula himalayana .The distribution and abundance varied with season and maximum number of species was found during the monsoon season when most of the birds migrate for breeding. Some habits and behaviors like nesting, feeding, breeding and vocalizations were also studied which are very unique from other birds. Among bird species adapted to diverse habitat in the field, Himalayan Jungle Crow, Common Mynas, Bulbuls, Barn Swallows, barbets were prominent. Interesting feature of the avian fauna is familiarity with flora was greatly observed. Human related impacts such as grazing by livestock, removal of shrub cover, disturbance of habitat etc. were also studied.

Keywords: birds, summer visitor, Phylloscopus trochiloides, Parus monticolus

Procedia PDF Downloads 307
1062 Flow Field Analysis of Different Intake Bump (Compression Surface) Configurations on a Supersonic Aircraft

Authors: Mudassir Ghafoor, Irsalan Arif, Shuaib Salamat

Abstract:

This paper presents modeling and analysis of different intake bump (compression surface) configurations and comparison with an existing supersonic aircraft having bump intake configuration. Many successful aircraft models have shown that Diverter less Supersonic Inlet (DSI) as compared to conventional intake can reduce weight, complexity and also maintenance cost. The research is divided into two parts. In the first part, four different intake bumps are modeled for comparative analysis keeping in view the consistency of outer perimeter dimensions of fighter aircraft and various characteristics such as flow behavior, boundary layer diversion and pressure recovery are analyzed. In the second part, modeled bumps are integrated with intake duct for performance analysis and comparison with existing supersonic aircraft data is carried out. The bumps are named as uniform large (Config 1), uniform small (Config 2), uniform sharp (Config 3), non-uniform (Config 4) based on their geometric features. Analysis is carried out at different Mach Numbers to analyze flow behavior in subsonic and supersonic regime. Flow behavior, boundary layer diversion and Pressure recovery are examined for each bump characteristics, and comparative study is carried out. The analysis reveals that at subsonic speed, Config 1 and Config 2 give similar pressure recoveries as diverterless supersonic intake, but difference in pressure recoveries becomes significant at supersonic speed. It was concluded from research that Config 1 gives better results as compared to Config 3. Also, higher amplitude (Config 1) is preferred over lower (Config 2 and 4). It was observed that maximum height of bump is preferred to be placed near cowl lip of intake duct.

Keywords: bump intake, boundary layer, computational fluid dynamics, diverter-less supersonic inlet

Procedia PDF Downloads 243
1061 In-Cylinder Exhaust Heat Recovery of an I. C. Engine Using Water Injection

Authors: Jayakrishnan U.

Abstract:

A concept of adding two strokes to a four stroke Otto or Diesel engine cycle presented here for the waste heat recovery in a four stroke internal combustion engine. Four stroke Diesel cycle and Otto cycle engines have very low thermal efficiency due to high amount of energy loss in exhaust and also on the cooling of the engine. It is estimated about 35 percent of fuel energy is lost in exhaust of engine and 30 percent in cooling of engine. So by modifying a four-stroke Otto or Diesel engine by adding two-stroke heat recovery steam cycle is presented here. Water injection is used to get an additional power stroke by partial compression of the exhaust gases at the end of third stroke in a four stroke I.C.Engine. It is the conversion of a four-stroke cycle to a six-stroke cycle. By taking a four stroke petrol engine of known dimensions, an ideal thermodynamic model is used to analyse and calculate the events of exhaust gas compression and following two strokes of water injection. By changing the exhaust valve closing timing during exhaust stroke and analysing it on various points, an optimum amount of exhaust gas re-compression and amount of water injection can be found for maximizing efficiency and fuel economy. It is achieved by changing the exhaust valve timing and finding an optimum amount of exhaust re-compression, maximizing the net mean effective pressure of the steam expansion stroke (MEPsteam). Specific fuel consumption of the engine also decreases increasing the fuel economy. The valve closing timings for maximum MEPsteam is limited by either 1 bar or dew point temperature of expansion gas or moisture mixture to avoid moisture formation. By modifying the four-stroke Otto or Diesel cycle by adding two water injection stroke has the potential to significantly increase the engine efficiency and fuel economy.

Keywords: internal combustion engine, engine efficiency, six-stroke cycle, water injection, specific fuel consumption

Procedia PDF Downloads 304
1060 Biomechanical Assessment of Esophageal Elongation

Authors: Marta Kozuń, Krystian Toczewski, Sylwester Gerus, Justyna Wolicka, Kamila Boberek, Jarosław Filipiak, Dariusz Patkowski

Abstract:

Long gap esophageal atresia is a congenital defect and is a challenge for pediatric surgeons all over the world. There are different surgical techniques in use to treat atresia. One of them is esophageal elongation but the optimal suture placement technique to achieve maximum elongation with low-risk complications is still unknown. The aim of the study was to characterize the process of esophageal elongation from the biomechanical point of view. Esophagi of white Pekin Duck was used as a model based on the size of this animal which is similar to a newborn (2.5-4kg). The specimens were divided into two groups: the control group (CG) and the group with sutures (SG). The esophagi of the control group were mounted in the grips of the MTS Tytron 250 testing machine and tensile test until rupture was performed. The loading speed during the test was 10mm/min. Then the SG group was tested. Each esophagus was cut into two equal parts and that were fused together using surgical sutures. The distance between both esophagus parts was 20mm. Ten both ends were mounted on the same testing machine and the tensile test with the same parameters was conducted. For all specimens, force and elongation were recorded. The biomechanical properties, i.e., the maximal force and maximal elongation, were determined on the basis of force-elongation curves. The maximal elongation was determined at the point of maximal force. The force achieved with the suture group was 10.1N±1.9N and 50.3N±11.6N for the control group. The highest elongation was also obtained for the control group: 18mm±3mm vs. 13.5mm ±2.4mm for the suture group. The presented study expands the knowledge of elongation of esophagi. It is worth emphasizing that the duck esophagus differs from the esophagus of a newborn, i.e., its wall lacks striated muscle cells. This is why the parts of animal esophagi used in the research are may characterized by different biomechanical properties in comparison with newborn tissue.

