Search results for: catalyst support
3994 Deep Learning Based Fall Detection Using Simplified Human Posture
Authors: Kripesh Adhikari, Hamid Bouchachia, Hammadi Nait-Charif
Abstract:
Falls are one of the major causes of injury and death among elderly people aged 65 and above. A support system to identify such kind of abnormal activities have become extremely important with the increase in ageing population. Pose estimation is a challenging task and to add more to this, it is even more challenging when pose estimations are performed on challenging poses that may occur during fall. Location of the body provides a clue where the person is at the time of fall. This paper presents a vision-based tracking strategy where available joints are grouped into three different feature points depending upon the section they are located in the body. The three feature points derived from different joints combinations represents the upper region or head region, mid-region or torso and lower region or leg region. Tracking is always challenging when a motion is involved. Hence the idea is to locate the regions in the body in every frame and consider it as the tracking strategy. Grouping these joints can be beneficial to achieve a stable region for tracking. The location of the body parts provides a crucial information to distinguish normal activities from falls.Keywords: fall detection, machine learning, deep learning, pose estimation, tracking
Procedia PDF Downloads 1893993 Using a Strength Based Approach to Teaching Children with Special Needs
Authors: Eunice Tan
Abstract:
The purpose of this presentation is to look at an alternative to the approach and methodologies of working with a child with special needs. The strength-based approach to education embodies a paradigm shift. It is a strategy to move away from a deficit-based methodology which inadvertently may lead to an extensive list of things that the child cannot do or is unable to do. Today, many parents of individuals with special needs are focused on the individual’s deficits rather than on his or her strengths. Even when parents recognise and identify their child’s savant strengths to be valuable and wish to develop their abilities, they face the challenge that there are insufficient programs committed to supporting the development and improvement of such abilities. What is a strength-based approach in education? A strength-based approach in education focuses on students' positive qualities and contributions to class instead of the skills and abilities they may not have. Many schools are focused on the child’s special educational needs rather than the whole child. Parents interviewed have said that they have to engage external tutors to help hone in on their child’s interests and strengths. The strength-based approach to writing statements encourages educators to find out: • What a child can do • What a child can do when he or she is given educational support • Learning more about children with special needs and their strengths and talents will broaden our understanding of how we can help them with language acquisition, social skills, as well as self-help and independence skills.Keywords: special needs, strengths, and talents, alternative educational approach, strength based approach
Procedia PDF Downloads 2893992 Aquinas Be Damned: Tension between Nothingness and Suffering
Authors: Elizabeth Latham
Abstract:
Aquinas has long been revered by the Catholic Church as one of the greatest theologians of all time. His most well-known and widely respected theological work, the Summa Theologica has been referenced by countless members of the clergy in support of arguments for and about the existence of God. It is surprising, then, and important that one component in his ontological arguments seems to contradict a precept upheld by the Catechism, the Catholic Church’s comprehensive document detailing their theological positions and laws. In Summa Theologica, Thomas Aquinas argued that God’s eternal existence is both an observable and necessary quality. In the Catechism, the Catholic Church argues that souls in Hell are separated from God, and only souls in Heaven are like him. After introducing research on Philosophical Psychology and the natures of consciousness and pain, this paper comes to the conclusion that in order to reconcile the theology of the Catholic Church at large with that of Thomas Aquinas, one must somehow solve the following problem: if a soul must exist eternally to suffer eternally, it must be like God; and, if a soul is in Hell, it is completely separate from God and not like him at all. Thomas Aquinas deviates at this point from the current theological holdings of the Catholic Church, and this apparent discrepancy must be resolved if the Church hopes to use him going forward as a standard for natural theology.Keywords: aquinas, catholic catechism, consciousness, philosophical psychology, summa theologica
Procedia PDF Downloads 2113991 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain
Authors: Zachary Blanks, Solomon Sonya
Abstract:
Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection
Procedia PDF Downloads 2923990 The Engagement of Students with Learning Disabilities in Regular Public Primary School in Indonesia
Authors: Costrie Ganes Widayanti
Abstract:
