Search results for: urban road network
5286 Intrusion Detection Using Dual Artificial Techniques
Authors: Rana I. Abdulghani, Amera I. Melhum
Abstract:
With the abnormal growth of the usage of computers over networks and under the consideration or agreement of most of the computer security experts who said that the goal of building a secure system is never achieved effectively, all these points led to the design of the intrusion detection systems(IDS). This research adopts a comparison between two techniques for network intrusion detection, The first one used the (Particles Swarm Optimization) that fall within the field (Swarm Intelligence). In this Act, the algorithm Enhanced for the purpose of obtaining the minimum error rate by amending the cluster centers when better fitness function is found through the training stages. Results show that this modification gives more efficient exploration of the original algorithm. The second algorithm used a (Back propagation NN) algorithm. Finally a comparison between the results of two methods used were based on (NSL_KDD) data sets for the construction and evaluation of intrusion detection systems. This research is only interested in clustering the two categories (Normal and Abnormal) for the given connection records. Practices experiments result in intrude detection rate (99.183818%) for EPSO and intrude detection rate (69.446416%) for BP neural network.Keywords: IDS, SI, BP, NSL_KDD, PSO
Procedia PDF Downloads 3825285 Traffic Light Detection Using Image Segmentation
Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra
Abstract:
Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks
Procedia PDF Downloads 1745284 Evaluation of Thermal Comfort and Energy Consumption in Classroom
Authors: I. Kadek Candra Parmana Wiguna, Wiwik Budiawan, Heru Prastawa
Abstract:
Semarang has become not only a metropolitan city but also a centre of government that has experienced significant changes in urban land use. Temperature increases in urban areas result from the expansion of development. The average temperature in Semarang reached 27.10°C to 29.60°C in 2022. The state of thermal sensation is very dependent on the mode of operation; Industrial Engineering building is mostly equipped with an air conditioner (AC). This study aims to analyze the thermal comfort level and energy consumption of air conditioners in classroom of industrial engineering. Participants in this study amounted to 31 students with data collection for 4 weeks. Results of the physical environment are Ta in: 25.52°C, Ta out: 32.71 °C, Rh in: 61.14%, Rh out: 59.43%, and Av in: 0.037 m/s. The results of clothing insulation are 41% of the respondents belonged to the categories 0.31 - 0.5 clo (summer domming) and 0.51 - 0.70 clo (spring clothing). Regarding the predicted mean vote (PMV), the average value is 0.63, and only 14.85% result of the predicted percentage dissatisfied (PPD). The neutral temperature with measurement Griffith’s constant 0.5/°C was 27.16°C, but the statistical test results show that the comfort temperature to use TSV ≤ 0 which is 28.55°C. The highest average power (watt) measurement results during week 3, which is 1613.65 watts. It is concluded in this study that the thermal comfort conditions in the classroom are adequate and acceptable to more than 90% of respondents.Keywords: thermal comfort, PMV/PPD, air conditioner, TSV
Procedia PDF Downloads 345283 Methodological Approach to the Elaboration and Implementation of the Spatial-Urban Plan for the Special Purpose Area: Case-Study of Infrastructure Corridor of Highway E-80, Section Nis-Merdare, Serbia
Authors: Nebojsa Stefanovic, Sasa Milijic, Natasa Danilovic Hristic
Abstract:
Spatial plan of the special purpose area constitutes a basic tool in the planning of infrastructure corridor of a highway. The aim of the plan is to define the planning basis and provision of spatial conditions for the construction and operation of the highway, as well as for developing other infrastructure systems in the corridor. This paper presents a methodology and approach to the preparation of the Spatial Plan for the special purpose area for the infrastructure corridor of the highway E-80, Section Niš-Merdare in Serbia. The applied methodological approach is based on the combined application of the integrative and participatory method in the decision-making process on the sustainable development of the highway corridor. It was found that, for the planning and management of the infrastructure corridor, a key problem is coordination of spatial and urban planning, strategic environmental assessment and sectoral traffic planning and designing. Through the development of the plan, special attention is focused on increasing the accessibility of the local and regional surrounding, reducing the adverse impacts on the development of settlements and the economy, protection of natural resources, natural and cultural heritage, and the development of other infrastructure systems in the corridor of the highway. As a result of the applied methodology, this paper analyzes the basic features such as coverage, the concept, protected zones, service facilities and objects, the rules of development and construction, etc. Special emphasis is placed to methodology and results of the Strategic Environmental Assessment of the Spatial Plan, and to the importance of protection measures, with the special significance of air and noise protection measures. For evaluation in the Strategic Environmental Assessment, a multicriteria expert evaluation (semi-quantitative method) of planned solutions was used in relation to the set of goals and relevant indicators, based on the basic set of indicators of sustainable development. Evaluation of planned solutions encompassed the significance and size, spatial conditions and probability of the impact of planned solutions on the environment, and the defined goals of strategic assessment. The framework of the implementation of the Spatial Plan is presented, which is determined for the simultaneous elaboration of planning solutions at two levels: the strategic level of the spatial plan and detailed urban plan level. It is also analyzed the relationship of the Spatial Plan to other applicable planning documents for the planning area. The effects of this methodological approach relate to enabling integrated planning of the sustainable development of the infrastructure corridor of the highway and its surrounding area, through coordination of spatial, urban and sectoral traffic planning and design, as well as the participation of all key actors in the adoption and implementation of planned decisions. By the conclusions of the paper, it is pointed to the direction for further research, particularly in terms of harmonizing methodology of planning documentation and preparation of technical-design documentation.Keywords: corridor, environment, highway, impact, methodology, spatial plan, urban
Procedia PDF Downloads 2125282 Neural Network Based Compressor Flow Estimator in an Aircraft Vapor Cycle System
Authors: Justin Reverdi, Sixin Zhang, Serge Gratton, Said Aoues, Thomas Pellegrini