Keywords: long gap atresia treatment, esophageal elongation, biomechanical properties, soft tissue

Procedia PDF Downloads 100
1059 Natural Bio-Active Product from Marine Resources

Authors: S. Ahmed John

Abstract:

Marine forms-bacteria, actinobacteria, cynobacteria, fungi, microalgae, seaweeds mangroves and other halophytes an extremely important oceanic resources and constituting over 90% of the oceanic biomass. The marine natural products have lead to the discovery of many compounds considered worthy for clinical applications. The marine sources have the highest probability of yielding natural products. Natural derivatives play an important role to prevent the cancer incidences as synthetic drug transformation in mangrove. 28.12% of anticancer compound extracted from the mangroves. Exchocaria agollocha has the anti cancer compounds. The present investigation reveals the potential of the Exchocaria agollocha with biotechnological applications for anti cancer, antimicrobial drug discovery, environmental remediation, and developing new resources for the industrial process. The anti-cancer activity of Exchocaria agollocha was screened from 3.906 to 1000 µg/ml of concentration with the dilution leads to 1:1 to 1:128 following methanol and chloroform extracts. The cell viability in the Exchocaria agollocha was maximum at the lower concentration where as low at the higher concentration of methanol and chloroform extracts when compare to control. At 3.906 concentration, 85.32 and 81.96 of cell viability was found at 1:128 dilution of methanol and chloroform extracts respectively. At the concentration of 31.25 following 1:16 dilution, the cell viability was 65.55 in methanol and 45.55 in chloroform extracts. However, at the higher concentration, the cell viability 22.35 and 8.12 was recorded in the extracts of methanol and chloroform. The cell viability was more in methanol when compare to chloroform extracts at lower concentration. The present findings gives current trends in screening and the activity analysis of metabolites from mangrove resources and to expose the models to bring a new sustain for tackling cancer. Bioactive compounds of Exchocaria agollocha have extensive use in treatment of many diseases and serve as a compound and templates for synthetic modification.

Keywords: bio-active product, compounds, natural products and microalgae

Procedia PDF Downloads 246
1058 Nitrogen Fixation in Hare Gastrointestinal Tract

Authors: Tatiana A. Kuznetsova, Maxim V. Vechersky, Natalia V. Kostina, Marat M. Umarov, Elena I. Naumova

Abstract:

One of the main problems of nutrition of phytophagous animals is the insufficiency of protein in their forage. Usually, symbiotic microorganisms highly contribute both to carbohydrates and nitrogen compounds of the food. But it is not easy to utilize microbial biomass in the large intestine and caecum for the animals with hindgut fermentation. So that, some animals, as well hares, developed special mechanism of contribution of such biomass - obligate autocoprophagy, or reingestion. Hares have two types of feces - the hard and the soft. Hard feces are excreted at night, while hares are vigilance ("foraging period"), and the soft ones (caecotrophs) are produced and reingested in the day-time during hares "resting-period". We examine the role of microbial digestion in providing nitrogen nutrition of hare (Lepus europaeus). We determine the ability of nitrogen fixation in fornix and stomach body, small intestine, caecum and colon of hares' gastro-intestinal tract in two main period of hares activity - "resting-period" (day time) and "foraging period" (late-evening and very-early-morning). We use gas chromatography to measure levels of nitrogen fixing activity (acetylene reduction). Nitrogen fixing activity was detected in the contents of all analyzed parts of the gastrointestinal tract. Maximum values were recorded in the large intestine. Also daily dynamics of the process was detected. Thus, during hare “resting-period” (caecotrophs formation) N2-fixing activity was significantly higher than during “foraging period”, reaching 0,3 nmol C2H4/g*h. N2-fixing activity in the gastrointestinal tract can allocate to significant contribution of nitrogen fixers to microbial digestion in hare and confirms the importance of coprophagy as a nitrogen source in lagomorphs.

Keywords: coprophagy, gastrointestinal tract, lagomorphs, nitrogen fixation

Procedia PDF Downloads 364
1057 Effect of Climate Change on Aridity Index in South Bihar

Authors: Aayush Anant, Roshni Thendiyath

Abstract:

Aridity impacts on agriculture, as well as ecological, human health, and economic activities. In the present study, the effect of climate change on aridity index has been analysed in South Bihar for the past 30 year period by five types of aridity indices as Lang AI, De-Martonne AI, Erinc AI, Pinna combinative AI and UNEP AI. For the study of aridity index, the analysis of rainfall and temperature is significant. Rainfall was analysed for 30 year period from data of 23 gridded stations in for the period 1991-2020. The results show that rainfall pattern was decreasing with respect to previous decades for majority of stations. Trend of maximum, minimum and mean annual temperature has been observed, which shows increasing trend. Structural breakpoint was observed for mean annual temperature data series in year 2004. In period 1991-2004 mean annual temperature was 25.25 ºC, and in period 2005-2020, mean annual temperature was 25.7 ºC. Average aridity index has been calculated by all the above mentioned methods for whole 30 period. Lang AI shows that eastern part of study area is Humid type, and rest all is semi arid. De-Martonne AI also reveals that east part is humid, but rest of the study area is moist sub humid. According to Erinc AI and Pinna, combinative AI shows that whole south Bihar is dry sub humid and semi dry, respectively. UNEP AI shows most of the part as sub humid, and very small part in west is semi arid, while small part of east is humid. Temporal distribution of all the aridity indices shows a decreasing trend. This indicates a decrease in the humid areas in south Bihar for the selected time period.

Keywords: drought, aridity index, climate change, rainfall, temperature

Procedia PDF Downloads 82
1056 Mixotropohic Growth of Chlorella sp. on Raw Food Processing Industrial Wastewater: Effect of COD Tolerance

Authors: Suvidha Gupta, R. A. Pandey, Sanjay Pawar

Abstract:

The effluents from various food processing industries are found with high BOD, COD, suspended solids, nitrate, and phosphate. Mixotrophic growth of microalgae using food processing industrial wastewater as an organic carbon source has emerged as more effective and energy intensive means for the nutrient removal and COD reduction. The present study details the treatment of non-sterilized unfiltered food processing industrial wastewater by microalgae for nutrient removal as well as to determine the tolerance to COD by taking different dilutions of wastewater. In addition, the effect of different inoculum percentages of microalgae on removal efficiency of the nutrients for given dilution has been studied. To see the effect of dilution and COD tolerance, the wastewater having initial COD 5000 mg/L (±5), nitrate 28 mg/L (±10), and phosphate 24 mg/L (±10) was diluted to get COD of 3000 mg/L and 1000 mg/L. The experiments were carried out in 1L conical flask by intermittent aeration with different inoculum percentage i.e. 10%, 20%, and 30% of Chlorella sp. isolated from nearby area of NEERI, Nagpur. The experiments were conducted for 6 days by providing 12:12 light- dark period and determined various parameters such as COD, TOC, NO3-- N, PO4-- P, and total solids on daily basis. Results revealed that, for 10% and 20% inoculum, over 90% COD and TOC reduction was obtained with wastewater containing COD of 3000 mg/L whereas over 80% COD and TOC reduction was obtained with wastewater containing COD of 1000 mg/L. Moreover, microalgae was found to tolerate wastewater containing COD 5000 mg/L and obtained over 60% and 80% reduction in COD and TOC respectively. The obtained results were found similar with 10% and 20% inoculum in all COD dilutions whereas for 30% inoculum over 60% COD and 70% TOC reduction was obtained. In case of nutrient removal, over 70% nitrate removal and 45% phosphate removal was obtained with 20% inoculum in all dilutions. The obtained results indicated that Microalgae assisted nutrient removal gives maximum COD and TOC reduction with 3000 mg/L COD and 20% inoculum. Hence, microalgae assisted wastewater treatment is not only effective for removal of nutrients but also can tolerate high COD up to 5000 mg/L and solid content.

