Search results for: soil classification
1351 Marble Powder’s Effect on Permeability and Mechanical Properties of Concrete
Authors: Shams Ul Khaliq, Khan Shahzada, Bashir Alam, Fawad Bilal, Mushtaq Zeb, Faizan Akbar
Abstract:
Marble industry contributes its fair share in environmental deterioration, producing voluminous amounts of mud and other excess residues obtained from marble and granite processing, polluting soil, water and air. Reusing these products in other products will not just prevent our environment from polluting but also help with economy. In this research, an attempt has been made to study the expediency of waste Marble Powder (MP) in concrete production. Various laboratory tests were performed to investigate permeability, physical and mechanical properties, such as slump, compressive strength, split tensile test, etc. Concrete test samples were fabricated with varying MP content (replacing 5-30% cement), furnished from two different sources. 5% replacement of marble dust caused 6% and 12% decrease in compressive and tensile strength respectively. These parameters gradually decreased with increasing MP content up to 30%. Most optimum results were obtained with 10% replacement. Improvement in consistency and permeability were noticed. The permeability was improved with increasing MP proportion up to 10% without substantial decrease in compressive strength. Obtained results revealed that MP as an alternative to cement in concrete production is a viable option considering its economic and environment friendly implications.Keywords: marble powder, strength, permeability, consistency, environment
Procedia PDF Downloads 3331350 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach
Authors: Rajvir Kaur, Jeewani Anupama Ginige
Abstract:
With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.Keywords: artificial neural networks, breast cancer, classifiers, cervical cancer, f-score, machine learning, precision, recall
Procedia PDF Downloads 2771349 Comparative Analysis of Pit Composting and Vermicomposting in a Tropical Environment
Authors: E. Ewemoje Oluseyi, T. A. Ewemoje, A. A. Adedeji
Abstract:
Biodegradable solid waste disposal and management has been a major problem in Nigeria and indiscriminate dumping of this waste either into watercourses or drains has led to environmental hazards affecting public health. The study investigated the nutrients level of pit composting and vermicomposting. Wooden bins 60 cm × 30 cm × 30 cm3 in size were constructed and bedding materials (sawdust, egg shell, paper and grasses) and red worms (Eisenia fetida) introduced to facilitate the free movement and protection of the worms against harsh weather. A pit of 100 cm × 100 cm × 100 cm3 was dug and worms were introduced into the pit, which was turned every two weeks. Food waste was fed to the red worms in the bin and pit, respectively. The composts were harvested after 100 days and analysed. The analyses gave: nitrogen has average value 0.87 % and 1.29 %; phosphorus 0.66 % and 1.78 %; potassium 4.35 % and 6.27 % for the pit and vermicomposting, respectively. Higher nutrient status of vermicomposting over pit composting may be attributed to the secretions in the intestinal tracts of worms which are more readily available for plant growth. However, iron and aluminium were more in the pit compost than the vermin compost and this may be attributed to the iron and aluminium already present in the soil before the composting took place. Other nutrients in ppm concentrations were aluminium 4,999.50 and 3,989.33; iron 2,131.83 and 633.40 for the pit and vermicomposting, respectively. These nutrients are only needed by plants in small quantities. Hence, vermicomposting has the higher concentration of essential nutrients necessary for healthy plant growth.Keywords: food wastes, pit composting, plant nutrient status, tropical environment, vermicomposting
Procedia PDF Downloads 3401348 Dimensional Investigation of Food Addiction in Individuals Who Have Undergone Bariatric Surgery
Authors: Ligia Florio, João Mauricio Castaldelli-Maia
Abstract:
Background: Food addiction (FA) emerged in the 1990s as a possible contributor to the increasing prevalence of obesity and overweight, in conjunction with changing food environments and mental health conditions. However, FA is not yet listed as one of the disorders in the DSM-5 and/or the ICD-11. Although there are controversies and debates in the literature about the classification and construct of FA, the most common approach to access it is the use of a research tool - the Yale Food Addiction Scale (YFAS) - which approximates the concept of FA to the concept diagnosis of dependence on psychoactive substances. There is a need to explore the dimensional phenotypes accessed by YFAS in different population groups for a better understanding and scientific support of FA diagnoses. Methods: The primary objective of this project was to investigate the construct validity of the FA concept by mYFAS 2.0 in individuals who underwent bariatric surgery (n = 100) at the Hospital Estadual Mário Covas since 2011. Statistical analyzes were conducted using the STATA software. In this sense, structural or factor validity was the type of construct validity investigated using exploratory factor analysis (EFA) and item response theory (IRT) techniques. Results: EFA showed that the one-dimensional model was the most parsimonious. The IRT showed that all criteria contributed to the latent structure, presenting discrimination values greater than 0.5, with most presenting values greater than 2. Conclusion: This study reinforces a FA dimension in patients who underwent bariatric surgery. Within this dimension, we identified the most severe and discriminating criteria for the diagnosis of FA.Keywords: obesity, food addiction, bariatric surgery, regain
Procedia PDF Downloads 761347 Effect of Drought Stress on Yield and Yield Components of Maize Cultivars in Golestan Province
Authors: Mojtaba Esmaeilzad Limoudehi, Ebrahim Amiri
Abstract:
Water scarcity is now one of the leading challenges for human societies. In this regard, recognizing the relationship between soil, water, plant growth, and plant response to stress is very significant. In this paper, considering the importance of drought stress and the role of choosing suitable cultivars in resistance against drought, a split-plot experiment using early, intermediate, and late-maturing cultivars was carried out in Katul filed, Golestan province during two cultivation years of 2015 and 2016. The main factor was irrigation intervals at four levels, including 7 days, 14 days, 21 days, and 28 days. The subfactor was the subplot of six maize cultivars (two early maturing cultivars, two medium maturing cultivars, and two late-maturing cultivars). The results of variance analysis have revealed that irrigation interval and cultivars treatment have significant effects on the number of grain in each corn, number of rows in each corn, number of grain per row, the weight of 1000 grains, grain yield, and biomass yield. Although, the interaction of these two factors on the mentioned attributes was meaningful. The best grain yield was achieved at 7 days irrigation interval and late maturing maize cultivars treatment, which was equal to 12301 kg/ha.Keywords: corn, growth period, optimization, stress
Procedia PDF Downloads 1441346 Contrasting Patterns of Accumulation, Partitioning, and Reallocation Patterns of Dm and N Within the Maize Canopy Under Decreased N Availabilities
Authors: Panpan Fan, Bo Ming, Niels P. R. Anten, Jochem B. Evers, Yaoyao Li, Shaokun Li, Ruizhi Xie
Abstract:
The reallocation of dry matter (DM) and nitrogen (N) from vegetative tissues to the grain sinks are critical for grain yield. The objective of this study was to quantify the DM and N accumulation, partition, and reallocation at the single-leaf, different-organ, and individual-plant scales and clarify the responses to different levels of N availabilities. A two-year field experiment was conducted in Jinlin province, Northeast China, with three N fertilizer rates to create the different N availability levels: N0 (N deficiency), N1(low supply), and N2 (high supply). The results showed that grain N depends more on reallocations of vegetative organs compared with grain DM. Besides, vegetative organs reallocated more DM and N to grain under lower N availability, whereas more grain DM and grain N were derived from post-silking leaf photosynthesis and post-silking N uptake from the soil under high N availability. Furthermore, the reallocation amount and reallocation efficiency of leaf DM and leaf N content differed among leaf ranks and were regulated by N availability; specifically, the DM reallocation occurs mainly on senesced leaves, whereas the leaf N reallocation was in live leaves. These results provide a theoretical basis for deriving parameters in crop models for the simulation of the demand, uptake, partition, and reallocation processes of DM and N.Keywords: dry matter, leaf N content, leaf rank, N availability, reallocation efficiency
Procedia PDF Downloads 1281345 Liquefaction Susceptibility of Tailing Storage Facility-Comparison of National Centre for Earthquake Engineering Research and Finite Element Methods
Authors: Mehdi Ghatei, Masoomeh Lorestani
Abstract:
Upstream Tailings Storage Facilities (TSFs) may experience slope instabilities due to soil liquefaction, especially in regions known to be seismically active. In this study, liquefaction susceptibility of an upstream-raised TSF in Western Australia was assessed using two different approaches. The first approach assessed liquefaction susceptibility using Cone Penetration Tests with pore pressure measurement (CPTu) as described by the National Centre for Earthquake Engineering Research (NCEER). This assessment was based on the four CPTu tests that were conducted on the perimeter embankment of the TSF. The second approach used the Finite Element (FE) method with application of an equivalent linear model to predict the undrained cyclic behavior, the pore water pressure and the liquefaction of the materials. The tailings parameters were estimated from the CPTu profiles and from the laboratory tests. The cyclic parameters were estimated from the literature where test results of similar material were available. The results showed that there was a good agreement, in the liquefaction susceptibility of the tailings material, between the NCEER and FE methods with equivalent linear model.Keywords: liquefaction , CPTU, NCEER, finite element method, equivalent linear model
Procedia PDF Downloads 2721344 Analysis of Brain Activities due to Differences in Running Shoe Properties
Authors: Kei Okubo, Yosuke Kurihara, Takashi Kaburagi, Kajiro Watanabe
Abstract:
Many of the ever-growing elderly population require exercise, such as running, for health management. One important element of a runner’s training is the choice of shoes for exercise; shoes are important because they provide the interface between the feet and road. When we purchase shoes, we may instinctively choose a pair after trying on many different pairs of shoes. Selecting the shoes instinctively may work, but it does not guarantee a suitable fit for running activities. Therefore, if we could select suitable shoes for each runner from the viewpoint of brain activities, it would be helpful for validating shoe selection. In this paper, we describe how brain activities show different characteristics during particular task, corresponding to different properties of shoes. Using five subjects, we performed a verification experiment, applying weight, softness, and flexibility as shoe properties. In order to affect the shoe property’s differences to the brain, subjects run for ten min. Before and after running, subjects conducted a paced auditory serial addition task (PASAT) as the particular task; and the subjects’ brain activities during the PASAT are evaluated based on oxyhemoglobin and deoxyhemoglobin relative concentration changes, measured by near-infrared spectroscopy (NIRS). When the brain works actively, oxihemoglobin and deoxyhemoglobin concentration drastically changes; therefore, we calculate the maximum values of concentration changes. In order to normalize relative concentration changes after running, the maximum value are divided by before running maximum value as evaluation parameters. The classification of the groups of shoes is expressed on a self-organizing map (SOM). As a result, deoxyhemoglobin can make clusters for two of the three types of shoes.Keywords: brain activities, NIRS, PASAT, running shoes
Procedia PDF Downloads 3731343 Pattern Discovery from Student Feedback: Identifying Factors to Improve Student Emotions in Learning
Authors: Angelina A. Tzacheva, Jaishree Ranganathan
Abstract:
Interest in (STEM) Science Technology Engineering Mathematics education especially Computer Science education has seen a drastic increase across the country. This fuels effort towards recruiting and admitting a diverse population of students. Thus the changing conditions in terms of the student population, diversity and the expected teaching and learning outcomes give the platform for use of Innovative Teaching models and technologies. It is necessary that these methods adapted should also concentrate on raising quality of such innovations and have positive impact on student learning. Light-Weight Team is an Active Learning Pedagogy, which is considered to be low-stake activity and has very little or no direct impact on student grades. Emotion plays a major role in student’s motivation to learning. In this work we use the student feedback data with emotion classification using surveys at a public research institution in the United States. We use Actionable Pattern Discovery method for this purpose. Actionable patterns are patterns that provide suggestions in the form of rules to help the user achieve better outcomes. The proposed method provides meaningful insight in terms of changes that can be incorporated in the Light-Weight team activities, resources utilized in the course. The results suggest how to enhance student emotions to a more positive state, in particular focuses on the emotions ‘Trust’ and ‘Joy’.Keywords: actionable pattern discovery, education, emotion, data mining
Procedia PDF Downloads 981342 An Antifungal Peptide from Actinobacteria (Streptomyces Sp. TKJ2): Isolation and Partial Characterization
Authors: Abdelaziz Messis, Azzeddine Bettache, Nawel Boucherba, Said Benallaoua, Mouloud Kecha
Abstract:
Actinobacteria are of special biotechnological interest since they are known to produce chemically diverse compounds with a wide range of biological activity. This distinct clade of Gram-positve bacteria include some of the key antibiotic producers and are also sources of several bioactive compounds, established commercially a newly filamentous bacteria was recovered from Tikjda forest soil (Algeria) for its high antifungal activity against various pathogenic and phytopathogenic fungi. The nucleotide sequence of the 16S rRNA gene (1454 pb) of Streptomyces sp. TKJ2 exhibited close similarity (99 %) with other Streptomyces16S rRNA genes. Antifungal metabolite production of Streptomyces sp TKJ2 was evaluated using six different fermentation media. The extracellular products contained potent antifungal agents. Antifungal protein produced by Streptomyces sp. TKJ2 on PCA medium has been purified by ammonium sulfate precipitation, SPE column chromatography and high-performance liquid chromatography in a reverse-phase column. The UV chromatograms of the active fractions obtained at 214 nm by NanoLC-ESI-MS/MS have different molecular weights. The F20 Peptidic fraction obtained from culture filtrat of Streptomyces sp. TKJ2 precipitated at 30% of ammonium sulfate was selected for analysis by infusion ESI-MS which yielded a singly charged ion mass of 437.17 Da.Keywords: actinobacteria, antifungal protein, chromatography, Streptomyces
Procedia PDF Downloads 3831341 Uncontrolled Urbanization Leads to Main Challenge for Sustainable Development of Mongolia
Authors: Davaanyam Surenjav, Chinzolboo Dandarbaatar, Ganbold Batkhuyag
Abstract:
Primate city induced rapid urbanization has been become one of the main challenges in sustainable development in Mongolia like other developing countries since transition to market economy in 1990. According due to statistical yearbook, population number of Ulaanbaatar city has increased from 0.5 million to 1.5 million for last 30 years and contains now almost half (47%) of total Mongolian population. Rural-Ulaanbaatar and local Cities-Ulaanbaatar city migration leads to social issues like uncontrolled urbanization, income inequality, poverty, overwork of public service, economic over cost for redevelopment and limitation of transport and environmental degradation including air, noise, water and soil pollution. Most thresholds of all of the sustainable urban development main and sub-indicators over exceeded from safety level to unsafety level in Ulaanbaatar. So, there is an urgent need to remove migration pull factors including some administrative and high education functions from Ulaanbaatar city to its satellite cities or secondary cities. Moreover, urban smart transport system and green and renewable energy technologies should be introduced to urban development master plan of Ulaanbaatar city.Keywords: challenge for sustainable urban development, migration factors, primate city , urban safety thresholds
Procedia PDF Downloads 1311340 Perceiving Interpersonal Conflict and the Big Five Personality Traits
Authors: Emily Rivera, Toni DiDona
Abstract:
The Big Five personality traits is a hierarchical classification of personality traits that applies factor analysis to a personality survey data in order to describe human personality using five broad dimensions: Extraversion, Agreeableness, Conscientiousness, Neuroticism, and Openness (Fetvadjiev & Van de Vijer, 2015). Research shows that personality constructs underline individual differences in processing conflict and interpersonal relations. (Graziano et al., 1996). This research explores the understudied correlation between the Big Five personality traits and perceived interpersonal conflict in the workplace. It revises social psychological literature on Big Five personality traits within a social context and discusses organizational development journal articles on the perceived efficacy of conflict tactics and approach to interpersonal relationships. The study also presents research undertaken on a survey group of 867 subjects over the age of 18 that were recruited by means of convenience sampling through social media, email, and text messaging. The central finding of this study is that only two of the Big Five personality traits had a significant correlation with perceiving interpersonal conflict in the workplace. Individuals who score higher on agreeableness and neuroticism, perceive more interpersonal conflict in the workplace compared to those that score lower on each dimension. The relationship between both constructs is worthy of research due to its everyday frequency and unique individual psycho-social consequences. This multimethod research associated the Big Five personality dimensions to interpersonal conflict. Its findings that can be utilized to further understand social cognition, person perception, complex social behavior and social relationships in the work environment.Keywords: five-factor model, interpersonal conflict, personality, The Big Five personality traits
Procedia PDF Downloads 1581339 Bioremediation as a Treatment of Aromatic Hydrocarbons in Wastewater
Authors: Hen Friman, Alex Schechter, Yeshayahu Nitzan, Rivka Cahan
Abstract:
The treatment of aromatic hydrocarbons in wastewater resulting from oil spills and chemical manufactories is becoming a key concern in many modern countries. Benzene, ethylbenzene, toluene and xylene (BETX) contaminate groundwater as well as soil. These compounds have an acute effect on human health and are known to be carcinogenic. Conventional removal of these toxic materials involves separation and burning of the wastes, however, the cost of chemical treatment is very high and energy consuming. Bioremediation methods for removal of toxic organic compounds constitute an attractive alternative to the conventional chemical or physical techniques. Bioremediation methods use microorganisms to reduce the concentration and toxicity of various chemical pollutants Toluene is biodegradable both aerobically and anaerobically, it can be growth inhibitory to microorganisms at elevated concentrations, even to those species that can use it as a substrate. In this research culture of Pseudomonas putida was grown in bath bio-reactor (BBR) with toluene 100 mg/l as a single carbon source under constant voltage of 125 mV, 250 mV and 500 mV. The culture grown in BBR reached to 0.8 OD660nm while the control culture that grown without external voltage reached only to 0.6 OD660nm. The residual toluene concentration after 147 h, in the BBR operated under external voltage (125 mV) was 22 % on average, while in the control BBR it was 81 % on average.Keywords: bioremediation, aromatic hydrocarbons, BETX, toluene, pseudomonas putida
Procedia PDF Downloads 3161338 Exploring the Physical Environment and Building Features in Earthquake Disaster Areas
Authors: Chang Hsueh-Sheng, Chen Tzu-Ling
Abstract:
Earthquake is an unpredictable natural disaster and intensive earthquakes have caused serious impacts on social-economic system, environmental and social resilience. Conventional ways to mitigate earthquake disaster are to enhance building codes and advance structural engineering measures. However, earthquake-induced ground damage such as liquefaction, land subsidence, landslide happen on places nearby earthquake prone or poor soil condition areas. Therefore, this study uses spatial statistical analysis to explore the spatial pattern of damaged buildings. Afterwards, principle components analysis (PCA) is applied to categorize the similar features in different kinds of clustered patterns. The results show that serious landslide prone area, close to fault, vegetated ground surface and mudslide prone area are common in those highly damaged buildings. In addition, the oldest building might not be directly referred to the most vulnerable one. In fact, it seems that buildings built between 1974 and 1989 become more fragile during the earthquake. The incorporation of both spatial statistical analyses and PCA can provide more accurate information to subsidize retrofit programs to enhance earthquake resistance in particular areas.Keywords: earthquake disaster, spatial statistic analysis, principle components analysis (pca), clustered patterns
Procedia PDF Downloads 3131337 Sub-Pixel Mapping Based on New Mixed Interpolation
Authors: Zeyu Zhou, Xiaojun Bi
Abstract:
Due to the limited environmental parameters and the limited resolution of the sensor, the universal existence of the mixed pixels in the process of remote sensing images restricts the spatial resolution of the remote sensing images. Sub-pixel mapping technology can effectively improve the spatial resolution. As the bilinear interpolation algorithm inevitably produces the edge blur effect, which leads to the inaccurate sub-pixel mapping results. In order to avoid the edge blur effect that affects the sub-pixel mapping results in the interpolation process, this paper presents a new edge-directed interpolation algorithm which uses the covariance adaptive interpolation algorithm on the edge of the low-resolution image and uses bilinear interpolation algorithm in the low-resolution image smooth area. By using the edge-directed interpolation algorithm, the super-resolution of the image with low resolution is obtained, and we get the percentage of each sub-pixel under a certain type of high-resolution image. Then we rely on the probability value as a soft attribute estimate and carry out sub-pixel scale under the ‘hard classification’. Finally, we get the result of sub-pixel mapping. Through the experiment, we compare the algorithm and the bilinear algorithm given in this paper to the results of the sub-pixel mapping method. It is found that the sub-pixel mapping method based on the edge-directed interpolation algorithm has better edge effect and higher mapping accuracy. The results of the paper meet our original intention of the question. At the same time, the method does not require iterative computation and training of samples, making it easier to implement.Keywords: remote sensing images, sub-pixel mapping, bilinear interpolation, edge-directed interpolation
Procedia PDF Downloads 2291336 Effects of Collection Time on Chemical Composition of Leaf Essential Oils of Hoslundia opposita
Authors: O. E. Ogunjinmi, N. O. Olawore, L. A. Usman, S. O. Ogunjinmi
Abstract:
An essential oil is any concentrated, hydrophobic liquid containing volatile aroma compounds produced by plants. It has been established that several factors affect the component of the plants such as the texture of the soil, relative humidity, wind, and collection time. This study is aimed at investigating the effect of collection time on the chemical composition of this essential oil. Pulverized leaves (500 g) of Hoslundia opposite harvested in the morning (7 am) and afternoon (2 pm) of the same day were separately hydrodistilled using Clevenger apparatus to obtain the essential oils from the leaves. The leaf oils collected in the morning (7 am) and afternoon (2 pm) harvests yielded 0.54 and 0.65 %w/w respectively. Analysis of the leaf oil obtained in the morning, using gas chromatography (GC) and gas chromatography combined mass spectrometry (GC-MS) revealed the presence of twenty-three (23) compounds which made up 81.8% of the total oil while nineteen (19) compounds (93.2%) were identified in the afternoon leaf essential oil. The most abundant components of the leaf oil collected in the morning (7 am) harvest were p-cymene (28.7%), sabinene (7.1%) and 1,8-cineole (6.6%) Meanwhile the major components of leaf oil in the afternoon (2 pm) harvest were p-cymene (26.4%), thymol (15.3%), 1,8-cineole (15.0%) and g-terpinene (10.4%). The composition pattern of leaf oil obtained in the morning and afternoon harvests of Hoslundia opposite revealed significant differences in qualitative and quantitative.Keywords: essential oil, Hoslundia opposita, para cymene, 1, 8-cineole