Abstract:
In Vapor Cycle Systems, the flow sensor plays a key role in different monitoring and control purposes. However, physical sensors can be expensive, inaccurate, heavy, cumbersome, or highly sensitive to vibrations, which is especially problematic when embedded into an aircraft. The conception of a virtual sensor based on other standard sensors is a good alternative. In this paper, a data-driven model using a Convolutional Neural Network is proposed to estimate the flow of the compressor. To fit the model to our dataset, we tested different loss functions. We show in our application that a Dynamic Time Warping based loss function called DILATE leads to better dynamical performance than the vanilla mean squared error (MSE) loss function. DILATE allows choosing a trade-off between static and dynamic performance.Keywords: deep learning, dynamic time warping, vapor cycle system, virtual sensor
Procedia PDF Downloads 1465281 Enhancing Seismic Resilience in Urban Environments
Authors: Beatriz González-rodrigo, Diego Hidalgo-leiva, Omar Flores, Claudia Germoso, Maribel Jiménez-martínez, Laura Navas-sánchez, Belén Orta, Nicola Tarque, Orlando Hernández- Rubio, Miguel Marchamalo, Juan Gregorio Rejas, Belén Benito-oterino
Abstract:
Cities facing seismic hazard necessitate detailed risk assessments for effective urban planning and vulnerability identification, ensuring the safety and sustainability of urban infrastructure. Comprehensive studies involving seismic hazard, vulnerability, and exposure evaluations are pivotal for estimating potential losses and guiding proactive measures against seismic events. However, broad-scale traditional risk studies limit consideration of specific local threats and identify vulnerable housing within a structural typology. Achieving precise results at neighbourhood levels demands higher resolution seismic hazard exposure, and vulnerability studies. This research aims to bolster sustainability and safety against seismic disasters in three Central American and Caribbean capitals. It integrates geospatial techniques and artificial intelligence into seismic risk studies, proposing cost-effective methods for exposure data collection and damage prediction. The methodology relies on prior seismic threat studies in pilot zones, utilizing existing exposure and vulnerability data in the region. Emphasizing detailed building attributes enables the consideration of behaviour modifiers affecting seismic response. The approach aims to generate detailed risk scenarios, facilitating prioritization of preventive actions pre-, during, and post-seismic events, enhancing decision-making certainty. Detailed risk scenarios necessitate substantial investment in fieldwork, training, research, and methodology development. Regional cooperation becomes crucial given similar seismic threats, urban planning, and construction systems among involved countries. The outcomes hold significance for emergency planning and national and regional construction regulations. The success of this methodology depends on cooperation, investment, and innovative approaches, offering insights and lessons applicable to regions facing moderate seismic threats with vulnerable constructions. Thus, this framework aims to fortify resilience in seismic-prone areas and serves as a reference for global urban planning and disaster management strategies. In conclusion, this research proposes a comprehensive framework for seismic risk assessment in high-risk urban areas, emphasizing detailed studies at finer resolutions for precise vulnerability evaluations. The approach integrates regional cooperation, geospatial technologies, and adaptive fragility curve adjustments to enhance risk assessment accuracy, guiding effective mitigation strategies and emergency management plans.Keywords: assessment, behaviour modifiers, emergency management, mitigation strategies, resilience, vulnerability
Procedia PDF Downloads 695280 Human-Centric Sensor Networks for Comfort and Productivity in Offices: Integrating Environmental, Body Area Network, and Participatory Sensing
Authors: Chenlu Zhang, Wanni Zhang, Florian Schaule
Abstract:
Indoor environment in office buildings directly affects comfort, productivity, health, and well-being of building occupants. Wireless environmental sensor networks have been deployed in many modern offices to monitor and control the indoor environments. However, indoor environmental variables are not strong enough predictors of comfort and productivity levels of every occupant due to personal differences, both physiologically and psychologically. This study proposes human-centric sensor networks that integrate wireless environmental sensors, body area network sensors and participatory sensing technologies to collect data from both environment and human and support building operations. The sensor networks have been tested in one small-size and one medium-size office rooms with 22 participants for five months. Indoor environmental data (e.g., air temperature and relative humidity), physiological data (e.g., skin temperature and Galvani skin response), and physiological responses (e.g., comfort and self-reported productivity levels) were obtained from each participant and his/her workplace. The data results show that: (1) participants have different physiological and physiological responses in the same environmental conditions; (2) physiological variables are more effective predictors of comfort and productivity levels than environmental variables. These results indicate that the human-centric sensor networks can support human-centric building control and improve comfort and productivity in offices.Keywords: body area network, comfort and productivity, human-centric sensors, internet of things, participatory sensing
Procedia PDF Downloads 1395279 Low-Noise Amplifier Design for Improvement of Communication Range for Wake-Up Receiver Based Wireless Sensor Network Application
Authors: Ilef Ketata, Mohamed Khalil Baazaoui, Robert Fromm, Ahmad Fakhfakh, Faouzi Derbel
Abstract:
The integration of wireless communication, e. g. in real-or quasi-real-time applications, is related to many challenges such as energy consumption, communication range, latency, quality of service, and reliability. To minimize the latency without increasing energy consumption, wake-up receiver (WuRx) nodes have been introduced in recent works. Low-noise amplifiers (LNAs) are introduced to improve the WuRx sensitivity but increase the supply current severely. Different WuRx approaches exist with always-on, power-gated, or duty-cycled receiver designs. This paper presents a comparative study for improving communication range and decreasing the energy consumption of wireless sensor nodes.Keywords: wireless sensor network, wake-up receiver, duty-cycled, low-noise amplifier, envelope detector, range study
Procedia PDF Downloads 1135278 Vegetation Integrated with Architecture: A Comparative Study in Vijayawada
Authors: Clince Rodrigues
Abstract:
Due to high dense areas, there is a continuous increase in the global warming and urban pollution, thus integrating green with the built environment is vital. The paper deals with the understanding of vegetation in architecture and how a proper design strategy can aim at improving not only the performances of buildings but also the outdoor climate. In the present scenario of cities, one cannot inhale pure air. Vegetations combat global warming by absorbing the carbon emitted by vehicles, lowering carbon emissions from fossil fuel-burning plants, and reducing the energy used for climate control in buildings by the use of plants which can reduce the carbon emission and thus, making the environment less polluted. A comparative study of areas, neighborhood and dwelling unit has been used as a scope for understanding different scenarios and scale. By comparing a system (area; building) with and without vegetation, and then finding out the difference. Understanding the Vijayawada city by taking its past and present conditions, and how these changes have affected the environment and people at a macro and micro level. Built environment and climactic performance at the building level and surrounding spaces are the areas that are covered in the study.Keywords: climate, environment, neighborhood, pollution, vegetation, Vijayawada, urban
Procedia PDF Downloads 1575277 Evaluation of Essential Oils Toxicity on Resistant and Susceptible House Fly Strains
Authors: Xing Ping Hu, Yuexun Tian, Jerome Hogsette
Abstract:
Housefly, Musca domestica L., is a serious urban nuisance and public health/food safety concern. This study evaluated the topical toxicity of 17 essential oil components and 3 plant essential oils against permethrin-resistant adult females and insecticide-susceptible house fly strains. Results show that thymol had the lowest LD₅₀ values against permethrin-resistant strain (43.77 and 41.10 ug per fly) and permethrin-susceptible strain (35.19 and 29.16 ug per fly) at both 24- and 48-hours post treatments; (+)-Pulegone had the lowest LD₉₅ values against the permethrin-resistant strain (0.15 and 0.10 mg per fly) at 24- and 48-hours post treatments, whereas plant thyme oil had the lowest LD₉₅ value of 0.17 mg per fly at post-24h and post-48h against the permethrin-susceptible strain. Additionally, the LD₅₀s was slightly but not significantly negatively correlated with the boiling points of the compounds tested; but showed no correlation with the density and LogP. These results indicate that specific essential oils and compounds have topical insecticidal properties against house flies with low dose. They may have the potential for development as botanical insecticides.Keywords: urban pest, public health, pest management, botanical chemical
Procedia PDF Downloads 3865276 The Essential but Uncertain Role of the Vietnamese Association of Cities of Vietnam in Promoting Community-Based Housing Upgrading
Authors: T. Nguyen, H. Rennie, S. Vallance, M. Mackay
Abstract:
Municipal Associations, also called Unions, Leagues or Federations of municipalities have been established worldwide to represent the interests and needs of urban governments in the face of increasing urban issues. In 2008, the Association of Cities of Vietnam (ACVN) joined the Asian Coalition of Community Action Program (ACCA program) and introduced the community-based upgrading approach to help Vietnamese cities to address urban upgrading issues. While this community-based upgrading approach has only been implemented in a small number of Vietnamese cities and its replication has faced certain challenges, it is worthy to explore insights on how the Association of cities of Vietnam played its role in implementing some reportedly successful projects. This paper responds to this inquiry and presents results extracted from the author’s PhD study that sets out with a general objective to critically examine how social capital dimensions (i.e., bonding, bridging and linking) were formed, mobilized and maintained in a local collective and community-based upgrading process. Methodologically, the study utilized the given general categorization of bonding, bridging and linking capitals to explore and confirm how social capital operated in the real context of a community-based upgrading process, particularly in the context of Vietnam. To do this, the study conducted two exploratory and qualitative case studies of housing projects in Friendship neighbourhood (Vinh city) and Binh Dong neighbourhood (Tan An city). This paper presents the findings of the Friendship neighbourhood case study, focusing on the role of the Vietnamese municipal association in forming, mobilizing and maintaining bonding, bridging and linking capital for a community-based upgrading process. The findings highlight the essential but uncertain role of ACVN - the organization that has a hybrid legitimacy status - in such a process. The results improve our understanding both practically and theoretically. Practically, the results offer insights into the performance of a municipal association operating in a transitioning socio-political context of Vietnam. Theoretically, the paper questions the necessity of categorizing social capital dimensions (i.e., bonding, bridging and linking) by suggesting a holistic approach of looking at social capital for urban governance issues within the Vietnamese context and perhaps elsewhere.Keywords: bonding capital, bridging capital, municipal association, linking capital, social capital, housing upgrading
Procedia PDF Downloads 1485275 Design of Compact Dual-Band Planar Antenna for WLAN Systems
Authors: Anil Kumar Pandey
Abstract:
A compact planar monopole antenna with dual-band operation suitable for wireless local area network (WLAN) application is presented in this paper. The antenna occupies an overall area of 18 ×12 mm2. The antenna is fed by a coplanar waveguide (CPW) transmission line and it combines two folded strips, which radiates at 2.4 and 5.2 GHz. In the proposed antenna, by optimally selecting the antenna dimensions, dual-band resonant modes with a much wider impedance matching at the higher band can be produced. Prototypes of the obtained optimized design have been simulated using EM solver. The simulated results explore good dual-band operation with -10 dB impedance bandwidths of 50 MHz and 2400 MHz at bands of 2.4 and 5.2 GHz, respectively, which cover the 2.4/5.2/5.8 GHz WLAN operating bands. Good antenna performances such as radiation patterns and antenna gains over the operating bands have also been observed. The antenna with a compact size of 18×12×1.6 mm3 is designed on an FR4 substrate with a dielectric constant of 4.4.Keywords: CPW antenna, dual-band, electromagnetic simulation, wireless local area network (WLAN)
Procedia PDF Downloads 2095274 Changing Pattern and Trend of Head of Household in India: Evidence from Various Rounds of National Family Health Survey
Authors: Moslem Hossain, Mukesh Kumar, K. C. Das
Abstract:
Background: Household headship is the crucial decision-maker as well as the economic provider of the household. In Indian society, household heads occupied by men from the pre-colonial period. This study attempt to examine the changes in household headship in India. Methods: The study used univariate and multivariate analysis to examine the trends and patterns of different characteristics of the household head using the various rounds of national family health survey data. Results: The female household head is gradually increasing; on the other hand, the male-dominant is decreasing over the four national family and health surveys. The mean age of the household head is higher in rural areas than urban India. Only ten percentage of Households are higher educated, and 83 percent of the male household head has a low standard of living. The mean family size of the household has a decreasing trend in both the urban and rural areas during the study period. Conclusions: The result indicates that women's autonomy is increasing and leading to inclusive growth, which introduced in the eleven five year plan, especially focuses on the woman and young people in the country.Keywords: household head, national family health survey, mean age, mean family size
Procedia PDF Downloads 1325273 Multi-Labeled Aromatic Medicinal Plant Image Classification Using Deep Learning
Authors: Tsega Asresa, Getahun Tigistu, Melaku Bayih
Abstract:
Computer vision is a subfield of artificial intelligence that allows computers and systems to extract meaning from digital images and video. It is used in a wide range of fields of study, including self-driving cars, video surveillance, medical diagnosis, manufacturing, law, agriculture, quality control, health care, facial recognition, and military applications. Aromatic medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, essential oils, decoration, cleaning, and other natural health products for therapeutic and Aromatic culinary purposes. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs but also going to export for valuable foreign currency exchange. In Ethiopia, there is a lack of technologies for the classification and identification of Aromatic medicinal plant parts and disease type cured by aromatic medicinal plants. Farmers, industry personnel, academicians, and pharmacists find it difficult to identify plant parts and disease types cured by plants before ingredient extraction in the laboratory. Manual plant identification is a time-consuming, labor-intensive, and lengthy process. To alleviate these challenges, few studies have been conducted in the area to address these issues. One way to overcome these problems is to develop a deep learning model for efficient identification of Aromatic medicinal plant parts with their corresponding disease type. The objective of the proposed study is to identify the aromatic medicinal plant parts and their disease type classification using computer vision technology. Therefore, this research initiated a model for the classification of aromatic medicinal plant parts and their disease type by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides roots, flowers, fruits, and latex. For this study, the researcher used RGB leaf images with a size of 128x128 x3. In this study, the researchers trained five cutting-edge models: convolutional neural network, Inception V3, Residual Neural Network, Mobile Network, and Visual Geometry Group. Those models were chosen after a comprehensive review of the best-performing models. The 80/20 percentage split is used to evaluate the model, and classification metrics are used to compare models. The pre-trained Inception V3 model outperforms well, with training and validation accuracy of 99.8% and 98.7%, respectively.Keywords: aromatic medicinal plant, computer vision, convolutional neural network, deep learning, plant classification, residual neural network
Procedia PDF Downloads 1875272 Application of Artificial Neural Network in Initiating Cleaning Of Photovoltaic Solar Panels
Authors: Mohamed Mokhtar, Mostafa F. Shaaban
Abstract:
Among the challenges facing solar photovoltaic (PV) systems in the United Arab Emirates (UAE), dust accumulation on solar panels is considered the most severe problem that faces the growth of solar power plants. The accumulation of dust on the solar panels significantly degrades output from these panels. Hence, solar PV panels have to be cleaned manually or using costly automated cleaning methods. This paper focuses on initiating cleaning actions when required to reduce maintenance costs. The cleaning actions are triggered only when the dust level exceeds a threshold value. The amount of dust accumulated on the PV panels is estimated using an artificial neural network (ANN). Experiments are conducted to collect the required data, which are used in the training of the ANN model. Then, this ANN model will be fed by the output power from solar panels, ambient temperature, and solar irradiance, and thus, it will be able to estimate the amount of dust accumulated on solar panels at these conditions. The model was tested on different case studies to confirm the accuracy of the developed model.Keywords: machine learning, dust, PV panels, renewable energy
Procedia PDF Downloads 1445271 Hydraulic Performance of Urban Drainage System Using SWMM: A Case Study of Siti Khadijah Retention Pond in Palembang City
Authors: Muhammad B. Al Amin, Nyimas S. Rika, Dwi F. Yanto, Marcelina
Abstract:
Siti Khadijah retention pond is located beside of Siti Khadijah Islamic Hospital on Demang Lebar Daun Street in Palembang City. This retention pond is functioned as storage for runoff from drainage channels in the surrounding area before entering Sekanak River, which is one of Musi River tributaries. However, in recent years, the developments in the surrounding area into paved area trigger to increase runoff discharge that causes the pond can no longer store it adequately. This study aimed to investigate the hydraulic performance of drainage system in the area around Siti Khadijah retention pond. A SWMM model was used to simulate runoff discharge into the pond and out from the pond, so the water level fluctuation within the pond and its capacity could be determined. Besides that, the water depth within drainage channels was simulated as well. The results showed that capacity of retention pond and some drainage channels already inadequate, so the area around it potentially to be flooded. Thus, it is necessary to increase the capacity of the retention pond and drainage channels.Keywords: flood, retention pond, SWMM, urban drainage system
Procedia PDF Downloads 4465270 Calibration of Residential Buildings Energy Simulations Using Real Data from an Extensive in situ Sensor Network – A Study of Energy Performance Gap
Authors: Mathieu Bourdeau, Philippe Basset, Julien Waeytens, Elyes Nefzaoui
Abstract:
As residential buildings account for a third of the overall energy consumption and greenhouse gas emissions in Europe, building energy modeling is an essential tool to reach energy efficiency goals. In the energy modeling process, calibration is a mandatory step to obtain accurate and reliable energy simulations. Nevertheless, the comparison between simulation results and the actual building energy behavior often highlights a significant performance gap. The literature discusses different origins of energy performance gaps, from building design to building operation. Then, building operation description in energy models, especially energy usages and users’ behavior, plays an important role in the reliability of simulations but is also the most accessible target for post-occupancy energy management and optimization. Therefore, the present study aims to discuss results on the calibration ofresidential building energy models using real operation data. Data are collected through a sensor network of more than 180 sensors and advanced energy meters deployed in three collective residential buildings undergoing major retrofit actions. The sensor network is implemented at building scale and in an eight-apartment sample. Data are collected for over one year and half and coverbuilding energy behavior – thermal and electricity, indoor environment, inhabitants’ comfort, occupancy, occupants behavior and energy uses, and local weather. Building energy simulations are performed using a physics-based building energy modeling software (Pleaides software), where the buildings’features are implemented according to the buildingsthermal regulation code compliance study and the retrofit project technical files. Sensitivity analyses are performed to highlight the most energy-driving building features regarding each end-use. These features are then compared with the collected post-occupancy data. Energy-driving features are progressively replaced with field data for a step-by-step calibration of the energy model. Results of this study provide an analysis of energy performance gap on an existing residential case study under deep retrofit actions. It highlights the impact of the different building features on the energy behavior and the performance gap in this context, such as temperature setpoints, indoor occupancy, the building envelopeproperties but also domestic hot water usage or heat gains from electric appliances. The benefits of inputting field data from an extensive instrumentation campaign instead of standardized scenarios are also described. Finally, the exhaustive instrumentation solution provides useful insights on the needs, advantages, and shortcomings of the implemented sensor network for its replicability on a larger scale and for different use cases.Keywords: calibration, building energy modeling, performance gap, sensor network
Procedia PDF Downloads 1605269 Relay Mining: Verifiable Multi-Tenant Distributed Rate Limiting
Authors: Daniel Olshansky, Ramiro Rodrıguez Colmeiro
Abstract:
Relay Mining presents a scalable solution employing probabilistic mechanisms and crypto-economic incentives to estimate RPC volume usage, facilitating decentralized multitenant rate limiting. Network traffic from individual applications can be concurrently serviced by multiple RPC service providers, with costs, rewards, and rate limiting governed by a native cryptocurrency on a distributed ledger. Building upon established research in token bucket algorithms and distributed rate-limiting penalty models, our approach harnesses a feedback loop control mechanism to adjust the difficulty of mining relay rewards, dynamically scaling with network usage growth. By leveraging crypto-economic incentives, we reduce coordination overhead costs and introduce a mechanism for providing RPC services that are both geopolitically and geographically distributed.Keywords: remote procedure call, crypto-economic, commit-reveal, decentralization, scalability, blockchain, rate limiting, token bucket
Procedia PDF Downloads 545268 Alternator Fault Detection Using Wigner-Ville Distribution
Authors: Amin Ranjbar, Amir Arsalan Jalili Zolfaghari, Amir Abolfazl Suratgar, Mehrdad Khajavi
Abstract:
This paper describes two stages of learning-based fault detection procedure in alternators. The procedure consists of three states of machine condition namely shortened brush, high impedance relay and maintaining a healthy condition in the alternator. The fault detection algorithm uses Wigner-Ville distribution as a feature extractor and also appropriate feature classifier. In this work, ANN (Artificial Neural Network) and also SVM (support vector machine) were compared to determine more suitable performance evaluated by the mean squared of errors criteria. Modules work together to detect possible faulty conditions of machines working. To test the method performance, a signal database is prepared by making different conditions on a laboratory setup. Therefore, it seems by implementing this method, satisfactory results are achieved.Keywords: alternator, artificial neural network, support vector machine, time-frequency analysis, Wigner-Ville distribution
Procedia PDF Downloads 3745267 An Intelligent Traffic Management System Based on the WiFi and Bluetooth Sensing
Authors: Hamed Hossein Afshari, Shahrzad Jalali, Amir Hossein Ghods, Bijan Raahemi
Abstract:
This paper introduces an automated clustering solution that applies to WiFi/Bluetooth sensing data and is later used for traffic management applications. The paper initially summarizes a number of clustering approaches and thereafter shows their performance for noise removal. In this context, clustering is used to recognize WiFi and Bluetooth MAC addresses that belong to passengers traveling by a public urban transit bus. The main objective is to build an intelligent system that automatically filters out MAC addresses that belong to persons located outside the bus for different routes in the city of Ottawa. The proposed intelligent system alleviates the need for defining restrictive thresholds that however reduces the accuracy as well as the range of applicability of the solution for different routes. This paper moreover discusses the performance benefits of the presented clustering approaches in terms of the accuracy, time and space complexity, and the ease of use. Note that results of clustering can further be used for the purpose of the origin-destination estimation of individual passengers, predicting the traffic load, and intelligent management of urban bus schedules.Keywords: WiFi-Bluetooth sensing, cluster analysis, artificial intelligence, traffic management
Procedia PDF Downloads 2415266 Geographic Information System for District Level Energy Performance Simulations
Authors: Avichal Malhotra, Jerome Frisch, Christoph van Treeck
Abstract:
The utilization of semantic, cadastral and topological data from geographic information systems (GIS) has exponentially increased for building and urban-scale energy performance simulations. Urban planners, simulation scientists, and researchers use virtual 3D city models for energy analysis, algorithms and simulation tools. For dynamic energy simulations at city and district level, this paper provides an overview of the available GIS data models and their levels of detail. Adhering to different norms and standards, these models also intend to describe building and construction industry data. For further investigations, CityGML data models are considered for simulations. Though geographical information modelling has considerably many different implementations, extensions of virtual city data can also be made for domain specific applications. Highlighting the use of the extended CityGML models for energy researches, a brief introduction to the Energy Application Domain Extension (ADE) along with its significance is made. Consequently, addressing specific input simulation data, a workflow using Modelica underlining the usage of GIS information and the quantification of its significance over annual heating energy demand is presented in this paper.Keywords: CityGML, EnergyADE, energy performance simulation, GIS