Keywords: Chlorella sp., chemical oxygen demand, food processing industrial wastewater, mixotrophic growth

Procedia PDF Downloads 332
1055 Antimicrobial Activity of Endophytes on some Selected Clinical Isolates (Escherichia coli, Staphylococcus aureus, Salmonella Typhi, Bacillus subtilis, Klebsiella pneumoniae, Aspergillus fumigatus, Pseudomomonas aeruginosa and Penicillium chryysogenum)

Authors: Dawang D. N., Dasat G. S., Nden D.

Abstract:

Endophyte means “in the plant” are referred to all microorganisms that live in the internal tissues of stems, petioles, roots and leaves of plants causing no apparent symptoms of disease. Secondary metabolites from fungal endophytes have an enormous potential applications as antioxidant, antimicrobial, anticancer and antidiabeties. Thus, this study aimed to determine the antimicrobial activity of these metabolites against some clinical isolates. The fungi were subjected to fermentation medium and the metabolites were extracted using ethyl acetate. The fungal extracts showed both antibacterial and antifungal activities with maximum zone of inhibition diameter of 10.5mm against Aspergillus fumigatus. Staphylococcus aureus was inhibited by all the five crude extracts with inhibition zone diameter of 4mm. Endophytic fungal crude extract2 (EDF2) exhibited antimicrobial effect against all the test organisms used, EDF4 was active against all test organisms except on Penicillium chrysogenum and Klebsiella pneumoniae. Antibacterial standard of ciprofloxacin which is 15mm is comparable to the effect of endophytic extract of EDF1 and EDF2. Klebsiella pneumoniae was resistant to EDF4 and EDF5. EDF3 showed a wide range of antimicrobial activity against all the test organisms used. The highest inhibition zone diameter of 10.50mm recorded against Aspergillus fumigatus is comparable to antifungal standard of fluconazole (15.5mm). The result of this study suggests that endophytic fungi associated with the roots of Irish potato could be a promising source of novel bioactive compounds of pharmaceutical and industrial importance.

Keywords: endophyte, fungal extract, antimicrobial, potato

Procedia PDF Downloads 123
1054 Food Insecurity and Mental Health among Adolescents in Southwest Ethiopia: Structural Equation Modeling Analysis

Authors: Mulusew G. Jebena, David Lindstrom, Tefera Belachew, Craig Hadley, Carl Lachat, Patrick Kolsteren

Abstract:

Background: The biological and psychosocial consequence of food insecurity on physical health and nutritional status has been reported. But, its effect on mental health during adolescence remains unexplored. Thus, the main aim of this analysis is to examine the mechanism by which food insecurity is linked to mental health among adolescents living in Jimma, Southwest Ethiopia. Methods: We used data from third round observation of Jimma Longitudinal Family and Youth Survey (JLFSY). A total of 1,521 adolescents included for the main analysis. Food insecurity was measured using 5-items scale and The Self Reporting Questionnaire (SRQ-20) was used to measure mental distress. Structural equation modeling analysis was done using maximum likelihood estimation method. Model diagnostics test was reported. All p values were two tailed and P value ≤ 0.05 was used to determine statistical significance. Results: The prevalence of mental distress was 20.8%, 95% CI: (18.8, 22.9). After adjusted for covariates, the final model depicts food insecurity was associated with adolescent mental distress (β=.324). This analysis showed 94.1% of the effect of food insecurity on mental distress is direct. By contrast, 5.9% of the food insecurity effect is mediated by physical health. In addition, Self-rated health (β=.356), socioeconomic status (β=-.078) parental educational (β= .170), living in urban (β= .193) and female headed household (β=.205) were associated with adolescent mental distress. Conclusions: This finding highlights the direct effect of food insecurity on adolescent mental distress. Therefore, any intervention aimed to improve mental distress of adolescents should consider strategies to improve access to sufficient, safe, and nutritious food. Beside this, prevention of underlying factors such as psychosomatic health illness and improving socio economic status is also very critical. Furthermore longitudinal relationship of the long term effect of food insecurity on mental health should be investigated.

Keywords: adolescent, Ethiopia, food insecurity, mental health

Procedia PDF Downloads 596
1053 Influence of Flight Design on Discharging Profiles of Granular Material in Rotary Dryer

Authors: I. Benhsine, M. Hellou, F. Lominé, Y. Roques

Abstract:

During the manufacture of fertilizer, it is necessary to add water for granulation purposes. The water content is then removed or reduced using rotary dryers. They are commonly used to dry wet granular materials and they are usually fitted with lifting flights. The transport of granular materials occurs when particles cascade from the lifting flights and fall into the air stream. Each cascade consists of a lifting and a falling cycle. Lifting flights are thus of great importance for the transport of granular materials along the dryer. They also enhance the contact between solid particles and the air stream. Optimization of the drying process needs an understanding of the behavior of granular materials inside a rotary dryer. Different approaches exist to study the movement of granular materials inside the dryer. Most common of them are based on empirical formulations or on study the movement of the bulk material. In the present work, we are interested in the behavior of each particle in the cross section of the dryer using Discrete Element Method (DEM) to understand. In this paper, we focus on studying the hold-up, the cascade patterns, the falling time and the falling length of the particles leaving the flights. We will be using two segment flights. Three different profiles are used: a straight flight (180° between both segments), an angled flight (with an angle of 150°), and a right-angled flight (90°). The profile of the flight affects significantly the movement of the particles in the dryer. Changing the flight angle changes the flight capacity which leads to different discharging profile of the flight, thus affecting the hold-up in the flight. When the angle of the flight is reduced, the range of the discharge angle increases leading to a more uniformed cascade pattern in time. The falling length and the falling time of the particles also increase up to a maximum value then they start decreasing. Moreover, the results show an increase in the falling length and the falling time up to 70% and 50%, respectively, when using a right-angled flight instead of a straight one.