Procedia PDF Downloads 3921335 Modified Evaluation of the Hydro-Mechanical Dependency of the Water Coefficient of Permeability of a Clayey Sand with a Novel Permeameter for Unsaturated Soils
Authors: G. Adelian, A. Mirzaii, S. S. Yasrobi
Abstract:
This paper represents data of an extensive experimental laboratory testing program for the measurement of the water coefficient of permeability of clayey sand in different hydraulic and mechanical boundary conditions. A novel permeameter was designed and constructed for the experimental testing program, suitable for the study of flow in unsaturated soils in different hydraulic and mechanical loading conditions. In this work, the effect of hydraulic hysteresis, net isotropic confining stress, water flow condition, and sample dimensions are evaluated on the water coefficient of permeability of understudying soil. The experimental results showed a hysteretic variation for the water coefficient of permeability versus matrix suction and degree of saturation, with higher values in drying portions of the SWCC. The measurement of the water permeability in different applied net isotropic stress also signified that the water coefficient of permeability increased within the increment of net isotropic consolidation stress. The water coefficient of permeability also appeared to be independent of different applied flow heads, water flow condition, and sample dimensions.Keywords: water permeability, unsaturated soils, hydraulic hysteresis, void ratio, matrix suction, degree of saturation
Procedia PDF Downloads 5271334 A Dynamic Symplectic Manifold Analysis for Wave Propagation in Porous Media
Authors: K. I. M. Guerra, L. A. P. Silva, J. C. Leal
Abstract:
This study aims to understand with more amplitude and clarity the behavior of a porous medium where a pressure wave travels, translated into relative displacements inside the material, using mathematical tools derived from topology and symplectic geometry. The paper starts with a given partial differential equation based on the continuity and conservation theorems to describe the traveling wave through the porous body. A solution for this equation is proposed after all boundary, and initial conditions are fixed, and it’s accepted that the solution lies in a manifold U of purely spatial dimensions and that is embedded in the Real n-dimensional manifold, with spatial and kinetic dimensions. It’s shown that the U manifold of lower dimensions than IRna, where it is embedded, inherits properties of the vector spaces existing inside the topology it lies on. Then, a second manifold (U*), embedded in another space called IRnb of stress dimensions, is proposed and there’s a non-degenerative function that maps it into the U manifold. This relation is proved as a transformation in between two corresponding admissible solutions of the differential equation in distinct dimensions and properties, leading to a more visual and intuitive understanding of the whole dynamic process of a stress wave through a porous medium and also highlighting the dimensional invariance of Terzaghi’s theory for any coordinate system.Keywords: poremechanics, soil dynamics, symplectic geometry, wave propagation
Procedia PDF Downloads 2961333 In-situ Performance of Pre-applied Bonded Waterproofing Membranes at Contaminated Test Slabs
Authors: Ulli Heinlein, Thomas Freimann
Abstract:
Pre-applied bonded membranes are used as positive-side waterproofing on concrete basements, are installed before the concrete work, and achieve a tear-resistant and waterproof bond with the subsequently placed fresh concrete. This bond increases redundancy compared to lose waterproofing membranes by preventing lateral water migrations in the event of damage. So far, the membranes have been tested in the laboratory, but it is not yet known how they behave on construction sites in the presence of dirt, soil, cement paste or moisture. This article, therefore, conducts investigations on six construction sites using 18 test slabs where the pre-applied bonded membranes are selectively contaminated or wetted. Subsequently, cores are taken, and the influence of the contaminations on the adhesive tensile strength and waterproof bond is tested. Pre-applied bonded membranes with smooth or granular but closed surfaces show no sensitivity to wetness, whereas open-pored membranes with nonwovens do not tolerate standing water. Contaminations decline the performance of all pre-applied bonded membranes since a separating layer is formed between the bonding layer and the concrete. The influence depends on the thickness of the contamination and its mechanical properties.Keywords: waterproofing, positive-side waterproofing, basement, pre-applied bonded waterproofing membrane, In-situ testing, lateral water migrations
Procedia PDF Downloads 1861332 Evaluating Surface Water Quality Using WQI, Trend Analysis, and Cluster Classification in Kebir Rhumel Basin, Algeria
Authors: Lazhar Belkhiri, Ammar Tiri, Lotfi Mouni, Fatma Elhadj Lakouas
Abstract:
This study evaluates the surface water quality in the Kebir Rhumel Basin by analyzing hydrochemical parameters. To assess spatial and temporal variations in water quality, we applied the Water Quality Index (WQI), Mann-Kendall (MK) trend analysis, and hierarchical cluster analysis (HCA). Monthly measurements of eleven hydrochemical parameters were collected across eight stations from January 2016 to December 2020. Calcium and sulfate emerged as the dominant cation and anion, respectively. WQI analysis indicated a high incidence of poor water quality at stations Ain Smara (AS), Beni Haroune (BH), Grarem (GR), and Sidi Khalifa (SK), where 89.5%, 90.6%, 78.2%, and 62.7% of samples, respectively, fell into this category. The MK trend analysis revealed a significant upward trend in WQI at Oued Boumerzoug (ON) and SK stations, signaling temporal deterioration in these areas. HCA grouped the dataset into three clusters, covering approximately 22%, 30%, and 48% of the months, respectively. Within these clusters, specific stations exhibited elevated WQI values: GR and ON in the first cluster, OB and SK in the second, and AS, BH, El Milia (EM), and Hammam Grouz (HG) in the third. Furthermore, approximately 38%, 41%, and 38% of samples in clusters one, two, and three, respectively, were classified as having poor water quality. These findings provide essential insights for policymakers in formulating strategies to restore and manage surface water quality in the region.Keywords: surface water quality, water quality index (WQI), Mann-Kendall Trend Analysis, hierarchical cluster analysis (HCA), spatial-temporal distribution, Kebir Rhumel Basin