Learning Disabilities (LDs) are less understood by the Indonesia’s educational practitioners. As a result, students with LDs are at risk of being outcast from the learning process that requires participation, which potentially disconnects them academically and socially. Its objective is to raise the voice of students with LDs regarding their engagement in the classroom. This research is conducted in two urban regular public primary schools in Indonesia. The study uses an ethnographic case study research design, which explores the views and experiences of four (4) students with LDs. The data were collected using participant observations and interviews. The preliminary findings highlighted two areas: 1) the stigmatization about LDs; and 2) perceived membership. Having LDs was a barrier to fully engage in the academic and social life. Interestingly, they were more likely dependent on each other for support as limited assistance was offered by teachers and peers. Their peers did not take a keen interest in helping them when they found difficulties with the assignments. Furthermore, due to their low academic performance, they were not in favor of being nominated as a group member. In a situation that required them to do a group assignment, they were not expected to give a contribution, positioning themselves as incompatible. These findings indicated that such practices legitimate the hegemony of the superior over those who are powerless and left behind.Keywords: engagement, experiences, learning disability, qualitative design
Procedia PDF Downloads 1273989 The Willingness and Action of Engineering Students in Career Choice: A Mixed-Method Research from the Perspective of the Rational Choice Theory
Authors: Juan Wang, Xiuxiu Wang, Di Wang
Abstract:
Engineers are an important force supporting the economic and social development of a country. As China has the largest scale of engineering education in the world, the career choice of engineering students will affect the contribution of human capital to national scientific and technological progress and economic development. A questionnaire survey shows the following: on the whole, the students surveyed were willing to engage in an engineering career, but their willingness needed to be enhanced, and their willingness was affected by such factors as their understanding of the value of the engineering career; the resources from individual benefits, resources from career and individual strengths. Also, based on in-depth interviews with some engineering students, it is found that engineering students’ career choice behaviors totally based on survival rationality, economic rationality, social rationality and other combinations. Based on this, policy support should be given to the enrollment, training, employment and other aspects of engineering education; improve the professional status and treatment of engineers through multiple measures; ensure a smooth career path to enhance the willingness of engineering students to choose careers.Keywords: engineering students, career choice, engineer, human capital
Procedia PDF Downloads 93988 Quantifying User-Related, System-Related, and Context-Related Patterns of Smartphone Use
Authors: Andrew T. Hendrickson, Liven De Marez, Marijn Martens, Gytha Muller, Tudor Paisa, Koen Ponnet, Catherine Schweizer, Megan Van Meer, Mariek Vanden Abeele
Abstract:
Quantifying and understanding the myriad ways people use their phones and how that impacts their relationships, cognitive abilities, mental health, and well-being is increasingly important in our phone-centric society. However, most studies on the patterns of phone use have focused on theory-driven tests of specific usage hypotheses using self-report questionnaires or analyses of smaller datasets. In this work we present a series of analyses from a large corpus of over 3000 users that combine data-driven and theory-driven analyses to identify reliable smartphone usage patterns and clusters of similar users. Furthermore, we compare the stability of user clusters across user- and system-initiated sessions, as well as during the hypothesized ritualized behavior times directly before and after sleeping. Our results indicate support for some hypothesized usage patterns but present a more complete and nuanced view of how people use smartphones.Keywords: data mining, experience sampling, smartphone usage, health and well being
Procedia PDF Downloads 1633987 Market Segmentation and Conjoint Analysis for Apple Family Design
Authors: Abbas Al-Refaie, Nour Bata
Abstract:
A distributor of Apple products' experiences numerous difficulties in developing marketing strategies for new and existing mobile product entries that maximize customer satisfaction and the firm's profitability. This research, therefore, integrates market segmentation in platform-based product family design and conjoint analysis to identify iSystem combinations that increase customer satisfaction and business profits. First, the enhanced market segmentation grid is created. Then, the estimated demand model is formulated. Finally, the profit models are constructed then used to determine the ideal product family design that maximizes profit. Conjoint analysis is used to explore customer preferences with their satisfaction levels. A total of 200 surveys are collected about customer preferences. Then, simulation is used to determine the importance values for each attribute. Finally, sensitivity analysis is conducted to determine the product family design that maximizes both objectives. In conclusion, the results of this research shall provide great support to Apple distributors in determining the best marketing strategies that enhance their market share.Keywords: market segmentation, conjoint analysis, market strategies, optimization
Procedia PDF Downloads 3713986 Inorganic Microporous Membranes Fabricated by Atmospheric Pressure Plasma Liquid Deposition