Keywords: discrete element method, granular materials, lifting flight, rotary dryer

Procedia PDF Downloads 326
1052 Hydrodynamics of Periphyton Biofilters in Recirculating Aquaculture

Authors: Adam N. Bell, Sarina J. Ergas, Michael Nystrom, Nathan P. Brennan, Kevan L. Main

Abstract:

Integrated Multi-Trophic Aquaculture systems (IMTA) have the potential to improve the sustainability of seafood production, generate organic fertilizer and feed, remove waste discharges and reduce energy use. IMTA can include periphyton biofilters where algae and microbes grow on surfaces, along with caught detritus and amphipods. Periphyton biofilters provide many advantages: nitrification, denitrification, primary production and ecological diversity. The goal of this study was to determine how biofilter hydraulic residence time (τ) effects periphyton biomass production, dissolved oxygen (DO) and nutrient removal. A pilot scale recirculating aquaculture system (RAS) was designed, constructed and operated at different hydraulic residence times (τ= 1, 2, 4, 6, 8 hours per tank). For each τ, a conservative tracer study was conducted to investigate system hydrodynamics. Data on periphyton weights, pH, nitrogen species, phosphorus, temperature and DO were collected. The tracer study for τ =1 hour revealed that the normalized time < τ, indicating short-circuiting. Periphyton biomass production rate was relatively unaffected by τ (R_e<1 for all τ). Average ammonia nitrogen removal was > 75% for all trials. Nitrate and nitrite did not accumulate in the RAS for τ≥4 hours due to enhanced denitrification in anoxic zones. For τ≥4 hours DO concentration was at a maximum of 4 mg L-1 after 14:00, and decreased to 0 mg L-1 during nighttime. At τ=1 hour, the RAS stayed > 2 mg L-1 and DO was more evenly distributed. For the validation trial, the culture tank was stocked with Centropomus undecimalis (common snook) and the system was operated at τ= 1 hr. Preliminary results showed that a RAS with an integrated periphyton biofilter could support fish health with low nutrient concentrations DO > 6 mg L-1.

Keywords: sustainable aquaculture, resource recovery, nitrogen, microalgae, hydrodynamics, integrated multi-trophic aquaculture

Procedia PDF Downloads 131
1051 Optimization of Platinum Utilization by Using Stochastic Modeling of Carbon-Supported Platinum Catalyst Layer of Proton Exchange Membrane Fuel Cells

Authors: Ali Akbar, Seungho Shin, Sukkee Um

Abstract:

The composition of catalyst layers (CLs) plays an important role in the overall performance and cost of the proton exchange membrane fuel cells (PEMFCs). Low platinum loading, high utilization, and more durable catalyst still remain as critical challenges for PEMFCs. In this study, a three-dimensional material network model is developed to visualize the nanostructure of carbon supported platinum Pt/C and Pt/VACNT catalysts in pursuance of maximizing the catalyst utilization. The quadruple-phase randomly generated CLs domain is formulated using quasi-random stochastic Monte Carlo-based method. This unique statistical approach of four-phase (i.e., pore, ionomer, carbon, and platinum) model is closely mimic of manufacturing process of CLs. Various CLs compositions are simulated to elucidate the effect of electrons, ions, and mass transport paths on the catalyst utilization factor. Based on simulation results, the effect of key factors such as porosity, ionomer contents and Pt weight percentage in Pt/C catalyst have been investigated at the represented elementary volume (REV) scale. The results show that the relationship between ionomer content and Pt utilization is in good agreement with existing experimental calculations. Furthermore, this model is implemented on the state-of-the-art Pt/VACNT CLs. The simulation results on Pt/VACNT based CLs show exceptionally high catalyst utilization as compared to Pt/C with different composition ratios. More importantly, this study reveals that the maximum catalyst utilization depends on the distance spacing between the carbon nanotubes for Pt/VACNT. The current simulation results are expected to be utilized in the optimization of nano-structural construction and composition of Pt/C and Pt/VACNT CLs.

Keywords: catalyst layer, platinum utilization, proton exchange membrane fuel cell, stochastic modeling

Procedia PDF Downloads 121
1050 Finite Element and Experimental Investigation on Vibration Analysis of Laminated Composite Plates

Authors: Azad Mohammed Ali Saber, Lanja Saeed Omer

Abstract:

The present study deals with numerical method (FE) and experimental investigations on the vibration behavior of carbon fiber-polyester laminated plates. Finite element simulation is done using APDL (Ansys Parametric Design Language) macro codes software version 19. Solid185 layered structural element, including eight nodes, is adopted in this analysis. The experimental work is carried out using (Hand Layup method) to fabricate different layers and orientation angles of composite laminate plates. Symmetric samples include four layers (00/900)s and six layers (00/900/00)s, (00/00/900)s. Antisymmetric samples include one layer (00), (450), two layers (00/900), (-450/450), three layers (00/900/00), four layers (00/900)2, (-450/450)2, five layers (00/900)2.5, and six layers (00/900)3, (-450/450)3. An experimental investigation is carried out using a modal analysis technique with a Fast Fourier Transform Analyzer (FFT), Pulse platform, impact hammer, and accelerometer to obtain the frequency response functions. The influences of different parameters such as the number of layers, aspect ratio, modulus ratio, ply orientation, and different boundary conditions on the dynamic behavior of the CFRPs are studied, where the 1st, 2nd, and 3rd natural frequencies are observed to be the minimum for cantilever boundary condition (CFFF) and the maximum for full clamped boundary condition (CCCC). Experimental results show that the natural frequencies of laminated plates are significantly reliant on the type of boundary conditions due to the restraint effect at the edges. Good agreement is achieved among the finite element and experimental results. All results indicate that any increase in aspect ratio causes a decrease in the natural frequency of the CFRPs plate, while any increase in the modulus ratio or number of layers causes an increase in the fundamental natural frequency of vibration.

Keywords: vibration, composite materials, finite element, APDL ANSYS

Procedia PDF Downloads 43
1049 Synthesis, Characterization, Optical and Photophysical Properties of Pyrene-Labeled Ruthenium(Ii) Trisbipyridine Complex Cored Dendrimers

Authors: Mireille Vonlanthen, Pasquale Porcu, Ernesto Rivera

Abstract:

Dendritic macromolecules are presenting unique physical and chemical properties. One of them is the faculty of transferring energy from a donor moiety introduced at the periphery to an acceptor moiety at the core, mimicking the antenna effect of the process of photosynthesis. The mechanism of energy transfer is based on the Förster resonance energy exchange and requires some overlap between the emission spectrum of the donor and the absorption spectrum of the acceptor. Since it requires a coupling of transition dipole but no overlap of the physical wavefunctions, the energy transfer by Förster mechanism can occur over quite long distances from 1 to a maximum of 10 nm. However, the efficiency of the transfer depends strongly on distance. The Förster radius is the distance at which 50% of the donor’s emission is deactivated by FRET. In this work, we synthesized and characterized a novel series of dendrimers bearing pyrene moieties at the periphery and a Ru (II) complex at the core. The optical and photophysical properties of these compounds were studied by absorption and fluorescence spectroscopy. Pyrene is a well-studied chromophore that has the particularity to present monomer as well as excimer fluorescence emission. The coordination compounds of Ru (II) are red emitters with low quantum yield and long excited lifetime. We observed an efficient singulet to singulet energy transfer in such constructs. Moreover, it is known that the energy of the MLCT emitting state of Ru (II) can be tuned to become almost isoenegetic with respect to the triplet state of pyrene, leading to an extended phosphorescence lifetime. Using dendrimers bearing pyrene moieties as ligands for Ru (II), we could combine the antenna effect of dendrimers as well as its protection effect to the quenching by dioxygen with lifetime increase due to triplet-triplet equilibrium.