Procedia PDF Downloads 191331 Characterization of Shrinkage-Induced Cracking of Clay Soils
Authors: Ahmad El Hajjar, Joanna Eid, Salima Bouchemella, Tariq Ouahbi, Benoit Duchemin, Said Taibi
Abstract:
In our present society, raw earth presents an alternative as an energy-saving building material for dealing with climate and environmental issues. Nevertheless, it has a sensitivity to water, due to the presence of fines, which has a direct effect on its consistency. This can be expressed during desiccation, by shrinkage deformations resulting in cracking that begins once the internal tensile stresses developed, due to suction, exceed the tensile strength of the material. This work deals with the evolution of the strain of clay samples, from the beginning of shrinkage until the initiation of crack, using the DIC (Digital Image Correlation) technique. In order to understand the origin of cracking, desiccation is studied for different boundary conditions and depending on the intrinsic characteristics of the material. On the other hand, a study of restrained shrinkage is carried out on the ring test to investigate the ultimate tensile strength from which the crack begins in the dough of clay. The purpose of this test is to find the type of reinforcement adapted to thwart in the cracking of the material. A microscopic analysis of the damaged area is necessary to link the macroscopic mechanisms of cracking to the various physicochemical phenomena at the microscopic scale in order to understand the different microstructural mechanisms and their impact on the macroscopic shrinkage.Keywords: clayey soil, shrinkage, strain, cracking, digital image correlation
Procedia PDF Downloads 1611330 Analysis of the Impact of Climate Change on Maize (Zea Mays) Yield in Central Ethiopia
Authors: Takele Nemomsa, Girma Mamo, Tesfaye Balemi
Abstract:
Climate change refers to a change in the state of the climate that can be identified (e.g. using statistical tests) by changes in the mean and/or variance of its properties and that persists for an extended period, typically decades or longer. In Ethiopia; Maize production in relation to climate change at regional and sub- regional scales have not been studied in detail. Thus, this study was aimed to analyse the impact of climate change on maize yield in Ambo Districts, Central Ethiopia. To this effect, weather data, soil data and maize experimental data for Arganne hybrid were used. APSIM software was used to investigate the response of maize (Zea mays) yield to different agronomic management practices using current and future (2020s–2080s) climate data. The climate change projections data which were downscaled using SDSM were used as input of climate data for the impact analysis. Compared to agronomic practices the impact of climate change on Arganne in Central Ethiopia is minute. However, within 2020s-2080s in Ambo area; the yield of Arganne hybrid is projected to reduce by 1.06% to 2.02%, and in 2050s it is projected to reduce by 1.56 While in 2080s; it is projected to increase by 1.03% to 2.07%. Thus, to adapt to the changing climate; farmers should consider increasing plant density and fertilizer rate per hectare.Keywords: APSIM, downscaling, response, SDSM
Procedia PDF Downloads 3831329 Potential Use of Spore-Forming Biosurfactant Producing Bacteria in Oil-Pollution Bioremediation
Authors: S. N. Al-Bahry, Y. M. Al-Wahaibi, S. J. Joshi, E. A. Elshafie, A. S. Al-Bimani
Abstract:
Oman is one of the oil producing countries in the Arabian Peninsula and the Gulf region. About 30-40 % of oil produced from the Gulf is transported globally along the seacoast of Oman. Oil pollution from normal tanker operations, ballast water, illegal discharges and accidental spills are always serious threats to terrestrial and marine habitats. Due to Oman’s geographical location at arid region where the temperature ranges between high 40s and low 50s Celsius in summers with low annual rainfall, the main source of fresh water is desalinated sea and brackish water. Oil pollution, therefore, pose a major threat to drinking water. Biosurfactants are secondary metabolites produced by microorganisms in hydrophobic environments to release nutrients from solid surfaces, such as oil. In this study, indigenous oil degrading thermophilic spore forming bacteria were isolated from oil fields contaminated soil. The isolates were identified using MALDI-TOF biotyper and 16s RNA. Their growth conditions were optimized for the production of biosurfactant. Surface tension, interfacial tensions and microbial oil biodegradation capabilities were tested. Some thermophilic bacteria degraded either completely or partially heavy crude oil (API 10-15) within 48h suggesting their high potential in oil spill bioremediation and avoiding the commonly used physical and chemical methods which usually lead to other environmental pollution.Keywords: bacteria, bioremediation, biosurfactant, crude-oil-pollution
Procedia PDF Downloads 4291328 An Overview of Electronic Waste as Aggregate in Concrete
Authors: S. R. Shamili, C. Natarajan, J. Karthikeyan
Abstract:
Rapid growth of world population and widespread urbanization has remarkably increased the development of the construction industry which caused a huge demand for sand and gravels. Environmental problems occur when the rate of extraction of sand, gravels, and other materials exceeds the rate of generation of natural resources; therefore, an alternative source is essential to replace the materials used in concrete. Now-a-days, electronic products have become an integral part of daily life which provides more comfort, security, and ease of exchange of information. These electronic waste (E-Waste) materials have serious human health concerns and require extreme care in its disposal to avoid any adverse impacts. Disposal or dumping of these E-Wastes also causes major issues because it is highly complex to handle and often contains highly toxic chemicals such as lead, cadmium, mercury, beryllium, brominates flame retardants (BFRs), polyvinyl chloride (PVC), and phosphorus compounds. Hence, E-Waste can be incorporated in concrete to make a sustainable environment. This paper deals with the composition, preparation, properties, classification of E-Waste. All these processes avoid dumping to landfills whilst conserving natural aggregate resources, and providing a better environmental option. This paper also provides a detailed literature review on the behaviour of concrete with incorporation of E-Wastes. Many research shows the strong possibility of using E-Waste as a substitute of aggregates eventually it reduces the use of natural aggregates in concrete.Keywords: dumping, electronic waste, landfill, toxic chemicals