Authors: Damian A. Mooney, Michael T. P. Mc Cann, J. M. Don MacElroy, Olli Antson, Denis P. Dowling
Abstract:
Atmospheric pressure plasma liquid deposition (APPLD) is a novel technology used for the deposition of thin films via the injection of a reactive liquid precursor into a high-energy discharge plasma at ambient pressure. In this work, APPLD, utilising a TEOS precursor, was employed to produce asymmetric membranes consisting of a thin (100 nm) layer of deposited silica on a microporous silica support in order to assess their suitability for high temperature gas separation applications. He and N₂ gas permeability measurements were made for each of the fabricated membranes and a maximum ideal He/N₂ selectivity of 66 was observed at room temperature. He, N₂ and CO2 gas permeances were also measured at the elevated temperature of 673K and ideal He/N₂ and CO₂/N₂ selectivities of 300 and 7.4, respectively, were observed. The results suggest that this plasma-based deposition technique can be a viable method for the manufacture of membranes for the efficient separation of high temperature, post-combustion gases, including that of CO₂/N₂ where the constituent gases differ in size by fractions of an Ångstrom.Keywords: asymmetric membrane, CO₂ separation, high temperature, plasma deposition, thin films
Procedia PDF Downloads 3053985 Thermomechanical Behaviour of Various Pressurized Installations Subjected to Thermal Load Due to the Combustion of Metal Particles
Authors: Khaled Ayfi, Morgan Dal, Frederic Coste, Nicolas Gallienne, Martina Ridlova, Philippe Lorong
Abstract:
In the gas industry, contamination of equipment by metal particles is one of the feared phenomena. Indeed, particles inside equipment can be driven by the gas flow and accumulate in places where the velocity is low. As they constitute a potential ignition hazard, particular attention is paid to the presence of particles in the oxygen industry. Indeed, the heat release from ignited particles may damage the equipment and even result in a loss of integrity. The objective of this work is to support the development of new design criteria. Studying the thermomechanical behavior of this equipment, thanks to numerical simulations, allows us to test the influence of various operating parameters (oxygen pressure, wall thickness, initial operating temperature, nature of the metal, etc.). Therefore, in this study, we propose a numerical model that describes the thermomechanical behavior of various pressurized installations heated locally by the combustion of small particles. This model takes into account the geometric and material nonlinearity and has been validated by the comparison of simulation results with experimental measurements obtained by a new device developed in this work.Keywords: ignition, oxygen, numerical simulation, thermomechanical behaviour
Procedia PDF Downloads 1543984 Simulation-Based Learning: Cases at Slovak University of Technology, at Faculty of Materials Science and Technology
Authors: Gabriela Chmelikova, Ludmila Hurajova, Pavol Bozek
Abstract:
Current era has brought hand in hand with the vast and fast development of technologies enormous pressure on individuals to keep being well - oriented in their professional fields. Almost all projects in the real world require an interdisciplinary perspective. These days we notice some cases when students face that real requirements for jobs are in contrast to the knowledge and competences they gained at universities. Interlacing labor market and university programs is a big issue these days. Sometimes it seems that higher education only “chases” reality. Simulation-based learning can support students’ touch with real demand on competences and knowledge of job world. The contribution provided a descriptive study of some cases of simulation-based teaching environment in different courses at STU MTF in Trnava and discussed how students and teachers perceive this model of teaching-learning approach. Finally, some recommendations are proposed how to enhance closer relationship between academic world and labor market.Keywords: interdisciplinary approach, simulation-based learning, students' job readiness, teaching environment in higher education
Procedia PDF Downloads 2723983 A Mixed Methods Study Aimed at Exploring the Conceptualization of Orthorexia Nervosa on Instagram
Authors: Elena V. Syurina, Sophie Renckens, Martina Valente
Abstract:
Objective: The objective of this study was to investigate the nature of the conversation around orthorexia nervosa (ON) on Instagram. Methods: The present study was conducted using mixed methods, combining a concurrent triangulation and sequential explanatory design. First, 3027 pictures posted on Instagram using #Orthorexia were analyzed. Then, a questionnaire about Instagram use related to ON was completed entirely by 185 respondents. These two quantitative data sources were statistically analyzed and triangulated afterwards. Finally, 9 interviews were conducted, to more deeply investigate what is being said about ON on Instagram and what the motivations to post about it are. Results: Four main categories of pictures were found to be represented in Instagram posts about ON: ‘food’, ‘people’, ‘text’, and ‘other.’ Savory and unprocessed food was most highly represented within the food category, and pictures of people were mostly pictures of the account holder. People who self-identify as having ON were more likely to post about ON, and they were significantly more likely to post about ‘food’, ‘people’ and ‘text.’ The goal of the posts was to raise awareness around ON, as well as to provide support for people who believe to be suffering from it. Conclusion: Since the conversation around ON on Instagram is supportive, it could be beneficial to consider Instagram use in the treatment of ON. However, more research is needed on a larger scale.Keywords: orthorexia nervosa, Instagram, social media, disordered eating