Keywords: dendritic molecules, energy transfer, pyrene, ru-trisbipyridine complex

Procedia PDF Downloads 277
1048 Influence of UV Aging on the Mechanical Properties of Polycarbonate

Authors: S. Redjala, N. Ait Hocine, M. Gratton, N. Poirot, R. Ferhoum, S. Azem

Abstract:

Polycarbonate (PC) is a promising polymer with high transparency in the range of the visible spectrum and is used in various fields, for example medical, electronic, automotive. Its low weight, chemical inertia, high impact resistance and relatively low cost are of major importance. In recent decades, some materials such as metals and ceramics have been replaced by polymers because of their superior advantages. However, some characteristics of the polymers are highly modified under the effect of ultraviolet (UV) radiation and temperature. The changes induced in the material by such aging depend on the exposure time, the wavelength of the UV radiation and the temperature level. The UV energy is sufficient to break the chemical bonds leading to a cleavage of the molecular chains. This causes changes in the mechanical, thermal, optical and morphological properties of the material. The present work is focused on the study of the effects of aging under ultraviolet (UV) radiation and under different temperature values on the physical-chemical and mechanical properties of a PC. Thus, various investigations, such as FTIR and XRD analyses, SEM and optical microscopy observations, micro-hardness measurements and monotonic and cyclic tensile tests, were carried out on the PC in the initial state and after aging. Results have shown the impact of aging on the properties of the PC studied. In fact, the MEB highlighted changes in the superficial morphology of the material by the presence of cracks and material de-bonding in the form of debris. The FTIR spectra reveal an attenuation of the peaks like the hydroxyl (OH) groups located at 3520 cm-1. The XRD lines shift towards a larger angle, reaching a maximum of 3°. In addition, Vickers micro-hardness measurements show that aging affects the surface and the core of the material, which results in different mechanical behaviours under monotonic and cyclic tensile tests. This study pointed out effects of aging on the macroscopic properties of the PC studied, in relationship with its microstructural changes.

Keywords: mechanical properties, physical-chemical properties, polycarbonate, UV aging, temperature aging

Procedia PDF Downloads 142
1047 Breeding for Hygienic Behavior in Honey Bees

Authors: Michael Eickermann, Juergen Junk

Abstract:

The Western honey (Apis mellifera) is threatened by a number of parasites, especially the devastating Varroa mite (Varroa destructor) is responsible for a high level of mortality over winter, e.g., in Europe and USA. While the use of synthetic pesticides or organic acids has been preferred so far to control this parasite, breeding strategies for less susceptible honey bees are in early stages. Hygienic behavior can be an important tool for controlling Varroa destructor. Worker bees with a high level of this behavior are able to detect infested brood in the cells under the wax lid during pupation and remove them out of the hive. The underlying processes of this behavior are only partly investigated, but it is for sure that hygienic behavior is heritable and therefore, can be integrated into commercial breeding lines. In a first step, breeding lines with a high level of phenotypic hygienic behavior have been identified by using a bioassay for accurate assessment of this trait in a long-term national breeding program in Luxembourg since 2015. Based on the artificial infestation of nucleus colonies with 150 phoretic Varroa destructor mites, the level of phenotypic hygienic behavior was detected by counting the number of mites in all stages, twelve days after infestation. A nucleus with a high level of hygienic behavior was overwintered and used for breeding activities in the following years. Artificial insemination was used to combine different breeding lines. Buckfast lines, as well as Carnica lines, were used. While Carnica lines offered only a low increase of hygienic behavior up to maximum 62.5%, Buckfast lines performed much better with mean levels of more than 87.5%. Some mating ends up with a level of 100%. But even with a level of 82.5% Varroa mites are not able to reproduce in the colony anymore. In a final step, a nucleus with a high level of hygienic behavior were build up to full colonies and located at two places in Luxembourg to build up a drone congregation area. Local beekeepers can bring their nucleus to this location for mating the queens with drones offering a high level of hygienic behavior.

Keywords: agiculture, artificial insemination, honey bee, varroa destructor

Procedia PDF Downloads 136
1046 Development of Personal Protection Equipment for Dental Surgeon

Authors: Thi. A. D. Tran, Matthieu Arnold, Dominique Adolphe, Laurence Schcher, Guillaume Reys

Abstract:

During daily oral health cares, dental surgeons are in contact with numerous potentially infectious germs from patients' saliva and blood. In order to take into account these risks, a product development process has been unrolled to propose to the dental surgeon a personal protection equipment that is suitable with their expectations in terms of images, protection and comfort. After a consumer study, to evaluate how the users wear the garment and their expectations, specifications have been carried out and technical solutions have been developed in order to answer to the maximum of the desiderata. Thermal studies and comfort studies have been performed. The obtained results lead to define the technical solutions concerning the design of the new scrub. Three main functions have been investigated, the ergonomic aspect, the protection and the thermal comfort. In terms of ergonomic aspect, instrumented garments have been worn and pressure measurements have been done. The results highlight that a raglan shape for the sleeves has to be selected for a better dynamic comfort. Moreover, spray tests helped us to localize the potential contamination area and therefore protection devices have been placed on the garment. Concerning the thermal comfort, an I-R study was conducted in consulting room under the real working conditions; the heating zones have been detected. Based on these results, solutions have been proposed and implemented in a new gown. This new gown is currently composed of three different parts; a protective layer placed in the chest area to avoid contamination; a breathable layer placed in the back and in the armpits and a normal PET/Cotton fabric for the rest of the gown. Through the fitting tests conducted in hospital, it was obtained that the new design was highly appreciated. Some points can nevertheless be further improved. A final product will be produced based on necessary improvements.

Keywords: comfort, dentists, garment, thermal

Procedia PDF Downloads 310
1045 The Introduction of a Tourniquet Checklist to Identify and Record Tourniquet Related Complications

Authors: Akash Soogumbur

Abstract:

Tourniquets are commonly used in orthopaedic surgery to provide hemostasis during procedures on the upper and lower limbs. However, there is a risk of complications associated with tourniquet use, such as nerve damage, skin necrosis, and compartment syndrome. The British Orthopaedic Association (BOAST) guidelines recommend the use of tourniquets at a pressure of 300 mmHg or less for a maximum of 2 hours. Research Aim: The aim of this study was to evaluate the effectiveness of a tourniquet checklist in improving compliance with the BOAST guidelines. Methodology: This was a retrospective study of all orthopaedic procedures performed at a single institution over a 12-month period. The study population included patients who had a tourniquet applied during surgery. Data were collected from the patients' medical records, including the duration of tourniquet use, the pressure used, and the method of exsanguination. Findings: The results showed that the use of the tourniquet checklist significantly improved compliance with the BOAST guidelines. Prior to the introduction of the checklist, compliance with the guidelines was 83% for the duration of tourniquet use and 73% for pressure used. After the introduction of the checklist, compliance increased to 100% for both duration of tourniquet use and pressure used. Theoretical Importance: The findings of this study suggest that the use of a tourniquet checklist can be an effective way to improve compliance with the BOAST guidelines. This is important because it can help to reduce the risk of complications associated with tourniquet use. Data Collection: Data were collected from the patients' medical records. The data included the following information: Patient demographics, procedure performed, duration of tourniquet use, pressure used, method of exsanguination. Analysis Procedures: The data were analyzed using descriptive statistics. The compliance with the BOAST guidelines was calculated as the percentage of patients who met the guidelines for the duration of tourniquet use and pressure used. Question Addressed: The question addressed by this study was whether the use of a tourniquet checklist could improve compliance with the BOAST guidelines. Conclusion: The results of this study suggest that the use of a tourniquet checklist can be an effective way to improve compliance with the BOAST guidelines. This is important because it can help to reduce the risk of complications associated with tourniquet use.

Keywords: tourniquet, pressure, duration, complications, surgery

Procedia PDF Downloads 70
1044 Evaluation of Ficus racemosa (Moraceae) as a Potential Source for Drug Formulation Against Coccidiosis

Authors: Naveeda Akhtar Qureshi, Wajiha

Abstract:

Coccidiosis is a protozoan parasitic disease of genus Eimeria. It is an avian infection causing a great economic loss of 3 billion USD per year globally. A number of anticoccidial drugs are in use however many of them have side effects and cost effective. With increase in poultry demand throughout the world there is a need of more drugs and vaccines against coccidiosis. The present study is based upon the use of F. racemosa a medicinal plant to be a potential source of anticoccidial agents. The methanolic leaves extract was fractionated by column and thin layer chromatography and got nineteen fractions. Each fraction different concentrations was evaluated for its anticoccidial properties in an invitro experiment against E. tenella, E. necatrix and E. mitis. The anticoccidial active fractions were further characterized by spectroscopy (UV-Vis, FTIR) and GC-MS analysis. The in silico molecular docking of active fractions identified compounds were carried out. Among all fractions significantly maximum sporulation inhibition efficacy was shown by F-19 (67.11±2.18) followed by F-15 (65.21±1.34) at concentration of 30mg/ml against E. tenella. The significantly highest sporozoites viability inhibition was shown by F-19 (69.23±2.11) followed by F-15 (67.14±1.52) against E. necatrix at concentration 30mg/ml. Anticoccidial active fractions 15 and 19 showed peak spectrum at 207 and 202nm respectively by UV analysis. Their FTIR analysis confirmed the presence of carboxylic acid, amines, phenols, etc. Anticoccidial active compounds like Cyclododecane methanol, oleic acid, Octadecanoic acid, etc were identified by GC-MS analysis. Identified compounds in silico molecular docking study showed that cyclododecane methanol of F-19 and oleic acid of F-15 showed highest binding affinity with target S-Adenosylmethionine synthase. Hence for further authentication in vivo anticoccidial studies are recommended.

Keywords: ficus racemosa, cluster fig, column chromatography, anticoccidial fractions, GC-MS, molecular docking., s-adenosylmethionine synthase

Procedia PDF Downloads 85
1043 Role of Energy Storage in Renewable Electricity Systems in The Gird of Ethiopia

Authors: Dawit Abay Tesfamariam

Abstract:

Ethiopia’s Climate- Resilient Green Economy (ECRGE) strategy focuses mainly on generating and proper utilization of renewable energy (RE). Nonetheless, the current electricity generation of the country is dominated by hydropower. The data collected in 2016 by Ethiopian Electric Power (EEP) indicates that the intermittent RE sources from solar and wind energy were only 8 %. On the other hand, the EEP electricity generation plan in 2030 indicates that 36.1 % of the energy generation share will be covered by solar and wind sources. Thus, a case study was initiated to model and compute the balance and consumption of electricity in three different scenarios: 2016, 2025, and 2030 using the EnergyPLAN Model (EPM). Initially, the model was validated using the 2016 annual power-generated data to conduct the EnergyPLAN (EP) analysis for two predictive scenarios. The EP simulation analysis using EPM for 2016 showed that there was no significant excess power generated. Thus, the EPM was applied to analyze the role of energy storage in RE in Ethiopian grid systems. The results of the EP simulation analysis showed there will be excess production of 402 /7963 MW average and maximum, respectively, in 2025. The excess power was in the three rainy months of the year (June, July, and August). The outcome of the model also showed that in the dry seasons of the year, there would be excess power production in the country. Consequently, based on the validated outcomes of EP indicates, there is a good reason to think about other alternatives for the utilization of excess energy and storage of RE. Thus, from the scenarios and model results obtained, it is realistic to infer that if the excess power is utilized with a storage system, it can stabilize the grid system and be exported to support the economy. Therefore, researchers must continue to upgrade the current and upcoming storage system to synchronize with potentials that can be generated from renewable energy.

Keywords: renewable energy, power, storage, wind, energy plan

Procedia PDF Downloads 77
1042 The Relationships between Energy Consumption, Carbon Dioxide (CO2) Emissions, and GDP for Egypt: Time Series Analysis, 1980-2010

Authors: Jinhoa Lee

Abstract:

The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of carbon dioxide (CO2) emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: crude oil, coal, natural gas, electricity), CO2 emissions and gross domestic product (GDP) for Egypt using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey-Fuller (ADF) test for stationarity, Johansen maximum likelihood method for co-integration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. The long-run equilibrium in the VECM suggests some negative impacts of the CO2 emissions and the coal and natural gas use on the GDP. Conversely, a positive long-run causality from the electricity consumption to the GDP is found to be significant in Egypt during the period. In the short-run, some positive unidirectional causalities exist, running from the coal consumption to the GDP, and the CO2 emissions and the natural gas use. Further, the GDP and the electricity use are positively influenced by the consumption of petroleum products and the direct combustion of crude oil. Overall, the results support arguments that there are relationships among environmental quality, energy use, and economic output in both the short term and long term; however, the effects may differ due to the sources of energy, such as in the case of Egypt for the period of 1980-2010.

Keywords: CO2 emissions, Egypt, energy consumption, GDP, time series analysis

Procedia PDF Downloads 615
1041 Flexible Feedstock Concept in Gasification Process for Carbon-Negative Energy Technology: A Case Study in Malaysia

Authors: Zahrul Faizi M. S., Ali A., Norhuda A. M.