Procedia PDF Downloads 1695265 The Development of Home-Based Long Term Care Model among Thai Elderly Dependent
Authors: N. Uaphongsathorn, C. Worawong, S. Thaewpia
Abstract:
Background and significance: The population is aging in Thai society, the elderly dependent is at great risk of various functional, psychological, and socio-economic problems as well as less access to health care. They may require long term care at home to maximize their functional abilities and activities of daily living and to improve their quality of life during their own age. Therefore, there is a need to develop a home-based long term care to meet the long term care needs of elders dependent. Methods: The research purpose was to develop long term care model among the elderly dependent in Chaiyaphum province in Northeast region of Thailand. Action Research which is composing of planning, action, observation, and reflection phases was used. Research was carried out for 12 months in all sub-districts of 6 districts in Chaiyaphum province. Participants (N = 1,010) participating in the processes of model development were comprised of 3 groups: a) a total of 110 health care professionals, b) a total of 600 health volunteers and family caregivers and c) a total of 300 the elderly dependent with chronically medical illnesses or disabilities. Descriptive statistics and content analysis were used to analyze data. Findings: Results have shown that the most common health problems among elders dependent with physical disabilities to function independently were cardiovascular disease, dementia, and traffic injuries. The development of home-based long term care model among elders dependent in Chaiyaphum province was composed of six key steps. They are: a) initiating policies supporting formal and informal caregivers for the elder dependent in all sub-districts, b) building network and multidisciplinary team, c) developing 3-day care manager training program and 3-day care provider training program d) training case managers and care providers for the elderly dependent through team and action learning, e) assessing, planning and providing care based on care individual’s needs of the elderly dependent, and f) sharing experiences for good practice and innovation for long term care at homes in district urban and rural areas. Among all care managers and care providers, the satisfaction level for training programs was high with a mean score of 3.98 out of 5. The elders dependent and family caregivers addressed that long term care at home could contribute to improving life’s daily activities, family relationship, health status, and quality of life. Family caregivers and volunteers have feeling a sense of personal satisfaction and experiencing providing meaningful care and support for elders dependent. Conclusion: In conclusion, a home-based long term care is important to Thai elders dependent. Care managers and care providers play a large role and responsibility to provide appropriate care to meet the elders’ needs in both urban and rural areas in Thai society. Further research could be rigorously studied with a larger group of populations in similar socio-economic and cultural contexts.Keywords: elderly people, care manager, care provider, long term care
Procedia PDF Downloads 3025264 Understanding Responses of the Bee Community to an Urbanizing Landscape in Bengaluru, South India
Authors: Chethana V. Casiker, Jagadishakumara B., Sunil G. M., Chaithra K., M. Soubadra Devy
Abstract:
A majority of the world’s food crops depends on insects for pollination, among which bees are the most dominant taxon. Bees pollinate vegetables, fruits and oilseeds which are rich in essential micronutrients. Besides being a prerequisite for a nutritionally secure diet, agrarian economies such as India depend heavily on pollination for good yield and quality of the product. As cities all over the world expand rapidly, large tracts of green spaces are being built up. This, along with high usage of agricultural chemicals has reduced floral diversity and shrunk bee habitats. Indeed, pollinator decline is being reported from various parts of the world. Further, the FAO has reported a huge increase in the area of land under cultivation of pollinator-dependent crops. In the light of increasing demand for pollination and disappearing natural habitats, it is critical to understand whether and how urban spaces can support pollinators. To this end, this study investigates the influence of landscape and local habitat quality on bee community dynamics. To capture the dynamics of expanding cityscapes, the study employs a space for time substitution, wherein a transect along the gradient of urbanization substitutes a timeframe of increasing urbanization. This will help understand how pollinators would respond to changes induced by increasing intensity of urbanization in the future. Bengaluru, one of the fastest growing cities of Southern India, is an excellent site to study impacts associated with urbanization. With sites moving away from the Bengaluru’s centre and towards its peripheries, this study captures the changes in bee species diversity and richness along a gradient of urbanization. Bees were sampled under different land use types as well as in different types of vegetation, including plantations, croplands, fallow land, parks, lake embankments, and private gardens. The relationship between bee community metrics and key drivers such as a percentage of built-up area, land use practices, and floral resources was examined. Additionally, data collected using questionnaire interviews were used to understand people’s perceptions towards and level of dependence on pollinators. Our results showed that urban areas are capable of supporting bees. In fact, a greater diversity of bees was recorded in urban sites compared to adjoining rural areas. This suggests that bees are able to seek out patchy resources and survive in small fragments of habitat. Bee abundance and species richness correlated positively with floral abundance and richness, indicating the role of vegetation in providing forage and nesting sites which are crucial to their survival. Bee numbers were seen to decrease with increase in built-up area demonstrating that impervious surfaces could act as deterrents. Findings from this study challenge the popular notion of cities being biodiversity-bare spaces. There is indeed scope for conserving bees in urban landscapes, provided that there are city-scale planning and local initiative. Bee conservation can go hand in hand with efforts such as urban gardening and terrace farming that could help cities urbanize sustainably.Keywords: bee, landscape ecology, urbanization, urban pollination
