Search results for: extra large building
7454 Expanding the Evaluation Criteria for a Wind Turbine Performance
Authors: Ivan Balachin, Geanette Polanco, Jiang Xingliang, Hu Qin
Abstract:
The problem of global warming raised up interest towards renewable energy sources. To reduce cost of wind energy is a challenge. Before building of wind park conditions such as: average wind speed, direction, time for each wind, probability of icing, must be considered in the design phase. Operation values used on the setting of control systems also will depend on mentioned variables. Here it is proposed a procedure to be include in the evaluation of the performance of a wind turbine, based on the amplitude of wind changes, the number of changes and their duration. A generic study case based on actual data is presented. Data analysing techniques were applied to model the power required for yaw system based on amplitude and data amount of wind changes. A theoretical model between time, amplitude of wind changes and angular speed of nacelle rotation was identified.Keywords: field data processing, regression determination, wind turbine performance, wind turbine placing, yaw system losses
Procedia PDF Downloads 3947453 Development of Structural Deterioration Models for Flexible Pavement Using Traffic Speed Deflectometer Data
Authors: Sittampalam Manoharan, Gary Chai, Sanaul Chowdhury, Andrew Golding
Abstract:
The primary objective of this paper is to present a simplified approach to develop the structural deterioration model using traffic speed deflectometer data for flexible pavements. Maintaining assets to meet functional performance is not economical or sustainable in the long terms, and it would end up needing much more investments for road agencies and extra costs for road users. Performance models have to be included for structural and functional predicting capabilities, in order to assess the needs, and the time frame of those needs. As such structural modelling plays a vital role in the prediction of pavement performance. A structural condition is important for the prediction of remaining life and overall health of a road network and also major influence on the valuation of road pavement. Therefore, the structural deterioration model is a critical input into pavement management system for predicting pavement rehabilitation needs accurately. The Traffic Speed Deflectometer (TSD) is a vehicle-mounted Doppler laser system that is capable of continuously measuring the structural bearing capacity of a pavement whilst moving at traffic speeds. The device’s high accuracy, high speed, and continuous deflection profiles are useful for network-level applications such as predicting road rehabilitations needs and remaining structural service life. The methodology adopted in this model by utilizing time series TSD maximum deflection (D0) data in conjunction with rutting, rutting progression, pavement age, subgrade strength and equivalent standard axle (ESA) data. Then, regression analyses were undertaken to establish a correlation equation of structural deterioration as a function of rutting, pavement age, seal age and equivalent standard axle (ESA). This study developed a simple structural deterioration model which will enable to incorporate available TSD structural data in pavement management system for developing network-level pavement investment strategies. Therefore, the available funding can be used effectively to minimize the whole –of- life cost of the road asset and also improve pavement performance. This study will contribute to narrowing the knowledge gap in structural data usage in network level investment analysis and provide a simple methodology to use structural data effectively in investment decision-making process for road agencies to manage aging road assets.Keywords: adjusted structural number (SNP), maximum deflection (D0), equant standard axle (ESA), traffic speed deflectometer (TSD)
Procedia PDF Downloads 1517452 Risks and Values in Adult Safeguarding: An Examination of How Social Workers Screen Safeguarding Referrals from Residential Homes
Authors: Jeremy Dixon
Abstract:
Safeguarding adults forms a core part of social work practice. The Government in England and Wales has made efforts to standardise practices through The Care Act 2014. The Act states that local authorities have duties to make inquiries in cases where an adult with care or support needs is experiencing or at risk of abuse and is unable to protect themselves from abuse or neglect. Despite the importance given to safeguarding adults within law there remains little research about how social workers conduct such decisions on the ground. This presentation reports on findings from a pilot research study conducted within two social work teams in a Local Authority in England. The objective of the project was to find out how social workers interpreted safeguarding duties as laid out by The Care Act 2014 with a particular focus on how workers assessed and managed risk. Ethnographic research methods were used throughout the project. This paper focusses specifically on decisions made by workers in the assessment team. The paper reports on qualitative observation and interviews with five workers within this team. Drawing on governmentality theory, this paper analyses the techniques used by workers to manage risk from a distance. A high proportion of safeguarding referrals came from care workers or managers in residential care homes. Social workers conducting safeguarding assessments were aware that they had a duty to work in partnership with these agencies. However, their duty to safeguard adults also meant that they needed to view them as potential abusers. In making judgments about when it was proportionate to refer for a safeguarding assessment workers drew on a number of common beliefs about residential care workers which were then tested in conversations with them. Social workers held the belief that residential homes acted defensively, leading them to report any accident or danger. Social workers therefore encouraged residential workers to consider whether statutory criteria had been met and to use their own procedures to manage risk. In addition social workers carried out an assessment of the workers’ motives; specifically whether they were using safeguarding procedures as a shortcut for avoiding other assessments or as a means of accessing extra resources. Where potential abuse was identified social workers encouraged residential homes to use disciplinary policies as a means of isolating and managing risk. The study has implications for understanding risk within social work practice. It shows that whilst social workers use law to govern individuals, these laws are interpreted against cultural values. Additionally they also draw on assumptions about the culture of others.Keywords: adult safeguarding, governmentality, risk, risk assessment