Abstract:

Emission of greenhouse gases (GHG) from solid waste treatment and dependency on fossil fuel to produce electricity are the major concern in Malaysia as well as global. Innovation in downdraft gasification with combined heat and power (CHP) systems has the potential to minimize solid waste and reduce the emission of anthropogenic GHG from conventional fossil fuel power plants. However, the efficiency and capability of downdraft gasification to generate electricity from various alternative fuels, for instance, agriculture residues (i.e., woodchip, coconut shell) and municipal solid waste (MSW), are still controversial, on top of the toxicity level from the produced bottom ash. Thus this study evaluates the adaptability and reliability of the 20 kW downdraft gasification system to generate electricity (while considering environmental sustainability from the bottom ash) using flexible local feedstock at 20, 40, and 60% mixed ratio of MSW: agriculture residues. Feedstock properties such as feed particle size, moisture, and ash contents are also analyzed to identify optimal characteristics for the combination of feedstock (feedstock flexibility) to obtain maximum energy generation. Results show that the gasification system is capable to flexibly accommodate different feedstock compositions subjected to specific particle size (less than 2 inches) at a moisture content between 15 to 20%. These values exhibit enhance gasifier performance and provide a significant effect to the syngas composition utilizes by the internal combustion engine, which reflects energy production. The result obtained in this study is able to provide a new perspective on the transition of the conventional gasification system to a future reliable carbon-negative energy technology. Subsequently, promoting commercial scale-up of the downdraft gasification system.

Keywords: carbon-negative energy, feedstock flexibility, gasification, renewable energy

Procedia PDF Downloads 135
1040 Bowing of a Pipeline from Longitudinal Compressive Stress Induced by Ground Movement

Authors: Gennaro Marino

Abstract:

This paper concerns a case of a 10.75 inch diameter buried gas transmission line which was exposed to mine subsidence ground movements. The pipeline was buried about 4ft. below the surface with maximum operating pressure of 1440 psi. The mine subsidence movement was the result of long walling ore at a depth of approximately 1600 ft. As ore extraction progressed, the stress in the monitored pipeline worsened and was approaching unacceptable levels. The excessive pipe compression resulted when it was exposed to the compression zone of subsidence basin created by mining. The pipe stress reached a significant compressive level due to the extensive length of the pipe exposed to frictional ground-pipe slip resistance. The backfill ground movement slip resistance depends on normal stress around the pipe, the rate of slip, and the backfill characteristics. Normal stress depends on the burial depth of the backfill density and the lateral subsidence induced stress. The backfill in this site has a soil dry density of approximately 90 PCF. A suite of direct shear tests was conducted a residual friction angle of 36 was determined for the ambient backfill. These tests showed that the residual shearing resistance was reached within a fraction of an inch. The pipe was coated with fusion-bonded epoxy, so friction reduce factory of 0.6 can be considered. To relieve ground movement induced compressive stress, the line was uncovered. As more of the pipeline was exposed, the pipe abruptly bowed in the excavation. An analysis of this pipe formation which was performed is provided in this paper. Also discussed in this paper are ways to mitigate this pipe deformation or upheaval buckling from occurring. Keywords: Pipe Upheaval, Pipe Buckling, Ground subsidence, Buried Pipeline, Pipe Stress Mitigation.

Keywords: pipe upheaval, pipe buckling, ground subsidence, buried pipeline, pipe stress mitigation

Procedia PDF Downloads 161
1039 The Use of Spirulina during Aerobic Exercise on the Performance of Immune and Consumption Indicators (A Case Study: Young Men After Physical Training)

Authors: Vahab Behmanesh

Abstract:

One of the topics that has always attracted the attention of sports medicine and sports science experts is the positive or negative effect of sports activities on the functioning of the body's immune system. In the present research, a course of aerobic running with spirulina consumption has been studied on the maximum oxygen consumption and the performance of some indicators of the immune system of men who have trained after one session of physical activity. In this research, 50 trained students were studied randomly in four groups, spirulina- aerobic, spirulina, placebo- aerobic, and control. In order to test the research hypotheses, one-way statistical method of variance (ANOVA) was used considering the significance level of a=0.005 and post hoc test (LSD). A blood sample was taken from the participants in the first stage test in fasting and resting state immediately after Bruce's maximal test on the treadmill until complete relaxation was reached, and their Vo2max value was determined through the aforementioned test. The subjects of the spirulina-aerobic running and placebo-aerobic running groups took three 500 mg spirulina and 500 mg placebo pills a day for six weeks and ran three times a week for 30 minutes at the threshold of aerobic stimulation. The spirulina and placebo groups also consumed spirulina and placebo tablets in the above method for six weeks. Then they did the same first stage test as the second stage test. Blood samples were taken to measure the number of CD4+, CD8+, NK, and the ratio of CD4+ to CD8+ on four occasions before and after the first and second stage tests. The analysis of the findings showed that: aerobic running and spirulina supplement alone increase Vo2max. Aerobic running and consumption of spirulina increases Vo2max more than other groups (P<0.05), +CD4 and hemoglobin of the spirulina-aerobic running group was significantly different from other groups (P=0.002), +CD4 of the groups together There was no significant difference, NK increased in all groups, the ratio of CD4+ to CD8+ between the groups had a significant difference (P=0.002), the ratio of CD4+ to CD8+ in the spirulina- aerobic group was lower than the spirulina and placebo groups. All in all, it can be concluded that the supplement of spirulina and aerobic exercise may increase Vo2max and improve safety indicators.

Keywords: spirulina (Q2), hemoglobin (Q3), aerobic exercise (Q3), residual activity (Q2), CD4+ to CD8+ ratio (Q3)

Procedia PDF Downloads 123
1038 Determination of Some Organochlorine Pesticide Residues in Vegetable and Soil Samples from Alau Dam and Gongulong Agricultural Sites, Borno State, North Eastern Nigeria

Authors: Joseph Clement Akan, Lami Jafiya, Zaynab Muhammad Chellube, Zakari Mohammed, Fanna Inna Abdulrahman

Abstract:

Five vegetables (spinach, lettuce, cabbage, tomato, and onion) were freshly harvested from the Alau Dam and Gongulong agricultural areas for the determination of some organochlorine pesticide residues (o, p-DDE, p,p’-DDD, o,p’-DDD, p,p’-DDT, α-BHC, γ-BHC, metoxichlor, lindane, endosulfan dieldrin, and aldrin.) Soil samples were also collected at different depths for the determination of the above pesticides. Samples collection and preparation were conducted using standard procedures. The concentrations of all the pesticides in the soil and vegetable samples were determined using GC/MS SHIMADZU (GC-17A) equipped with electron capture detector (ECD). The highest concentration was that of p,p’-DDD (132.4±13.45µg/g) which was observed in the leaf of cabbage, while the lowest concentration was that of p,p’-DDT (2.34µg/g) was observed in the root of spinach. Similar trends were observed at the Gongulong agricultural area, with p,p’-DDD having the highest concentration of 153.23µg/g in the leaf of cabbage, while the lowest concentration was that of p,p’-DDT (12.45µg/g) which was observed in the root of spinach. α-BHC, γ-BHC, Methoxychlor, and lindane were detected in all the vegetable samples studied. The concentrations of all the pesticides in the soil samples were observed to be higher at a depth of 21-30cm, while the lowest concentrations were observed at a depth of 0-10cm. The concentrations of all the pesticides in the vegetables and soil samples from the two agricultural sites were observed to be at alarming levels, much higher than the maximum residue limits (MRLs) and acceptable daily intake values (ADIs) .The levels of the pesticides observed in the vegetables and soil samples investigated, are of such a magnitude that calls for special attention and laws to regulate the use and circulation of such chemicals. Routine monitoring of pesticide residues in these study areas is necessary for the prevention, control and reduction of environmental pollution, so as to minimize health risks.