Procedia PDF Downloads 1675263 Sea of Light: A Game 'Based Approach for Evidence-Centered Assessment of Collaborative Problem Solving
Authors: Svenja Pieritz, Jakab Pilaszanovich
Abstract:
Collaborative Problem Solving (CPS) is recognized as being one of the most important skills of the 21st century with having a potential impact on education, job selection, and collaborative systems design. Therefore, CPS has been adopted in several standardized tests, including the Programme for International Student Assessment (PISA) in 2015. A significant challenge of evaluating CPS is the underlying interplay of cognitive and social skills, which requires a more holistic assessment. However, the majority of the existing tests are using a questionnaire-based assessment, which oversimplifies this interplay and undermines ecological validity. Two major difficulties were identified: Firstly, the creation of a controllable, real-time environment allowing natural behaviors and communication between at least two people. Secondly, the development of an appropriate method to collect and synthesize both cognitive and social metrics of collaboration. This paper proposes a more holistic and automated approach to the assessment of CPS. To address these two difficulties, a multiplayer problem-solving game called Sea of Light was developed: An environment allowing students to deploy a variety of measurable collaborative strategies. This controlled environment enables researchers to monitor behavior through the analysis of game actions and chat. The according solution for the statistical model is a combined approach of Natural Language Processing (NLP) and Bayesian network analysis. Social exchanges via the in-game chat are analyzed through NLP and fed into the Bayesian network along with other game actions. This Bayesian network synthesizes evidence to track and update different subdimensions of CPS. Major findings focus on the correlations between the evidences collected through in- game actions, the participants’ chat features and the CPS self- evaluation metrics. These results give an indication of which game mechanics can best describe CPS evaluation. Overall, Sea of Light gives test administrators control over different problem-solving scenarios and difficulties while keeping the student engaged. It enables a more complete assessment based on complex, socio-cognitive information on actions and communication. This tool permits further investigations of the effects of group constellations and personality in collaborative problem-solving.Keywords: bayesian network, collaborative problem solving, game-based assessment, natural language processing
Procedia PDF Downloads 1325262 Improving Fingerprinting-Based Localization System Using Generative AI
Authors: Getaneh Berie Tarekegn, Li-Chia Tai
Abstract:
With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarms, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 425261 Decision Support System for Fetus Status Evaluation Using Cardiotocograms
Authors: Oyebade K. Oyedotun
Abstract:
The cardiotocogram is a technical recording of the heartbeat rate and uterine contractions of a fetus during pregnancy. During pregnancy, several complications can occur to both the mother and the fetus; hence it is very crucial that medical experts are able to find technical means to check the healthiness of the mother and especially the fetus. It is very important that the fetus develops as expected in stages during the pregnancy period; however, the task of monitoring the health status of the fetus is not that which is easily achieved as the fetus is not wholly physically available to medical experts for inspection. Hence, doctors have to resort to some other tests that can give an indication of the status of the fetus. One of such diagnostic test is to obtain cardiotocograms of the fetus. From the analysis of the cardiotocograms, medical experts can determine the status of the fetus, and therefore necessary medical interventions. Generally, medical experts classify examined cardiotocograms into ‘normal’, ‘suspect’, or ‘pathological’. This work presents an artificial neural network based decision support system which can filter cardiotocograms data, producing the corresponding statuses of the fetuses. The capability of artificial neural network to explore the cardiotocogram data and learn features that distinguish one class from the others has been exploited in this research. In this research, feedforward and radial basis neural networks were trained on a publicly available database to classify the processed cardiotocogram data into one of the three classes: ‘normal’, ‘suspect’, or ‘pathological’. Classification accuracies of 87.8% and 89.2% were achieved during the test phase of the trained network for the feedforward and radial basis neural networks respectively. It is the hope that while the system described in this work may not be a complete replacement for a medical expert in fetus status evaluation, it can significantly reinforce the confidence in medical diagnosis reached by experts.Keywords: decision support, cardiotocogram, classification, neural networks
Procedia PDF Downloads 3335260 Optimal Design of the Power Generation Network in California: Moving towards 100% Renewable Electricity by 2045
Authors: Wennan Long, Yuhao Nie, Yunan Li, Adam Brandt
Abstract:
To fight against climate change, California government issued the Senate Bill No. 100 (SB-100) in 2018 September, which aims at achieving a target of 100% renewable electricity by the end of 2045. A capacity expansion problem is solved in this case study using a binary quadratic programming model. The optimal locations and capacities of the potential renewable power plants (i.e., solar, wind, biomass, geothermal and hydropower), the phase-out schedule of existing fossil-based (nature gas) power plants and the transmission of electricity across the entire network are determined with the minimal total annualized cost measured by net present value (NPV). The results show that the renewable electricity contribution could increase to 85.9% by 2030 and reach 100% by 2035. Fossil-based power plants will be totally phased out around 2035 and solar and wind will finally become the most dominant renewable energy resource in California electricity mix.Keywords: 100% renewable electricity, California, capacity expansion, mixed integer non-linear programming
Procedia PDF Downloads 1715259 Functions and Challenges of New County-Based Regional Plan in Taiwan
Authors: Yu-Hsin Tsai
Abstract:
A new, mandated county regional plan system has been initiated since 2010 nationwide in Taiwan, with its role situated in-between the policy-led cross-county regional plan and the blueprint-led city plan. This new regional plan contain both urban and rural areas in one single plan, which provides a more complete planning territory, i.e., city region within the county’s jurisdiction, and to be executed and managed effectively by the county government. However, the full picture of its functions and characteristics seems still not totally clear, compared with other levels of plans; either are planning goals and issues that can be most appropriately dealt with at this spatial scale. In addition, the extent to which the inclusion of sustainability ideal and measures to cope with climate change are unclear. Based on the above issues, this study aims to clarify the roles of county regional plan, to analyze the extent to which the measures cope with sustainability, climate change, and forecasted declining population, and the success factors and issues faced in the planning process. The methodology applied includes literature review, plan quality evaluation, and interview with officials of the central and local governments and urban planners involved for all the 23 counties in Taiwan. The preliminary research results show, first, growth management related policies have been widely implemented and expected to have effective impact, including incorporating resources capacity to determine maximum population for the city region as a whole, developing overall vision of urban growth boundary for all the whole city region, prioritizing infill development, and use of architectural land within urbanized area over rural area to cope with urban growth. Secondly, planning-oriented zoning is adopted in urban areas, while demand-oriented planning permission is applied in the rural areas with designated plans. Then, public participation has been evolved to the next level to oversee all of government’s planning and review processes due to the decreasing trust in the government, and development of public forum on the internet etc. Next, fertile agricultural land is preserved to maintain food self-supplied goal for national security concern. More adoption-based methods than mitigation-based methods have been applied to cope with global climate change. Finally, better land use and transportation planning in terms of avoiding developing rail transit stations and corridor in rural area is promoted. Even though many promising, prompt measures have been adopted, however, challenges exist to surround: first, overall urban density, likely affecting success of UGB, or use of rural agricultural land, has not been incorporated, possibly due to implementation difficulties. Second, land-use related measures to mitigating climate change seem less clear and hence less employed. Smart decline has not drawn enough attention to cope with predicted population decrease in the next decade. Then, some reluctance from county’s government to implement county regional plan can be observed vaguely possibly since limits have be set on further development on agricultural land and sensitive areas. Finally, resolving issue on existing illegal factories on agricultural land remains the most challenging dilemma.Keywords: city region plan, sustainability, global climate change, growth management
Procedia PDF Downloads 3495258 Experiencing an Unknown City: Environmental Features as Pedestrian Wayfinding Clues through the City of Swansea, UK
Authors: Hussah Alotaishan
Abstract:
In today’s globally-driven modern cities diverse groups of new visitors face various challenges when attempting to find their desired location if culture and language are barriers. The most common way-showing tools such as directional and identificational signs are the most problematic and their usefulness can be limited or even non-existent. It is argued new methods should be implemented that could support or replace such conventional literacy and language dependent way-finding aids. It has been concluded in recent research studies that local urban features in complex pedestrian spaces are worthy of further study in order to reveal if they do function as way-showing clues. Some researchers propose a more comprehensive approach to the complex perception of buildings, façade design and surface patterns, while some have been questioning whether we necessarily need directional signs or can other methods deliver the same message but in a clearer manner for a wider range of users. This study aimed to test to what extent do existent environmental and urban features through the city center area of Swansea in the UK facilitate the way-finding process of a first time visitor. The three-hour experiment was set to attempt to find 11 visitor attractions ranging from recreational, historical, educational and religious locations. The challenge was attempting to find as many as possible when no prior geographical knowledge of their whereabouts was established. The only clues were 11 pictures representing each of the locations that had been acquired from the city of Swansea official website. An iPhone and a heart-rate tracker wristwatch were used to record the route was taken and stress levels, and take record photographs of destinations or decision-making points throughout the journey. This paper addresses: current limitations in understanding the ways that the physical environment can be intentionally deployed to facilitate pedestrians while finding their way around, without or with a reduction in language dependent signage; investigates visitor perceptions of their surroundings by indicating what urban elements manifested an impact on the way-finding process. The initial findings support the view that building facades and street features, such as width, could facilitate the decision-making process if strategically employed. However, more importantly, the anticipated features of a specific place construed from a promotional picture can also be misleading and create confusion that may lead to getting lost.Keywords: pedestrian way-finding, environmental features, urban way-showing, environmental affordance
Procedia PDF Downloads 1735257 Historical Hashtags: An Investigation of the #CometLanding Tweets
Authors: Noor Farizah Ibrahim, Christopher Durugbo
Abstract:
This study aims to investigate how the Twittersphere reacted during the recent historical event of robotic landing on a comet. The news is about Philae, a robotic lander from European Space Agency (ESA), which successfully made the first-ever rendezvous and touchdown of its kind on a nucleus comet on November 12, 2014. In order to understand how Twitter is practically used in spreading messages on historical events, we conducted an analysis of one-week tweet feeds that contain the #CometLanding hashtag. We studied the trends of tweets, the diffusion of the information and the characteristics of the social network created. The results indicated that the use of Twitter as a platform enables online communities to engage and spread the historical event through social media network (e.g. tweets, retweets, mentions and replies). In addition, it was found that comprehensible and understandable hashtags could influence users to follow the same tweet stream compared to other laborious hashtags which were difficult to understand by users in online communities.Keywords: diffusion of information, hashtag, social media, Twitter
Procedia PDF Downloads 325