Procedia PDF Downloads 2977451 User Experience and Impact of AI Features in AutoCAD
Authors: Sarah Alnafea, Basmah Alalsheikh, Hadab Alkathiri
Abstract:
For over 30 years, AutoCAD, a powerful CAD software developed by Autodesk, has been an imperative need for design in industries such as engineering, building, and architecture. With the emerge of advanced technology, AutoCAD has undergone a revolutionary change with the involvement of artificial intelligence capabilities that have enhanced the productivity and efficiency at work and quality in the design for the users. This paper investigates the role AI in AutoCAD, especially in intelligent automation, generative design, automated design ideas, natural language processing, and predictive analytics. To identify further, A survey among users was also conducted to assess the adoption and satisfaction of AI features and identify areas for improvement. The Competitive standing of AutoCAD is further crosschecked against other AI-enabled CAD software packages, including SolidWorks, Fusion 360, and Rhino.In this paper, an overview of the current impacts of AI in AutoCAD is given, along with some recommendations for the future road of AI development to meet users’ requirementsKeywords: artificail inteligence, natural language proccesing, intelligent automation, generative design
Procedia PDF Downloads 167450 Hand Hygiene Habits of Ghanaian Youths in Accra
Authors: Cecilia Amponsem-Boateng, Timothy B. Oppong, Haiyan Yang, Guangcai Duan
Abstract:
The human palm has been identified as one of the richest habitats for human microbial accommodation making hand hygiene essential to primary prevention of infection. Since the hand is in constant contact with fomites which have been proven to be mostly contaminated, building hand hygiene habits is essential for the prevention of infection. This research was conducted to assess the hand hygiene habits of Ghanaian youths in Accra. This study used a survey as a quantitative method of research. The findings of the study revealed that out of the 254 participants who fully answered the questionnaire, 22% had the habit of washing their hands after outings while only 51.6% had the habit of washing their hands after using the bathroom. However, about 60% of the participants said they sometimes ate with their hands while 28.9% had the habit of eating with the hand very often, a situation that put them at risk of infection from their hands since some participants had poor handwashing habits; prompting the need for continuous education on hand hygiene.Keywords: hand hygiene, hand hygiene habit, hand washing, hand sanitizer use
Procedia PDF Downloads 1127449 Deep Neural Network Approach for Navigation of Autonomous Vehicles
Authors: Mayank Raj, V. G. Narendra
Abstract:
Ever since the DARPA challenge on autonomous vehicles in 2005, there has been a lot of buzz about ‘Autonomous Vehicles’ amongst the major tech giants such as Google, Uber, and Tesla. Numerous approaches have been adopted to solve this problem, which can have a long-lasting impact on mankind. In this paper, we have used Deep Learning techniques and TensorFlow framework with the goal of building a neural network model to predict (speed, acceleration, steering angle, and brake) features needed for navigation of autonomous vehicles. The Deep Neural Network has been trained on images and sensor data obtained from the comma.ai dataset. A heatmap was used to check for correlation among the features, and finally, four important features were selected. This was a multivariate regression problem. The final model had five convolutional layers, followed by five dense layers. Finally, the calculated values were tested against the labeled data, where the mean squared error was used as a performance metric.Keywords: autonomous vehicles, deep learning, computer vision, artificial intelligence
Procedia PDF Downloads 1647448 Evaluating Global ‘Thing’ Security of Consumer Products
Authors: Achutha Raman
Abstract:
Today's brave new world features a bonanza of digitally interconnected products, or ‘things,’ that improve convenience, possibilities, and in some cases efficiency for consumers. Nonetheless, even as the market accelerates, this Internet of ‘things’ is subject to substantial leakage of consumer personal data. First defining the fluid concept of ‘things,’ this paper subsequently uses case studies taken from the EU, Asia, and the US, to highlight large gaps and comprehensively evaluate the state of security for consumer ‘things.’ Ultimately, this paper offers several ways of improving the present status quo, and especially focuses on an evaluative approach that augments the standard mechanism of Firmware Over the Air Updates, and ought to be easily implementable.Keywords: cybersecurity, FOTA, Internet of Things, transnational privacy
Procedia PDF Downloads 2217447 Hand Gesture Recognition Interface Based on IR Camera
Authors: Yang-Keun Ahn, Kwang-Soon Choi, Young-Choong Park, Kwang-Mo Jung
Abstract:
Vision based user interfaces to control TVs and PCs have the advantage of being able to perform natural control without being limited to a specific device. Accordingly, various studies on hand gesture recognition using RGB cameras or depth cameras have been conducted. However, such cameras have the disadvantage of lacking in accuracy or the construction cost being large. The proposed method uses a low cost IR camera to accurately differentiate between the hand and the background. Also, complicated learning and template matching methodologies are not used, and the correlation between the fingertips extracted through curvatures is utilized to recognize Click and Move gestures.Keywords: recognition, hand gestures, infrared camera, RGB cameras
Procedia PDF Downloads 4097446 Advancements in Truss Design for High-Performance Facades and Roof System: A Structural Analysis
Authors: Milind Anurag
Abstract:
This study investigates cutting-edge truss design improvements, which are specifically adapted to satisfy the structural demands and difficulties associated with high-performance facades and roofs in modern architectural environments. With a growing emphasis on sustainability, energy efficiency, and eye-catching architectural aesthetics, the structural components that support these characteristics play an important part in attaining the right balance of form and function. The paper seeks to contribute to the evolution of truss design methods by combining data from these investigations, giving significant insights for architects, engineers, and researchers interested in the creation of high-performance building envelopes. The findings of this study are meant to inform future design standards and practices, promoting the development of structures that seamlessly integrate architectural innovation with structural robustness and environmental responsibility.Keywords: truss design, high-performance, facades, finite element analysis, structural efficiency