Procedia PDF Downloads 1383982 Axiomatic Systems as an Alternative to Teach Physics
Authors: Liliana M. Marinelli, Cristina T. Varanese
Abstract:
In the last few years, students from higher education have difficulties in grasping mathematical concepts which support physical matters, especially those in the first years of this education. Classical Physics teaching turns to be complex when students are not able to make use of mathematical tools which lead to the conceptual structure of Physics. When derivation and integration rules are not used or developed in parallel with other disciplines, the physical meaning that we attempt to convey turns to be complicated. Due to this fact, it could be of great use to see the Classical Mechanics from an axiomatic approach, where the correspondence rules give physical meaning, if we expect students to understand concepts clearly and accurately. Using the Minkowski point of view adapted to a two-dimensional space and time where vectors, matrices, and straight lines (worked from an affine space) give mathematical and physical rigorosity even when it is more abstract. An interesting option would be to develop the disciplinary contents from an axiomatic version which embraces the Classical Mechanics as a particular case of Relativistic Mechanics. The observation about the increase in the difficulties stated by students in the first years of education allows this idea to grow as a possible option to improve performance and understanding of the concepts of this subject.Keywords: axioms, classical physics, physical concepts, relativity
Procedia PDF Downloads 3063981 Online Creative Writing Courses for Algerian University Students: A Mixed-Methods Study of Benefits, Challenges, and Recommendations
Authors: Wafa Nouari
Abstract:
The paper investigates the advantages and drawbacks of online creative writing courses for Algerian university students, particularly in light of the COVID-19 pandemic. The paper employs a mixed-methods approach, using both quantitative and qualitative data from surveys, interviews, and online course evaluations. The paper examines three online creative writing courses offered by Oxford University, Stanford University, and Coursera. The paper shows that online creative writing courses can improve the student's writing abilities, enthusiasm, and self-confidence, as well as introduce them to various literary forms and cultures. However, the paper also highlights some challenges and obstacles that the students encounter, such as technical problems, language difficulties, cultural gaps, and lack of feedback and interaction. The paper argues that online creative writing courses can be a useful alternative or addition to conventional classroom instruction, especially during the pandemic. The paper also offers some suggestions for enhancing the quality and effectiveness of online creative writing courses, such as giving more direction, support, and feedback to the students, as well as creating a sense of community and cooperation among them.Keywords: online creative writing courses, Algerian university students, mixed methods approach, benefits and chanllenges
Procedia PDF Downloads 1043980 Case Study: The Impact of Creative Play on Children's Bilingualism
Authors: Mingxi Xiao
Abstract:
This case study focused on a bilingual child named Emma and her play. Emma was a four-year-old girl born in Australia while her parents were both Chinese. Emma could speak fluent English, while her Mandarin was not as good as her spoken English. With the research question to figure out whether creative play had an impact on children’s bilingualism, this case study mainly used the anecdotes method to observe Emma’s play and this report presented five observations of Emma, describing detailed information about her play and recording her language use. Based on Emma’s interests and daily activities, this case study chose her creative play for observation, which incorporates a whole range of activities from dancing to drawing, as well as playing instruments. From the five observations, it could be seen that Emma often mixed languages to help her express her meaning. It could be seen that Emma made an effort to use her bilingualism in her creative play. In other words, play encouraged Emma to use the two languages. In conclusion, the observations with Emma showed that although her Mandarin was not good enough, she displayed confidence in speaking both languages and had gradually shifted from mixing languages to code-switching. Recommendations were provided to support Emma’s bilingual abilities for further development in the end.Keywords: bilingual, case study, code-switching, creative play, early childhood
Procedia PDF Downloads 1453979 DISGAN: Efficient Generative Adversarial Network-Based Method for Cyber-Intrusion Detection
Authors: Hongyu Chen, Li Jiang
Abstract:
Ubiquitous anomalies endanger the security of our system con- stantly. They may bring irreversible damages to the system and cause leakage of privacy. Thus, it is of vital importance to promptly detect these anomalies. Traditional supervised methods such as Decision Trees and Support Vector Machine (SVM) are used to classify normality and abnormality. However, in some case, the abnormal status are largely rarer than normal status, which leads to decision bias of these methods. Generative adversarial network (GAN) has been proposed to handle the case. With its strong generative ability, it only needs to learn the distribution of normal status, and identify the abnormal status through the gap between it and the learned distribution. Nevertheless, existing GAN-based models are not suitable to process data with discrete values, leading to immense degradation of detection performance. To cope with the discrete features, in this paper, we propose an efficient GAN-based model with specifically-designed loss function. Experiment results show that our model outperforms state-of-the-art models on discrete dataset and remarkably reduce the overhead.Keywords: GAN, discrete feature, Wasserstein distance, multiple intermediate layers
Procedia PDF Downloads 1293978 Classifications of Images for the Recognition of People’s Behaviors by SIFT and SVM
Authors: Henni Sid Ahmed, Belbachir Mohamed Faouzi, Jean Caelen
Abstract:
Behavior recognition has been studied for realizing drivers assisting system and automated navigation and is an important studied field in the intelligent Building. In this paper, a recognition method of behavior recognition separated from a real image was studied. Images were divided into several categories according to the actual weather, distance and angle of view etc. SIFT was firstly used to detect key points and describe them because the SIFT (Scale Invariant Feature Transform) features were invariant to image scale and rotation and were robust to changes in the viewpoint and illumination. My goal is to develop a robust and reliable system which is composed of two fixed cameras in every room of intelligent building which are connected to a computer for acquisition of video sequences, with a program using these video sequences as inputs, we use SIFT represented different images of video sequences, and SVM (support vector machine) Lights as a programming tool for classification of images in order to classify people’s behaviors in the intelligent building in order to give maximum comfort with optimized energy consumption.Keywords: video analysis, people behavior, intelligent building, classification
Procedia PDF Downloads 3783977 Standardization of the Behavior Assessment System for Children-2, Parent Rating Scales - Adolescent Form (K BASC-2, PRS-A) among Korean Sample
Authors: Christine Myunghee Ahn, Sung Eun Baek, Sun Young Park
Abstract:
The purpose of this study was to evaluate the cross-cultural validity of the Korean version of the Behavioral Assessment System for Children 2nd Edition, Parent Rating Scales - Adolescent Form (K BASC-2, PRS-A). The 150-item K BASC-2, PRS-A questionnaire was administered to a total of 690 Korean parents or caregivers (N=690) of adolescent children in middle school and high school. Results from the confirmatory and exploratory factor analyses indicate that the K BASC-2, PRS-A yielded a 3-factor solution similar to the factor structure found in the original version of the BASC-2. The internal consistencies using the Cronbach’s alpha of the composite scale scores were in the .92~ .98 range. The overall reliability and validity of the K BASC-2, PRS-A seem adequate. Structural equation modeling was used to verify the theoretical relationship among the scales of Adaptability, Withdrawal, Somatization, Depression, and Anxiety, to render additional support for internal validity. Other relevant findings, practical implications regarding the use of the KBASC-2, PRS-A and suggestions for future research are discussed.Keywords: behavioral assessment system, cross-cultural validity, parent report, screening
Procedia PDF Downloads 4893976 A Construction Scheduling Model by Applying Pedestrian and Vehicle Simulation
Authors: Akhmad F. K. Khitam, Yi Tai, Hsin-Yun Lee
Abstract:
In the modern research of construction management, the goals of scheduling are not only to finish the project within the limited duration, but also to improve the impact of people and environment. Especially for the impact to the pedestrian and vehicles, the considerable social cost should be estimated in the total performance of a construction project. However, the site environment has many differences between projects. These interactions affect the requirement and goal of scheduling. It is difficult for schedule planners to quantify these interactions. Therefore, this study use 3D dynamic simulation technology to plan the schedule of the construction engineering projects that affect the current space users (i.e., the pedestrians and vehicles). The proposed model can help the project manager find out the optimal schedule to minimize the inconvenience brought to the space users. Besides, a roadwork project and a building renovation project were analyzed for the practical situation of engineering and operations. Then this study integrates the proper optimization algorithms and computer technology to establish a decision support model. The proposed model can generate a near-optimal schedule solution for project planners.Keywords: scheduling, simulation, optimization, pedestrian and vehicle behavior
Procedia PDF Downloads 1413975 Analysis of Indoor Air Quality and Sick Building Syndrome in Control Room Oil Gas Refinery
Authors: Dessy Laksyana Utami
Abstract:
The sick building syndrome comprises of various nonspecific symptoms that occur in the occupants of a building. It is commonly increases sickness absenteeism and causes a decrease in productivity of the workers. Evidence suggests that what is called the Sick Building Syndrome are at least three separate entities, which has at least one cause. The following are some of the factors that might be primarily responsible for Sick Building Syndrome such as: Chemical contaminants, Biological contaminants, Inadequate ventilation and Electromagnetic radiation. In many cases it is due to insufficient maintenance of the HVAC (heating, ventilation, air conditioning) system in the building. As this syndrome is increasingly becoming a major occupational hazard. It was used the analytic cross-sectional design. Based on data obtained 80% of respondents reported significant ongoing health problems in the eyes, head, and the nose. 60% had bad symptoms in the throat, the stomach and cough, 50% had gastrointestinal disorders, 40% fatigue and 25% occurred all symptoms sick building syndrome. The 40 respondents were recruited to the study, with a mean age of 35 years (range 20-55). To support the evidence of Sick Building Syndrome, further checks are needed for some of the factors in next research, i.e. measurement of Chemical contaminants, Biological contaminants, inadequate ventilation & Electromagnetic radiation.Keywords: indoor air pollution, sick building syndrome, indoor air quality, oil gas polution
Procedia PDF Downloads 1373974 Understanding Context and Its Effects in the Implementation of Modern Foreign Language Curriculum in Vietnam
Authors: Ngoc T. Bui
Abstract:
The key issue for teachers of a modern foreign language is the creation of a pedagogic environment, and this means that an understanding of context is vital. A pedagogic environment addresses the following: time, feedback, relations with other people, curriculum integration, forms of knowledge, resources and control in the pedagogic relationship. In this light, the multiple case study of the implementation of a modern foreign language curriculum focuses on exploring Vietnamese contexts and participants’ perceptions of factors that may affect their implementation process in order to examine thoroughly how the communicative language teaching (CLT) curriculum is being implemented in second language classrooms. A mixed methods approach is utilized to investigate contextual and personal factors that may affect teachers’ implementation of curriculum and pedagogical reform in Vietnam. This project therefore has the capability to inform stakeholders of useful information and identify further changes and measures to solve potential problems to ensure the achievement of the curriculum goals. The expected outcomes may also lead to intercultural language teaching guidelines to support english as a foreign language (EFL) teachers with curriculum design, planning and how to create pedagogic environment to best implement it.Keywords: communicative language teaching, context, curriculum implementation, modern foreign language, pedagogic environment
Procedia PDF Downloads 2693973 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features
Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan
Abstract:
Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.Keywords: pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction
Procedia PDF Downloads 2633972 Profile of Internet and Smartphone Overuse Based on Internet Usage Needs
Authors: Yeoju Chung
Abstract:
Adolescents internet and smartphone addiction are increasing in Korea. But differences between internet addiction and smartphone addiction have been researched in these days. The main objective of this article is to explore the presence of clusters within a sample of adolescents based on dimensions associated with addiction and internet usage needs. The sample consists of 617 adolescents in the 14-19 year age group who were recruited in Korea A cluster analysis identified four groups of participants: internet overuse(IO), smartphone overuse(SO), both overuse(B) and normal(N) use group. MANOVA analysis based on internet usage showed that there are differences among four groups in internet usage needs. IO has higher cyber self-seeking needs and emotion and thought expression needs than SO. SO has higher real relationship and life needs with cyberworld than IO, B, and N. B has the highest cyber self-seeking needs and emotion and thought expression needs, however, game fun seeking needs is the highest in IO. These results support that IO seeks game fun needs, SO seeks real relationship and life needs, and B seeks cyber self and expression in cyberworld.Keywords: addiction, internet, needs, smartphone
Procedia PDF Downloads 2733971 Resequencing and Genomic Study of Wild Coffea Arabica Unveils Genetic Groups at Its Origin and Their Geographic Distribution
Authors: Zate Zewdneh Zana
Abstract:
Coffea arabica (Arabica coffee), a cornerstone of the global beverage industry, necessitates rigorous genetic conservation due to its economic significance and genetic complexity. In this study, we performed whole-genome resequencing of wild species collected from its birthplace, Ethiopia. Advanced Illumina sequencing technology facilitated the mapping of a high percentage of clean reads to the C. arabica reference genome, revealing a substantial number of genetic variants, predominantly SNPs. Our comprehensive analysis not only uncovered a notable distribution of genomic variants across the coffee genome but also identified distinct genetic groups through phylogenetic and population structure analyses. This genomic study provides invaluable insights into the genetic diversity of C. arabica, highlighting the potential of identified SNPs and InDels in enhancing our understanding of key agronomic traits. The findings contribute significantly to genetic studies and support strategic breeding and conservation efforts essential for sustaining the global coffee industry.Keywords: population genetics, wild species, evolutionary study, coffee plant