Procedia PDF Downloads 1691327 Improving Activity Recognition Classification of Repetitious Beginner Swimming Using a 2-Step Peak/Valley Segmentation Method with Smoothing and Resampling for Machine Learning
Authors: Larry Powell, Seth Polsley, Drew Casey, Tracy Hammond
Abstract:
Human activity recognition (HAR) systems have shown positive performance when recognizing repetitive activities like walking, running, and sleeping. Water-based activities are a reasonably new area for activity recognition. However, water-based activity recognition has largely focused on supporting the elite and competitive swimming population, which already has amazing coordination and proper form. Beginner swimmers are not perfect, and activity recognition needs to support the individual motions to help beginners. Activity recognition algorithms are traditionally built around short segments of timed sensor data. Using a time window input can cause performance issues in the machine learning model. The window’s size can be too small or large, requiring careful tuning and precise data segmentation. In this work, we present a method that uses a time window as the initial segmentation, then separates the data based on the change in the sensor value. Our system uses a multi-phase segmentation method that pulls all peaks and valleys for each axis of an accelerometer placed on the swimmer’s lower back. This results in high recognition performance using leave-one-subject-out validation on our study with 20 beginner swimmers, with our model optimized from our final dataset resulting in an F-Score of 0.95.Keywords: time window, peak/valley segmentation, feature extraction, beginner swimming, activity recognition
Procedia PDF Downloads 1231326 Water Body Detection and Estimation from Landsat Satellite Images Using Deep Learning
Authors: M. Devaki, K. B. Jayanthi
Abstract:
The identification of water bodies from satellite images has recently received a great deal of attention. Different methods have been developed to distinguish water bodies from various satellite images that vary in terms of time and space. Urban water identification issues body manifests in numerous applications with a great deal of certainty. There has been a sharp rise in the usage of satellite images to map natural resources, including urban water bodies and forests, during the past several years. This is because water and forest resources depend on each other so heavily that ongoing monitoring of both is essential to their sustainable management. The relevant elements from satellite pictures have been chosen using a variety of techniques, including machine learning. Then, a convolution neural network (CNN) architecture is created that can identify a superpixel as either one of two classes, one that includes water or doesn't from input data in a complex metropolitan scene. The deep learning technique, CNN, has advanced tremendously in a variety of visual-related tasks. CNN can improve classification performance by reducing the spectral-spatial regularities of the input data and extracting deep features hierarchically from raw pictures. Calculate the water body using the satellite image's resolution. Experimental results demonstrate that the suggested method outperformed conventional approaches in terms of water extraction accuracy from remote-sensing images, with an average overall accuracy of 97%.Keywords: water body, Deep learning, satellite images, convolution neural network
Procedia PDF Downloads 891325 Spatio-Temporal Data Mining with Association Rules for Lake Van
Authors: Tolga Aydin, M. Fatih Alaeddinoğlu
Abstract:
People, throughout the history, have made estimates and inferences about the future by using their past experiences. Developing information technologies and the improvements in the database management systems make it possible to extract useful information from knowledge in hand for the strategic decisions. Therefore, different methods have been developed. Data mining by association rules learning is one of such methods. Apriori algorithm, one of the well-known association rules learning algorithms, is not commonly used in spatio-temporal data sets. However, it is possible to embed time and space features into the data sets and make Apriori algorithm a suitable data mining technique for learning spatio-temporal association rules. Lake Van, the largest lake of Turkey, is a closed basin. This feature causes the volume of the lake to increase or decrease as a result of change in water amount it holds. In this study, evaporation, humidity, lake altitude, amount of rainfall and temperature parameters recorded in Lake Van region throughout the years are used by the Apriori algorithm and a spatio-temporal data mining application is developed to identify overflows and newly-formed soil regions (underflows) occurring in the coastal parts of Lake Van. Identifying possible reasons of overflows and underflows may be used to alert the experts to take precautions and make the necessary investments.Keywords: apriori algorithm, association rules, data mining, spatio-temporal data
Procedia PDF Downloads 3741324 Optimized Brain Computer Interface System for Unspoken Speech Recognition: Role of Wernicke Area
Authors: Nassib Abdallah, Pierre Chauvet, Abd El Salam Hajjar, Bassam Daya
Abstract:
In this paper, we propose an optimized brain computer interface (BCI) system for unspoken speech recognition, based on the fact that the constructions of unspoken words rely strongly on the Wernicke area, situated in the temporal lobe. Our BCI system has four modules: (i) the EEG Acquisition module based on a non-invasive headset with 14 electrodes; (ii) the Preprocessing module to remove noise and artifacts, using the Common Average Reference method; (iii) the Features Extraction module, using Wavelet Packet Transform (WPT); (iv) the Classification module based on a one-hidden layer artificial neural network. The present study consists of comparing the recognition accuracy of 5 Arabic words, when using all the headset electrodes or only the 4 electrodes situated near the Wernicke area, as well as the selection effect of the subbands produced by the WPT module. After applying the articial neural network on the produced database, we obtain, on the test dataset, an accuracy of 83.4% with all the electrodes and all the subbands of 8 levels of the WPT decomposition. However, by using only the 4 electrodes near Wernicke Area and the 6 middle subbands of the WPT, we obtain a high reduction of the dataset size, equal to approximately 19% of the total dataset, with 67.5% of accuracy rate. This reduction appears particularly important to improve the design of a low cost and simple to use BCI, trained for several words.Keywords: brain-computer interface, speech recognition, artificial neural network, electroencephalography, EEG, wernicke area