Procedia PDF Downloads 607445 Transforming Breast Density Measurement with Artificial Intelligence: Population-Level Insights from BreastScreen NSW
Authors: Douglas Dunn, Ricahrd Walton, Matthew Warner-Smith, Chirag Mistry, Kan Ren, David Roder
Abstract:
Introduction: Breast density is a risk factor for breast cancer, both due to increased fibro glandular tissue that can harbor malignancy and the masking of lesions on mammography. Therefore, evaluation of breast density measurement is useful for risk stratification on an individual and population level. This study investigates the performance of Lunit INSIGHT MMG for automated breast density measurement. We analyze the reliability of Lunit compared to breast radiologists, explore density variations across the BreastScreen NSW population, and examine the impact of breast implants on density measurements. Methods: 15,518 mammograms were utilized for a comparative analysis of intra- and inter-reader reliability between Lunit INSIGHT MMG and breast radiologists. Subsequently, Lunit was used to evaluate 624,113 mammograms for investigation of density variations according to age and birth country, providing insights into diverse population subgroups. Finally, we compared breast density in 4,047 clients with implants to clients without implants, controlling for age and birth country. Results: Inter-reader variability between Lunit and Breast Radiologists weighted kappa coefficient was 0.72 (95%CI 0.71-0.73). Highest breast densities were seen in women with a North-East Asia background, whilst those of Aboriginal background had the lowest density. Across all backgrounds, density was demonstrated to reduce with age, though at different rates according to country of birth. Clients with implants had higher density relative to the age-matched no-implant strata. Conclusion: Lunit INSIGHT MMG demonstrates reasonable inter- and intra-observer reliability for automated breast density measurement. The scale of this study is significantly larger than any previous study assessing breast density due to the ability to process large volumes of data using AI. As a result, it provides valuable insights into population-level density variations. Our findings highlight the influence of age, birth country, and breast implants on density, emphasizing the need for personalized risk assessment and screening approaches. The large-scale and diverse nature of this study enhances the generalisability of our results, offering valuable information for breast cancer screening programs internationally.Keywords: breast cancer, screening, breast density, artificial intelligence, mammography
Procedia PDF Downloads 197444 Introduction to Two Artificial Boundary Conditions for Transient Seepage Problems and Their Application in Geotechnical Engineering
Authors: Shuang Luo, Er-Xiang Song
Abstract:
Many problems in geotechnical engineering, such as foundation deformation, groundwater seepage, seismic wave propagation and geothermal transfer problems, may involve analysis in the ground which can be seen as extending to infinity. To that end, consideration has to be given regarding how to deal with the unbounded domain to be analyzed by using numerical methods, such as finite element method (FEM), finite difference method (FDM) or finite volume method (FVM). A simple artificial boundary approach derived from the analytical solutions for transient radial seepage problems, is introduced. It should be noted, however, that the analytical solutions used to derive the artificial boundary are particular solutions under certain boundary conditions, such as constant hydraulic head at the origin or constant pumping rate of the well. When dealing with unbounded domains with unsteady boundary conditions, a more sophisticated artificial boundary approach to deal with the infinity of the domain is presented. By applying Laplace transforms and introducing some specially defined auxiliary variables, the global artificial boundary conditions (ABCs) are simplified to local ones so that the computational efficiency is enhanced significantly. The introduced two local ABCs are implemented in a finite element computer program so that various seepage problems can be calculated. The two approaches are first verified by the computation of a one-dimensional radial flow problem, and then tentatively applied to more general two-dimensional cylindrical problems and plane problems. Numerical calculations show that the local ABCs can not only give good results for one-dimensional axisymmetric transient flow, but also applicable for more general problems, such as axisymmetric two-dimensional cylindrical problems, and even more general planar two-dimensional flow problems for well doublet and well groups. An important advantage of the latter local boundary is its applicability for seepage under rapidly changing unsteady boundary conditions, and even the computational results on the truncated boundary are usually quite satisfactory. In this aspect, it is superior over the former local boundary. Simulation of relatively long operational time demonstrates to certain extents the numerical stability of the local boundary. The solutions of the two local ABCs are compared with each other and with those obtained by using large element mesh, which proves the satisfactory performance and obvious superiority over the large mesh model.Keywords: transient seepage, unbounded domain, artificial boundary condition, numerical simulation
Procedia PDF Downloads 2967443 An Alternative Approach for Assessing the Impact of Cutting Conditions on Surface Roughness Using Single Decision Tree
Authors: S. Ghorbani, N. I. Polushin
Abstract:
In this study, an approach to identify factors affecting on surface roughness in a machining process is presented. This study is based on 81 data about surface roughness over a wide range of cutting tools (conventional, cutting tool with holes, cutting tool with composite material), workpiece materials (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). A single decision tree (SDT) analysis was done to identify factors for predicting a model of surface roughness, and the CART algorithm was employed for building and evaluating regression tree. Results show that a single decision tree is better than traditional regression models with higher rate and forecast accuracy and strong value.Keywords: cutting condition, surface roughness, decision tree, CART algorithm
Procedia PDF Downloads 3797442 Insight on Passive Design for Energy Efficiency in Commercial Building for Hot and Humid Climate
Authors: Aravind J.