Keywords: Alau Dam, gongulong, organochlorine, pesticide residues, soil, vegetables

Procedia PDF Downloads 284
1037 Numerical Investigation of 3D Printed Pin Fin Heat Sinks for Automotive Inverter Cooling Application

Authors: Alexander Kospach, Fabian Benezeder, Jürgen Abraham

Abstract:

E-mobility poses new challenges for inverters (e.g., higher switching frequencies) in terms of thermal behavior and thermal management. Due to even higher switching frequencies, thermal losses become greater, and the cooling of critical components (like insulated gate bipolar transistor and diodes) comes into focus. New manufacturing methods, such as 3D printing, enable completely new pin-fin structures that can handle higher waste heat to meet the new thermal requirements. Based on the geometrical specifications of the industrial partner regarding the manufacturing possibilities for 3D printing, different and completely new pin-fin structures were numerically investigated for their hydraulic and thermal behavior in fundamental studies assuming an indirect liquid cooling. For the 3D computational fluid dynamics (CFD) thermal simulations OpenFOAM was used, which has as numerical method the finite volume method for solving the conjugate heat transfer problem. A steady-state solver for turbulent fluid flow and solid heat conduction with conjugate heat transfer between solid and fluid regions was used for the simulations. In total, up to fifty pinfin structures and arrangements, some of them completely new, were numerically investigated. On the basis of the results of the principal investigations, the best two pin-fin structures and arrangements for the complete module cooling of an automotive inverter were numerically investigated and compared. There are clear differences in the maximum temperatures for the critical components, such as IGTBs and diodes. In summary, it was shown that 3D pin fin structures can significantly contribute to the improvement of heat transfer and cooling of an automotive inverter. This enables in the future smaller cooling designs and a better lifetime of automotive inverter modules. The new pin fin structures and arrangements can also be applied to other cooling applications where 3D printing can be used.

Keywords: pin fin heat sink optimization, 3D printed pin fins, CFD simulation, power electronic cooling, thermal management

Procedia PDF Downloads 102
1036 Consumer Health Risk Assessment from Some Heavy Metal Bioaccumulation in Common Carp (Cyprinus Carpio) from Lake Koka, Ethiopia

Authors: Mathewos Temesgen, Lemi Geleta

Abstract:

Lake Koka is one of the Ethiopian Central Rift Valleys lakes, where the absorbance of domestic, agricultural, and industrial waste from the nearby industrial and agro-industrial activities is very common. The aim of this research was to assess the heavy metal bioaccumulation in edible parts of common carp (Cyprinus carpio) in Lake Koka and the health risks associated with the dietary intake of the fish. Three sampling sites were selected randomly for primary data collection. Physicochemical parameters (pH, Total Dissolved Solids, Dissolved Oxygen and Electrical Conductivity) were measured in-situ. Four heavy metals (Cd, Cr, Pb, and Zn) in water and bio-accumulation in the edible parts of the fish were analyzed with flame atomic absorption spectrometry. The mean values of TDS, EC, DO and pH of the lake water were 458.1 mg/L, 905.7 µ s/cm, 7.36 mg/L, and 7.9, respectively. The mean concentrations of Zn, Cr, and Cd in the edible part of fish were also 0.18 mg/kg, ND-0.24 mg/kg, and ND-0.03 mg/kg, respectively. Pb was, however, not identified. The amount of Cr in the examined fish muscle was above the level set by FAO, and the accumulation of the metals showed marked differences between sampling sites (p<0.05). The concentrations of Cd, Pb and were below the maximum permissible limit. The results also indicated that Cr has a high transfer factor value and Zn has the lowest. The carcinogenic hazard ratio values were below the threshold value (<1) for the edible parts of fish. The estimated weekly intake of heavy metals from fish muscles ranked as Cr>Zn>Cd, but the values were lower than the Reference Dose limit for metals. The carcinogenic risk values indicated a low health risk due to the intake of individual metals from fish. Furthermore, the hazard index of the edible part of fish was less than unity. Generally, the water quality is not a risk for the survival and reproduction of fish, and the heavy metal contents in the edible parts of fish exhibited low carcinogenic risk through the food chain.

Keywords: bio-accumulation, cyprinus carpio, hazard index, heavy metals, Lake Koka

Procedia PDF Downloads 114
1035 Removal of Rhodamine B from Aqueous Solution Using Natural Clay by Fixed Bed Column Method

Authors: A. Ghribi, M. Bagane

Abstract:

The discharge of dye in industrial effluents is of great concern because their presence and accumulation have a toxic or carcinogenic effect on living species. The removal of such compounds at such low levels is a difficult problem. The adsorption process is an effective and attractive proposition for the treatment of dye contaminated wastewater. Activated carbon adsorption in fixed beds is a very common technology in the treatment of water and especially in processes of decolouration. However, it is expensive and the powdered one is difficult to be separated from aquatic system when it becomes exhausted or the effluent reaches the maximum allowable discharge level. The regeneration of exhausted activated carbon by chemical and thermal procedure is also expensive and results in loss of the sorbent. The focus of this research was to evaluate the adsorption potential of the raw clay in removing rhodamine B from aqueous solutions using a laboratory fixed-bed column. The continuous sorption process was conducted in this study in order to simulate industrial conditions. The effect of process parameters, such as inlet flow rate, adsorbent bed height, and initial adsorbate concentration on the shape of breakthrough curves was investigated. A glass column with an internal diameter of 1.5 cm and height of 30 cm was used as a fixed-bed column. The pH of feed solution was set at 8.5. Experiments were carried out at different bed heights (5 - 20 cm), influent flow rates (1.6- 8 mL/min) and influent rhodamine B concentrations (20 - 80 mg/L). The obtained results showed that the adsorption capacity increases with the bed depth and the initial concentration and it decreases at higher flow rate. The column regeneration was possible for four adsorption–desorption cycles. The clay column study states the value of the excellent adsorption capacity for the removal of rhodamine B from aqueous solution. Uptake of rhodamine B through a fixed-bed column was dependent on the bed depth, influent rhodamine B concentration, and flow rate.

Keywords: adsorption, breakthrough curve, clay, fixed bed column, rhodamine b, regeneration

Procedia PDF Downloads 275