Procedia PDF Downloads 2721323 A Framework Based on Dempster-Shafer Theory of Evidence Algorithm for the Analysis of the TV-Viewers’ Behaviors
Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi
Abstract:
In this paper, we propose an approach of detecting the behavior of the viewers of a TV program in a non-controlled environment. The experiment we propose is based on the use of three types of connected objects (smartphone, smart watch, and a connected remote control). 23 participants were observed while watching their TV programs during three phases: before, during and after watching a TV program. Their behaviors were detected using an approach based on The Dempster Shafer Theory (DST) in two phases. The first phase is to approximate dynamically the mass functions using an approach based on the correlation coefficient. The second phase is to calculate the approximate mass functions. To approximate the mass functions, two approaches have been tested: the first approach was to divide each features data space into cells; each one has a specific probability distribution over the behaviors. The probability distributions were computed statistically (estimated by empirical distribution). The second approach was to predict the TV-viewing behaviors through the use of classifiers algorithms and add uncertainty to the prediction based on the uncertainty of the model. Results showed that mixing the fusion rule with the computation of the initial approximate mass functions using a classifier led to an overall of 96%, 95% and 96% success rate for the first, second and third TV-viewing phase respectively. The results were also compared to those found in the literature. This study aims to anticipate certain actions in order to maintain the attention of TV viewers towards the proposed TV programs with usual connected objects, taking into account the various uncertainties that can be generated.Keywords: Iot, TV-viewing behaviors identification, automatic classification, unconstrained environment
Procedia PDF Downloads 2291322 Microbes at Work: An Assessment on the Use of Microbial Inoculants in Reforestation and Rehabilitation of the Forest Ancestral Land of Magbukun Aytas of Morong, Bataan, Philippines
Authors: Harold M. Carag, April Charmaine D. Camacho, Girlie Nora A. Abrigo, Florencia G. Palis, Ma. Larissa Lelu P. Gata
Abstract:
A technology impact assessment on the use of microbial inoculants in the reforestation and rehabilitation of forest ancestral lands of the Magbukün Aytas in Morong, Bataan was conducted. This two-year rainforestation technology aimed to determine the optimum condition for the improvement of seedling survival rate in the nursery and in the field to hasten the process of forest regeneration of Magbukün Ayta’s ancestral land. A combination of qualitative methods (key informant interviews, focus groups and participant observation), participated by the farmers who were directly involved in the project, community men and women, the council of elders and the project staff, was employed to complete this impact assessment. The recorded data were transcribed, and the accounts were broadly categorized on the following aspects: social (gender, institutional, anthropological), economic and environmental. The Australian Center for International Agricultural Research (ACIAR) framework was primarily used for the impact analysis while the Harvard Analytical Framework was specifically used for the gender impact analysis. Through this technology, a wildling nursery with more than one thousand seedlings was successfully established and served as a good area for the healthy growth of seedlings that would be planted in the forest. Results showed that this technology affected positively and negatively the various gender roles present in the community although household work remained to be the women’s responsibility. The technology introduced directly added up to the workload done by the men and women (preparing and applying fertilizer, making pots etc.) but this, in turn, provided ways to increase their sources of livelihood. The gender roles that were already present were further strengthened after the project and men remained to be in control. The technology or project in turn also benefited from the already present roles since they no longer have to assign things to them, the execution of the various roles was smoothly executed. In the anthropological aspect, their assigned task to manage the nursery was an easy responsibility because of their deep connection to the environment and their fear and beliefs on ‘engkato’ and ‘anito’ was helpful in guarding the forest. As the cultural value of these trees increases, their mindset of safeguarding the forest also heightens. Meanwhile, the welfare of the whole tribe is the ultimate determinant of the swift entry of projects. The past institutions brought ephemeral reliefs on the subsistence of the Magbukün Aytas. These were good ‘conditioning’ factors for the adoption of the technology of the project. As an attempt to turn away from the dependent of harmful chemical, the project’s way of introducing organic inputs was slowly gaining popularity in the community. Economically, the project was able to provide additional income to the farmers. However, the slow mode of payment dismayed other farmers and abandoned their roles. Lastly, major environmental effects weren’t that much observed after the application of the technology. The minor effects concentrated more on the improved conditions of the soil and water in the community. Because of the introduced technology, soil conditions became more favorable specifically for the species that were planted. The organic fertilizers used were in turn not harmful for the residents living in Sitio Kanawan. There were no human diseases caused by the technology. The conservation of the biodiversity of the forest is clearly the most evident long-term result of the project.Keywords: ancestral lands, impact assessment, microbial inculants, reforestation
Procedia PDF Downloads 142