Abstract:
Passive design can be referred to a way of designing buildings that takes advantage of the prevailing climate and natural energy resources. Which will be a key to reduce the increasing energy usage in commercial buildings. Most of the small scale commercial buildings made are merely a thermal mass inbuilt with active systems to bring lively conditions. By bringing the passive design strategies for energy efficiency in commercial buildings will reduce the usage of active systems. Thus the energy usage can be controlled through analysis of daylighting and improved living conditions in the indoor spaces by using passive techniques. And comparative study on different passive design systems and conventional methods will be approached for commercial buildings in hot and humid region. Possible effects of existing risks implied with solution for those problems is also a part of the paper. The result will be carried on with the design programme to prove the workability of the strategies.Keywords: passive design, energy efficiency, commercial buildings, hot and humid climate
Procedia PDF Downloads 3727441 A Modified Diminishing Partnership for Home Financing
Authors: N. Yachou, R. Aboulaich
Abstract:
Home is a basic necessity for human life, that why home financing takes a large chunk of people’s income. Therefore, Islamic and Conventional Banks try to offer new product in order to respond to customer needs related to home financing. Basing on this fact, we propose a Modified Diminishing Partnership model based on profit and loss sharing to reduce the duration of getting the full shares in the house property. Our proposition will be represented by the rental that customer has to give every month to the bank with redemption to increase his shares on the property of the house.Keywords: home financing, interest rate, rental rate, modified diminishing partnership
Procedia PDF Downloads 3527440 Manufacturing Commercial Bricks with Construction and Demolition Wastes
Authors: Mustafa Kara, Yasemin Kilic, Bahattin Murat Demir, Ümit Ustaoglu, Cavit Unal
Abstract:
This paper reports utilization of different kind of construction and demolition wastes (C&D) in the production of bricks at industrial scale. Plastered brick waste and tile wastes were collected from ISTAÇ Co. Compost and Recovery Plant, Istanbul, Turkey. Plastered brick waste and tile waste are mixed with brick clay in the proportion of 0-30% and fired at 900ºC. The physical and mechanical properties of the produced bricks were determined and evaluated according to IKIZLER Brick Company Production values, Brick Industry Association (BIA) and Turkish Standards (TS). The resulted showed that plastered brick waste and tile waste can be used to produce good quality brick for various engineering applications in construction and building. The replacement of brick clay by plastered brick waste and tile waste at the levels of 30% has good effects on the compressive strength of the bricks.Keywords: commercial brick, construction and demolition waste, manufacturing, recycling
Procedia PDF Downloads 3627439 Determination of Weathering at Kilistra Ancient City by Using Non-Destructive Techniques, Central Anatolia, Turkey
Authors: İsmail İnce, Osman Günaydin, Fatma Özer
Abstract:
Stones used in the construction of historical structures are exposed to various direct or indirect atmospheric effects depending on climatic conditions. Building stones deteriorate partially or fully as a result of this exposure. The historic structures are important symbols of any cultural heritage. Therefore, it is important to protect and restore these historical structures. The aim of this study is to determine the weathering conditions at the Kilistra ancient city. It is located in the southwest of the Konya city, Central Anatolia, and was built by carving into pyroclastic rocks during the Byzantine Era. For this purpose, the petrographic and mechanical properties of the pyroclastic rocks were determined. In the assessment of weathering of structures in the ancient city, in-situ non-destructive testing (i.e., Schmidt hardness rebound value, relative humidity measurement) methods were applied.Keywords: cultural heritage, Kilistra ancient city, non-destructive techniques, weathering
Procedia PDF Downloads 3617438 Energy Intensity of a Historical Downtown: Estimating the Energy Demand of a Budapest District
Authors: Viktória Sugár, Attila Talamon, András Horkai, Michihiro Kita
Abstract:
The dense urban fabric of the 7th district of Budapest -known as the former Jewish Quarter-, contains mainly historical style, multi-story tenement houses with courtyards. The high population density and the unsatisfactory energetic state of the buildings result high energy consumption. As a preliminary survey of a complex rehabilitation plan, the authors aim to determine the energy demand of the area. The energy demand was calculated by analyzing the structure and the energy consumption of each building by using Geographic Information System (GIS) methods. The carbon dioxide emission was also calculated, to assess the potential of reducing the present state value by complex structural and energetic rehabilitation. As a main focus of the survey, an energy intensity map has been created about the area.Keywords: CO₂, energy intensity map, geographic information system (GIS), Hungary, Jewish quarter, rehabilitation
Procedia PDF Downloads 2997437 Quantitative Polymerase Chain Reaction Analysis of Phytoplankton Composition and Abundance to Assess Eutrophication: A Multi-Year Study in Twelve Large Rivers across the United States
Authors: Chiqian Zhang, Kyle D. McIntosh, Nathan Sienkiewicz, Ian Struewing, Erin A. Stelzer, Jennifer L. Graham, Jingrang Lu
Abstract:
Phytoplankton plays an essential role in freshwater aquatic ecosystems and is the primary group synthesizing organic carbon and providing food sources or energy to ecosystems. Therefore, the identification and quantification of phytoplankton are important for estimating and assessing ecosystem productivity (carbon fixation), water quality, and eutrophication. Microscopy is the current gold standard for identifying and quantifying phytoplankton composition and abundance. However, microscopic analysis of phytoplankton is time-consuming, has a low sample throughput, and requires deep knowledge and rich experience in microbial morphology to implement. To improve this situation, quantitative polymerase chain reaction (qPCR) was considered for phytoplankton identification and quantification. Using qPCR to assess phytoplankton composition and abundance, however, has not been comprehensively evaluated. This study focused on: 1) conducting a comprehensive performance comparison of qPCR and microscopy techniques in identifying and quantifying phytoplankton and 2) examining the use of qPCR as a tool for assessing eutrophication. Twelve large rivers located throughout the United States were evaluated using data collected from 2017 to 2019 to understand the relation between qPCR-based phytoplankton abundance and eutrophication. This study revealed that temporal variation of phytoplankton abundance in the twelve rivers was limited within years (from late spring to late fall) and among different years (2017, 2018, and 2019). Midcontinent rivers had moderately greater phytoplankton abundance than eastern and western rivers, presumably because midcontinent rivers were more eutrophic. The study also showed that qPCR- and microscope-determined phytoplankton abundance had a significant positive linear correlation (adjusted R² 0.772, p-value < 0.001). In addition, phytoplankton abundance assessed via qPCR showed promise as an indicator of the eutrophication status of those rivers, with oligotrophic rivers having low phytoplankton abundance and eutrophic rivers having (relatively) high phytoplankton abundance. This study demonstrated that qPCR could serve as an alternative tool to traditional microscopy for phytoplankton quantification and eutrophication assessment in freshwater rivers.Keywords: phytoplankton, eutrophication, river, qPCR, microscopy, spatiotemporal variation
Procedia PDF Downloads 1057436 Improving Physical, Social, and Mental Health Outcomes for People Living with an Intellectual Disability through Cycling
Authors: Sarah Faulkner, Patrick Faulkner, Caroline Ellison
Abstract:
Improved mental and physical health, community connection, and increased life satisfaction has been strongly associated with bike riding for those with and without a disability. However, much evidence suggests that people living with a disability face increased barriers to engaging in cycling compared to members of the general population. People with an intellectual disability often live more sedentary and socially isolated lives that negatively impact their mental and physical health, as well as life satisfaction. This paper is based on preliminary findings from a three-year intervention cycling project funded by the South Australian Government. The cycling project was developed in partnership with community stakeholders that provided weekly instruction, training, and support to individuals living with intellectual disabilities to increase their capacity in cycling. This project aimed to support people living with intellectual disabilities to foster and facilitate improved physical and mental health, confidence, and independence and enhance social networking through their engagement in community cycling. The program applied principles of social role valorisation (SRV) theory as its guiding framework. Preliminary data collected is based on qualitative interviews with over 50 program participants, results from two participant wellness questionnaires, as well as a perceptually regulated exercise test administered throughout the project implementation. Preliminary findings are further supplemented with ethnographic analyses by the researchers who took a phenology of life experience approach. Preliminary findings of the program suggest a variety of social motivations behind participants' desire to learn cycling that acknowledges previous barriers to engagement and cycling’s role to address feelings of loneliness and social isolation. Meaningful health benefits can be achieved as demonstrated by increases in predicted V02 max measures, suggesting that physical intervention can not only improve physical health outcomes but also provide a variety of other social benefits. Initial engagement in the project has demonstrated an increase in participants' sense of confidence, well-being, and physical fitness. Implementation of the project in partnership with a variety of community stakeholders has identified a number of critical factors and processes necessary for future service replication, sustainability, and success. Findings from this intervention study contribute to the development of a knowledge base on how best to support individuals living with an intellectual disability to partake in bike riding and increase positive outcomes associated with their capacity building, social interaction, increased physical activity, physical health, and mental well-being. The initial findings of this study provide critical academic insights into the social and physical benefits of cycling for people living with a disability, as well as practical advice for future human service applications.Keywords: cycling, disability, social inclusion, capacity building
Procedia PDF Downloads 737435 Analysis of Big Data
Authors: Sandeep Sharma, Sarabjit Singh
Abstract:
As per the user demand and growth trends of large free data the storage solutions are now becoming more challenge-able to protect, store and to retrieve data. The days are not so far when the storage companies and organizations are start saying 'no' to store our valuable data or they will start charging a huge amount for its storage and protection. On the other hand as per the environmental conditions it becomes challenge-able to maintain and establish new data warehouses and data centers to protect global warming threats. A challenge of small data is over now, the challenges are big that how to manage the exponential growth of data. In this paper we have analyzed the growth trend of big data and its future implications. We have also focused on the impact of the unstructured data on various concerns and we have also suggested some possible remedies to streamline big data.Keywords: big data, unstructured data, volume, variety, velocity
Procedia PDF Downloads 5527434 Investigation on Morphologies, Forming Mechanism, Photocatalytic and Electronic Properties of Co-Zn Ferrite Nanostructure Grown on the Reduced Graphene Oxide Support
Authors: Qinglei Liu, Ali Charkhesht, Tiva Sharifi, Ashkan Bahadoran
Abstract:
Graphene sheets are promising nanoscale building blocks as a support material for the dispersion of nanoparticles. In this work, a solvothermal method employed to directly grow Co1-xZnxFe2O4 ferrite nanospheres on graphene oxide support that is subsequently reduced to graphene. The samples morphology, structure and crystallography were investigated using field-emission scanning electron microscopy (FE-SEM) and powder X-ray diffraction (XRD). The influences of the Zn2+ content on photocatalytic activity, electrical conductivity and magnetic property of the samples are also investigated. The results showed that Co1-x Znx Fe2 O4 nanoparticles are dispersed on graphene sheets and obtained nanocomposites are soft magnetic materials. In addition the samples showed excellent photocatalytic activity under visible light irradiation.Keywords: reduced graphene oxide, ferrite, magnetic nanocomposite, photocatalytic activity, solvothermal method
Procedia PDF Downloads 2567433 An Efficient Algorithm for Solving the Transmission Network Expansion Planning Problem Integrating Machine Learning with Mathematical Decomposition
Authors: Pablo Oteiza, Ricardo Alvarez, Mehrdad Pirnia, Fuat Can
Abstract:
To effectively combat climate change, many countries around the world have committed to a decarbonisation of their electricity, along with promoting a large-scale integration of renewable energy sources (RES). While this trend represents a unique opportunity to effectively combat climate change, achieving a sound and cost-efficient energy transition towards low-carbon power systems poses significant challenges for the multi-year Transmission Network Expansion Planning (TNEP) problem. The objective of the multi-year TNEP is to determine the necessary network infrastructure to supply the projected demand in a cost-efficient way, considering the evolution of the new generation mix, including the integration of RES. The rapid integration of large-scale RES increases the variability and uncertainty in the power system operation, which in turn increases short-term flexibility requirements. To meet these requirements, flexible generating technologies such as energy storage systems must be considered within the TNEP as well, along with proper models for capturing the operational challenges of future power systems. As a consequence, TNEP formulations are becoming more complex and difficult to solve, especially for its application in realistic-sized power system models. To meet these challenges, there is an increasing need for developing efficient algorithms capable of solving the TNEP problem with reasonable computational time and resources. In this regard, a promising research area is the use of artificial intelligence (AI) techniques for solving large-scale mixed-integer optimization problems, such as the TNEP. In particular, the use of AI along with mathematical optimization strategies based on decomposition has shown great potential. In this context, this paper presents an efficient algorithm for solving the multi-year TNEP problem. The algorithm combines AI techniques with Column Generation, a traditional decomposition-based mathematical optimization method. One of the challenges of using Column Generation for solving the TNEP problem is that the subproblems are of mixed-integer nature, and therefore solving them requires significant amounts of time and resources. Hence, in this proposal we solve a linearly relaxed version of the subproblems, and trained a binary classifier that determines the value of the binary variables, based on the results obtained from the linearized version. A key feature of the proposal is that we integrate the binary classifier into the optimization algorithm in such a way that the optimality of the solution can be guaranteed. The results of a study case based on the HRP 38-bus test system shows that the binary classifier has an accuracy above 97% for estimating the value of the binary variables. Since the linearly relaxed version of the subproblems can be solved with significantly less time than the integer programming counterpart, the integration of the binary classifier into the Column Generation algorithm allowed us to reduce the computational time required for solving the problem by 50%. The final version of this paper will contain a detailed description of the proposed algorithm, the AI-based binary classifier technique and its integration into the CG algorithm. To demonstrate the capabilities of the proposal, we evaluate the algorithm in case studies with different scenarios, as well as in other power system models.Keywords: integer optimization, machine learning, mathematical decomposition, transmission planning
Procedia PDF Downloads 897432 A Context-Centric Chatbot for Cryptocurrency Using the Bidirectional Encoder Representations from Transformers Neural Networks
Authors: Qitao Xie, Qingquan Zhang, Xiaofei Zhang, Di Tian, Ruixuan Wen, Ting Zhu, Ping Yi, Xin Li
Abstract:
Inspired by the recent movement of digital currency, we are building a question answering system concerning the subject of cryptocurrency using Bidirectional Encoder Representations from Transformers (BERT). The motivation behind this work is to properly assist digital currency investors by directing them to the corresponding knowledge bases that can offer them help and increase the querying speed. BERT, one of newest language models in natural language processing, was investigated to improve the quality of generated responses. We studied different combinations of hyperparameters of the BERT model to obtain the best fit responses. Further, we created an intelligent chatbot for cryptocurrency using BERT. A chatbot using BERT shows great potential for the further advancement of a cryptocurrency market tool. We show that the BERT neural networks generalize well to other tasks by applying it successfully to cryptocurrency.Keywords: bidirectional encoder representations from transformers, BERT, chatbot, cryptocurrency, deep learning
Procedia PDF Downloads 1537431 Fractional-Order Modeling of GaN High Electron Mobility Transistors for Switching Applications
Authors: Anwar H. Jarndal, Ahmed S. Elwakil
Abstract:
In this paper, a fraction-order model for pad parasitic effect of GaN HEMT on Si substrate is developed and validated. Open de-embedding structure is used to characterize and de-embed substrate loading parasitic effects. Unbiased device measurements are implemented to extract parasitic inductances and resistances. The model shows very good simulation for S-parameter measurements under different bias conditions. It has been found that this approach can improve the simulation of intrinsic part of the transistor, which is very important for small- and large-signal modeling process.Keywords: fractional-order modeling, GaNHEMT, si-substrate, open de-embedding structure
Procedia PDF Downloads 3587430 Kinetic Energy Recovery System Using Spring
Authors: Mayuresh Thombre, Prajyot Borkar, Mangirish Bhobe
Abstract:
New advancement of technology and never satisfying demands of the civilization are putting huge pressure on the natural fuel resources and these resources are at a constant threat to its sustainability. To get the best out of the automobile, the optimum balance between performance and fuel economy is important. In the present state of art, either of the above two aspects are taken into mind while designing and development process which puts the other in the loss as increase in fuel economy leads to decrement in performance and vice-versa. In-depth observation of the vehicle dynamics apparently shows that large amount of energy is lost during braking and likewise large amount of fuel is consumed to reclaim the initial state, this leads to lower fuel efficiency to gain the same performance. Current use of Kinetic Energy Recovery System is only limited to sports vehicles only because of the higher cost of this system. They are also temporary in nature as power can be squeezed only during a small time duration and use of superior parts leads to high cost, which results on concentration on performance only and neglecting the fuel economy. In this paper Kinetic Energy Recovery System for storing the power and then using the same while accelerating has been discussed. The major storing element in this system is a Flat Spiral Spring that will store energy by compression and torsion. The use of spring ensure the permanent storage of energy until used by the driver unlike present mechanical regeneration system in which the energy stored decreases with time and is eventually lost. A combination of internal gears and spur gears will be used in order to make the energy release uniform which will lead to safe usage. The system can be used to improve the fuel efficiency by assisting in overcoming the vehicle’s inertia after braking or to provide instant acceleration whenever required by the driver. The performance characteristics of the system including response time, mechanical efficiency and overall increase in efficiency are demonstrated. This technology makes the KERS (Kinetic Energy Recovery System) more flexible and economical allowing specific application while at the same time increasing the time frame and ease of usage.Keywords: electric control unit, energy, mechanical KERS, planetary gear system, power, smart braking, spiral spring
Procedia PDF Downloads 2077429 Gamification to Enhance Learning Using Gagne's Learning Model
Authors: M. L. McLain, R. Sreelakshmi, Abhishek, Rajeshwaran, Bhavani Rao, Kamal Bijlani, R. Jayakrishnan
Abstract:
Technology enhanced learning has brought drastic changes in the field of education in the modern world. In this study we explore a novel way to improve how high school students learn by building a serious game that uses a pedagogical model developed by Robert Gagne. By integrating serious game with principles of Gagne’s learning model can provide engaging and meaningful instructions to students. The game developed in this study is a waste sorting game that can easily and succinctly demonstrate the principles of this learning model. All the tasks in the game that the player has to accomplish correspond to Gagne’s “Nine Events of Learning”. A quiz is incorporated in order to get data on the progress made by the player in understanding the concept and as well as to assess them. Additionally, an experimental study was conducted which demonstrates that game based learning using Gagne’s event is more effective than a traditional classroom setup.Keywords: game based learning, sorting and recycling of waste, Gagne’s learning model, e-Learning, technology enhanced learning
Procedia PDF Downloads 6367428 Eco-Infrastructures: A Multidimensional System Approach for Urban Ecology
Authors: T. A. Mona M. Salem, Ali F. Bakr
Abstract:
Given the potential devastation associated with future climate change related disasters, it is vital to change the way we build and manage our cities, through new strategies to reconfigure them and their infrastructures in ways that help secure their reproduction. This leads to a kaleidoscopic view of the city that recognizes the interrelationships of energy, water, transportation, and solid waste. These interrelationships apply across sectors and with respect to the built form of the city. The paper aims at a long-term climate resilience of cities and their critical infrastructures, and sets out an argument for including an eco-infrastructure-based approach in strategies to address climate change. As these ecosystems have a critical role to play in building resilience and reducing vulnerabilities in cities, communities and economies at risk, the enhanced protection and management of ecosystems, biological resources and habitats can mitigate impacts and contribute to solutions as nations and cities strive to adapt to climate change.Keywords: ecology, ecosystem, infrastructure, climate change, urban
Procedia PDF Downloads 3127427 An Analysis of Economical Drivers and Technical Challenges for Large-Scale Biohydrogen Deployment
Authors: Rouzbeh Jafari, Joe Nava
Abstract:
This study includes learnings from an engineering practice normally performed on large scale biohydrogen processes. If properly scale-up is done, biohydrogen can be a reliable pathway for biowaste valorization. Most of the studies on biohydrogen process development have used model feedstock to investigate process key performance indicators (KPIs). This study does not intend to compare different technologies with model feedstock. However, it reports economic drivers and technical challenges which help in developing a road map for expanding biohydrogen economy deployment in Canada. BBA is a consulting firm responsible for the design of hydrogen production projects. Through executing these projects, activity has been performed to identify, register and mitigate technical drawbacks of large-scale hydrogen production. Those learnings, in this study, have been applied to the biohydrogen process. Through data collected by a comprehensive literature review, a base case has been considered as a reference, and several case studies have been performed. Critical parameters of the process were identified and through common engineering practice (process design, simulation, cost estimate, and life cycle assessment) impact of these parameters on the commercialization risk matrix and class 5 cost estimations were reported. The process considered in this study is food waste and woody biomass dark fermentation. To propose a reliable road map to develop a sustainable biohydrogen production