Procedia PDF Downloads 403970 Intermittent Demand Forecast in Telecommunication Service Provider by Using Artificial Neural Network
Authors: Widyani Fatwa Dewi, Subroto Athor
Abstract:
In a telecommunication service provider, quantity and interval of customer demand often difficult to predict due to high dependency on customer expansion strategy and technological development. Demand arrives when a customer needs to add capacity to an existing site or build a network in a new site. Because demand is uncertain for each period, and sometimes there is a null demand for several equipments, it is categorized as intermittent. This research aims to improve demand forecast quality in Indonesia's telecommunication service providers by using Artificial Neural Network. In Artificial Neural Network, the pattern or relationship within data will be analyzed using the training process, followed by the learning process as validation stage. Historical demand data for 36 periods is used to support this research. It is found that demand forecast by using Artificial Neural Network outperforms the existing method if it is reviewed on two criteria: the forecast accuracy, using Mean Absolute Deviation (MAD), Mean of the sum of the Squares of the Forecasting Error (MSE), Mean Error (ME) and service level which is shown through inventory cost. This research is expected to increase the reference for a telecommunication demand forecast, which is currently still limited.Keywords: artificial neural network, demand forecast, forecast accuracy, intermittent, service level, telecommunication
Procedia PDF Downloads 1643969 Physicochemical and Antioxidative Characteristics of Black Bean Protein Hydrolysates Obtained from Different Enzymes
Authors: Zhaojun Zheng, Yuanfa Liu, Jiaxin Li, Jinwei Li, Yong-jiang Xu, Chen Cao
Abstract:
Black bean is an excellent protein source for preparing hydrolysates, which attract much attention due to their biological activity. The objective of this study was to characterize the physicochemical and antioxidant properties of black bean protein, hydrolyzed by ficin, bromelain or alcalase until 300 min of hydrolysis. Results showed that bromelain and alcalase hydrolysates possessed a higher degree of hydrolysis (DH) than that of ficin, thereby presenting different ultraviolet absorption, fluorescence intensity, and circular dichroism. Moreover, all hydrolysates possessed the capacity to scavenge DPPH radical with the lowest IC₅₀ of 21.11 µg/mL, as well as to chelate ferrous ion (Fe²⁺) with the IC₅₀ values ranging from 6.82 to 30.68 µg/mL. Intriguingly, the oxidation of linoleic acid, sunflower oil, and sunflower oil-in-water emulsion was remarkedly retarded by the three selected protein hydrolysates, especially by bromelain-treated protein hydrolysate, which might attribute to their high hydrophobicity and emulsifying properties. These findings can provide strong support for black bean protein hydrolysates to be employed in food products acting as natural antioxidant alternatives.Keywords: antioxidant activity, black bean protein hydrolysate, emulsion physicochemical properties, sunflower oil
Procedia PDF Downloads 1373968 Predictive Maintenance of Electrical Induction Motors Using Machine Learning
Authors: Muhammad Bilal, Adil Ahmed
Abstract:
This study proposes an approach for electrical induction motor predictive maintenance utilizing machine learning algorithms. On the basis of a study of temperature data obtained from sensors put on the motor, the goal is to predict motor failures. The proposed models are trained to identify whether a motor is defective or not by utilizing machine learning algorithms like Support Vector Machines (SVM) and K-Nearest Neighbors (KNN). According to a thorough study of the literature, earlier research has used motor current signature analysis (MCSA) and vibration data to forecast motor failures. The temperature signal methodology, which has clear advantages over the conventional MCSA and vibration analysis methods in terms of cost-effectiveness, is the main subject of this research. The acquired results emphasize the applicability and effectiveness of the temperature-based predictive maintenance strategy by demonstrating the successful categorization of defective motors using the suggested machine learning models.Keywords: predictive maintenance, electrical induction motors, machine learning, temperature signal methodology, motor failures
Procedia PDF Downloads 1173967 Training of Future Computer Science Teachers Based on Machine Learning Methods
Authors: Meruert Serik, Nassipzhan Duisegaliyeva, Danara Tleumagambetova
Abstract:
The article highlights and describes the characteristic features of real-time face detection in images and videos using machine learning algorithms. Students of educational programs reviewed the research work "6B01511-Computer Science", "7M01511-Computer Science", "7M01525- STEM Education," and "8D01511-Computer Science" of Eurasian National University named after L.N. Gumilyov. As a result, the advantages and disadvantages of Haar Cascade (Haar Cascade OpenCV), HoG SVM (Histogram of Oriented Gradients, Support Vector Machine), and MMOD CNN Dlib (Max-Margin Object Detection, convolutional neural network) detectors used for face detection were determined. Dlib is a general-purpose cross-platform software library written in the programming language C++. It includes detectors used for determining face detection. The Cascade OpenCV algorithm is efficient for fast face detection. The considered work forms the basis for the development of machine learning methods by future computer science teachers.Keywords: algorithm, artificial intelligence, education, machine learning
Procedia PDF Downloads 733966 Methotrexate Associated Skin Cancer: A Signal Review of Pharmacovigilance Center
Authors: Abdulaziz Alakeel, Abdulrahman Alomair, Mohammed Fouda
Abstract:
Introduction: Methotrexate (MTX) is an antimetabolite used to treat multiple conditions, including neoplastic diseases, severe psoriasis, and rheumatoid arthritis. Skin cancer is the out-of-control growth of abnormal cells in the epidermis, the outermost skin layer, caused by unrepaired DNA damage that triggers mutations. These mutations lead the skin cells to multiply rapidly and form malignant tumors. The aim of this review is to evaluate the risk of skin cancer associated with the use of methotrexate and to suggest regulatory recommendations if required. Methodology: Signal Detection team at Saudi Food and Drug Authority (SFDA) performed a safety review using National Pharmacovigilance Center (NPC) database as well as the World Health Organization (WHO) VigiBase, alongside with literature screening to retrieve related information for assessing the causality between skin cancer and methotrexate. The search conducted in July 2020. Results: Four published articles support the association seen while searching in literature, a recent randomized control trial published in 2020 revealed a statistically significant increase in skin cancer among MTX users. Another study mentioned methotrexate increases the risk of non-melanoma skin cancer when used in combination with immunosuppressant and biologic agents. In addition, the incidence of melanoma for methotrexate users was 3-fold more than the general population in a cohort study of rheumatoid arthritis patients. The last article estimated the risk of cutaneous malignant melanoma (CMM) in a cohort study shows a statistically significant risk increase for CMM was observed in MTX exposed patients. The WHO database (VigiBase) searched for individual case safety reports (ICSRs) reported for “Skin Cancer” and 'Methotrexate' use, which yielded 121 ICSRs. The initial review revealed that 106 cases are insufficiently documented for proper medical assessment. However, the remaining fifteen cases have extensively evaluated by applying the WHO criteria of causality assessment. As a result, 30 percent of the cases showed that MTX could possibly cause skin cancer; five cases provide unlikely association and five un-assessable cases due to lack of information. The Saudi NPC database searched to retrieve any reported cases for the combined terms methotrexate/skin cancer; however, no local cases reported up to date. The data mining of the observed and the expected reporting rate for drug/adverse drug reaction pair is estimated using information component (IC), a tool developed by the WHO Uppsala Monitoring Centre to measure the reporting ratio. Positive IC reflects higher statistical association, while negative values translated as a less statistical association, considering the null value equal to zero. Results showed that a combination of 'Methotrexate' and 'Skin cancer' observed more than expected when compared to other medications in the WHO database (IC value is 1.2). Conclusion: The weighted cumulative pieces of evidence identified from global cases, data mining, and published literature are sufficient to support a causal association between the risk of skin cancer and methotrexate. Therefore, health care professionals should be aware of this possible risk and may consider monitoring any signs or symptoms of skin cancer in patients treated with methotrexate.Keywords: methotrexate, skin cancer, signal detection, pharmacovigilance
Procedia PDF Downloads 1143965 Elemental Graph Data Model: A Semantic and Topological Representation of Building Elements
Authors: Yasmeen A. S. Essawy, Khaled Nassar
Abstract:
With the rapid increase of complexity in the building industry, professionals in the A/E/C industry were forced to adopt Building Information Modeling (BIM) in order to enhance the communication between the different project stakeholders throughout the project life cycle and create a semantic object-oriented building model that can support geometric-topological analysis of building elements during design and construction. This paper presents a model that extracts topological relationships and geometrical properties of building elements from an existing fully designed BIM, and maps this information into a directed acyclic Elemental Graph Data Model (EGDM). The model incorporates BIM-based search algorithms for automatic deduction of geometrical data and topological relationships for each building element type. Using graph search algorithms, such as Depth First Search (DFS) and topological sortings, all possible construction sequences can be generated and compared against production and construction rules to generate an optimized construction sequence and its associated schedule. The model is implemented in a C# platform.Keywords: building information modeling (BIM), elemental graph data model (EGDM), geometric and topological data models, graph theory
Procedia PDF Downloads 382