process impact of critical parameters was studied on the end-to-end process. These parameters were 1) feedstock composition, 2) feedstock pre-treatment, 3) unit operation selection, and 4) multi-product concept. A couple of emerging technologies also were assessed such as photo-fermentation, integrated dark fermentation, and using ultrasound and microwave to break-down feedstock`s complex matrix and increase overall hydrogen yield. To properly report the impact of each parameter KPIs were identified as 1) Hydrogen yield, 2) energy consumption, 3) secondary waste generated, 4) CO2 footprint, 5) Product profile, 6) $/kg-H2 and 5) environmental impact. The feedstock is the main parameter defining the economic viability of biohydrogen production. Through parametric studies, it was found that biohydrogen production favors feedstock with higher carbohydrates. The feedstock composition was varied, by increasing one critical element (such as carbohydrate) and monitoring KPIs evolution. Different cases were studied with diverse feedstock, such as energy crops, wastewater slug, and lignocellulosic waste. The base case process was applied to have reference KPIs values and modifications such as pretreatment and feedstock mix-and-match were implemented to investigate KPIs changes. The complexity of the feedstock is the main bottleneck in the successful commercial deployment of the biohydrogen process as a reliable pathway for waste valorization. Hydrogen yield, reaction kinetics, and performance of key unit operations highly impacted as feedstock composition fluctuates during the lifetime of the process or from one case to another. In this case, concept of multi-product becomes more reliable. In this concept, the process is not designed to produce only one target product such as biohydrogen but will have two or multiple products (biohydrogen and biomethane or biochemicals). This new approach is being investigated by the BBA team and the results will be shared in another scientific contribution.Keywords: biohydrogen, process scale-up, economic evaluation, commercialization uncertainties, hydrogen economy
Procedia PDF Downloads 1147426 ‘Doctor Knows Best’: Reconsidering Paternalism in the NICU
Authors: Rebecca Greenberg, Nipa Chauhan, Rashad Rehman
Abstract:
Paternalism, in its traditional form, seems largely incompatible with Western medicine. In contrast, Family-Centred Care, a partial response to historically authoritative paternalism, carries its own challenges, particularly when operationalized as family-directed care. Specifically, in neonatology, decision-making is left entirely to Substitute Decision Makers (most commonly parents). Most models of shared decision-making employ both the parents’ and medical team’s perspectives but do not recognize the inherent asymmetry of information and experience – asking parents to act like physicians to evaluate technical data and encourage physicians to refrain from strong medical opinions and proposals. They also do not fully appreciate the difficulties in adjudicating which perspective to prioritize and, moreover, how to mitigate disagreement. Introducing a mild form of paternalism can harness the unique skillset both parents and clinicians bring to shared decision-making and ultimately work towards decision-making in the best interest of the child. The notion expressed here is that within the model of shared decision-making, mild paternalism is prioritized inasmuch as optimal care is prioritized. This mild form of paternalism is known as Beneficent Paternalism and justifies our encouragement for physicians to root down in their own medical expertise to propose treatment plans informed by medical expertise, standards of care, and the parents’ values. This does not mean that we forget that paternalism was historically justified on ‘beneficent’ grounds; however, our recommendation is that a re-integration of mild paternalism is appropriate within our current Western healthcare climate. Through illustrative examples from the NICU, this paper explores the appropriateness and merits of Beneficent Paternalism and ultimately its use in promoting family-centered care, patient’s best interests and reducing moral distress. A distinctive feature of the NICU is the fact that communication regarding a patient’s treatment is exclusively done with substitute decision-makers and not the patient, i.e., the neonate themselves. This leaves the burden of responsibility entirely on substitute decision-makers and the clinical team; the patient in the NICU does not have any prior wishes, values, or beliefs that can guide decision-making on their behalf. Therefore, the wishes, values, and beliefs of the parent become the map upon which clinical proposals are made, giving extra weight to the family’s decision-making responsibility. This leads to why Family Directed Care is common in the NICU, where shared decision-making is mandatory. However, the zone of parental discretion is not as all-encompassing as it is currently considered; there are appropriate times when the clinical team should strongly root down in medical expertise and perhaps take the lead in guiding family decision-making: this is just what it means to adopt Beneficent Paternalism.Keywords: care, ethics, expertise, NICU, paternalism
Procedia PDF Downloads 1497425 Optimization Techniques for Microwave Structures
Authors: Malika Ourabia
Abstract:
A new and efficient method is presented for the analysis of arbitrarily shaped discontinuities. The discontinuities is characterized using a hybrid spectral/numerical technique. This structure presents an arbitrary number of ports, each one with different orientation and dimensions. This article presents a hybrid method based on multimode contour integral and mode matching techniques. The process is based on segmentation and dividing the structure into key building blocks. We use the multimode contour integral method to analyze the blocks including irregular shape discontinuities. Finally, the multimode scattering matrix of the whole structure can be found by cascading the blocks. Therefore, the new method is suitable for analysis of a wide range of waveguide problems. Therefore, the present approach can be applied easily to the analysis of any multiport junctions and cascade blocks. The accuracy of the method is validated comparing with results for several complex problems found in the literature. CPU times are also included to show the efficiency of the new method proposed.Keywords: segmentation, s parameters, simulation, optimization
Procedia PDF Downloads 532