Search results for: decision making loop
3845 Signal Restoration Using Neural Network Based Equalizer for Nonlinear channels
Authors: Z. Zerdoumi, D. Benatia, , D. Chicouche
Abstract:
This paper investigates the application of artificial neural network to the problem of nonlinear channel equalization. The difficulties caused by channel distortions such as inter symbol interference (ISI) and nonlinearity can overcome by nonlinear equalizers employing neural networks. It has been shown that multilayer perceptron based equalizer outperform significantly linear equalizers. We present a multilayer perceptron based equalizer with decision feedback (MLP-DFE) trained with the back propagation algorithm. The capacity of the MLP-DFE to deal with nonlinear channels is evaluated. From simulation results it can be noted that the MLP based DFE improves significantly the restored signal quality, the steady state mean square error (MSE), and minimum Bit Error Rate (BER), when comparing with its conventional counterpart.Keywords: Artificial Neural Network, signal restoration, Nonlinear Channel equalization, equalization
Procedia PDF Downloads 4993844 AI-Enhanced Self-Regulated Learning: Proposing a Comprehensive Model with 'Studium' to Meet a Student-Centric Perspective
Authors: Smita Singh
Abstract:
Objective: The Faculty of Chemistry Education at Humboldt University has developed ‘Studium’, a web application designed to enhance long-term self-regulated learning (SRL) and academic achievement. Leveraging advanced generative AI, ‘Studium’ offers a dynamic and adaptive educational experience tailored to individual learning preferences and languages. The application includes evolving tools for personalized notetaking from preferred sources, customizable presentation capabilities, and AI-assisted guidance from academic documents or textbooks. It also features workflow automation and seamless integration with collaborative platforms like Miro, powered by AI. This study aims to propose a model that combines generative AI with traditional features and customization options, empowering students to create personalized learning environments that effectively address the challenges of SRL. Method: To achieve this, the study included graduate and undergraduate students from diverse subject streams, with 15 participants each from Germany and India, ensuring a diverse educational background. An exploratory design was employed using a speed dating method with enactment, where different scenario sessions were created to allow participants to experience various features of ‘Studium’. The session lasted for 50 minutes, providing an in-depth exploration of the platform's capabilities. Participants interacted with Studium’s features via Zoom conferencing and were then engaged in semi-structured interviews lasting 10-15 minutes to gain deeper insights into the effectiveness of ‘Studium’. Additionally, online questionnaire surveys were conducted before and after the session to gather feedback and evaluate satisfaction with self-regulated learning (SRL) after using ‘Studium’. The response rate of this survey was 100%. Results: The findings of this study indicate that students widely acknowledged the positive impact of ‘Studium’ on their learning experience, particularly its adaptability and intuitive design. They expressed a desire for more tools like ‘Studium’ to support self-regulated learning in the future. The application significantly fostered students' independence in organizing information and planning study workflows, which in turn enhanced their confidence in mastering complex concepts. Additionally, ‘Studium’ promoted strategic decision-making and helped students overcome various learning challenges, reinforcing their self-regulation, organization, and motivation skills. Conclusion: This proposed model emphasizes the need for effective integration of personalized AI tools into active learning and SRL environments. By addressing key research questions, our framework aims to demonstrate how AI-assisted platforms like “Studium” can facilitate deeper understanding, maintain student motivation, and support the achievement of academic goals. Thus, our ideal model for AI-assisted educational platforms provides a strategic approach to enhance student's learning experiences and promote their development as self-regulated learners. This proposed model emphasizes the need for effective integration of personalized AI tools into active learning and SRL environments. By addressing key research questions, our framework aims to demonstrate how AI-assisted platforms like ‘Studium’ can facilitate deeper understanding, maintain student motivation, and support the achievement of academic goals. Thus, our ideal model for AI-assisted educational platforms provides a strategic approach to enhance student's learning experiences and promote their development as self-regulated learners.Keywords: self-regulated learning (SRL), generative AI, AI-assisted educational platforms
Procedia PDF Downloads 313843 Food Processing Role in Ensuring Food and Health Security
Authors: Muhammad Haseeb
Abstract:
It is crucial to have a balanced approach to food's energy and nutritional content in a world with limited resources. The preservation of the environment is vital, and both the agrifood-making and food service sectors will be requested to use fewer resources to produce a wider range of existing foods and develop imaginative foods that are physiologically appropriate for a better sense of good health, have long shelf lives and are conveniently transportable. Delivering healthy diets that satisfy consumer expectations from robust and sustainable agrifood systems is necessary in a world that is changing and where natural resources are running out. Across the whole food supply chain, an integrated multi-sectoral approach is needed to alleviate global food and nutrition insecurity.Keywords: health, food, nutrition, supply chain
Procedia PDF Downloads 263842 Application of Neuroscience in Aligning Instructional Design to Student Learning Style
Authors: Jayati Bhattacharjee
Abstract:
Teaching is a very dynamic profession. Teaching Science is as much challenging as Learning the subject if not more. For instance teaching of Chemistry. From the introductory concepts of subatomic particles to atoms of elements and their symbols and further presenting the chemical equation and so forth is a challenge on both side of the equation Teaching Learning. This paper combines the Neuroscience of Learning and memory with the knowledge of Learning style (VAK) and presents an effective tool for the teacher to authenticate Learning. The model of ‘Working Memory’, the Visio-spatial sketchpad, the central executive and the phonological loop that transforms short-term memory to long term memory actually supports the psychological theory of Learning style i.e. Visual –Auditory-Kinesthetic. A closer examination of David Kolbe’s learning model suggests that learning requires abilities that are polar opposites, and that the learner must continually choose which set of learning abilities he or she will use in a specific learning situation. In grasping experience some of us perceive new information through experiencing the concrete, tangible, felt qualities of the world, relying on our senses and immersing ourselves in concrete reality. Others tend to perceive, grasp, or take hold of new information through symbolic representation or abstract conceptualization – thinking about, analyzing, or systematically planning, rather than using sensation as a guide. Similarly, in transforming or processing experience some of us tend to carefully watch others who are involved in the experience and reflect on what happens, while others choose to jump right in and start doing things. The watchers favor reflective observation, while the doers favor active experimentation. Any lesson plan based on the model of Prescriptive design: C+O=M (C: Instructional condition; O: Instructional Outcome; M: Instructional method). The desired outcome and conditions are independent variables whereas the instructional method is dependent hence can be planned and suited to maximize the learning outcome. The assessment for learning rather than of learning can encourage, build confidence and hope amongst the learners and go a long way to replace the anxiety and hopelessness that a student experiences while learning Science with a human touch in it. Application of this model has been tried in teaching chemistry to high school students as well as in workshops with teachers. The response received has proven the desirable results.Keywords: working memory model, learning style, prescriptive design, assessment for learning
Procedia PDF Downloads 3533841 A Comprehensive Key Performance Indicators Dashboard for Emergency Medical Services
Authors: Giada Feletti, Daniela Tedesco, Paolo Trucco
Abstract:
The present study aims to develop a dashboard of Key Performance Indicators (KPI) to enhance information and predictive capabilities in Emergency Medical Services (EMS) systems, supporting both operational and strategic decisions of different actors. The employed research methodology consists of the first phase of revision of the technical-scientific literature concerning the indicators currently used for the performance measurement of EMS systems. From this literature analysis, it emerged that current studies focus on two distinct perspectives: the ambulance service, a fundamental component of pre-hospital health treatment, and the patient care in the Emergency Department (ED). The perspective proposed by this study is to consider an integrated view of the ambulance service process and the ED process, both essential to ensure high quality of care and patient safety. Thus, the proposal focuses on the entire healthcare service process and, as such, allows considering the interconnection between the two EMS processes, the pre-hospital and hospital ones, connected by the assignment of the patient to a specific ED. In this way, it is possible to optimize the entire patient management. Therefore, attention is paid to the dependency of decisions that in current EMS management models tend to be neglected or underestimated. In particular, the integration of the two processes enables the evaluation of the advantage of an ED selection decision having visibility on EDs’ saturation status and therefore considering the distance, the available resources and the expected waiting times. Starting from a critical review of the KPIs proposed in the extant literature, the design of the dashboard was carried out: the high number of analyzed KPIs was reduced by eliminating the ones firstly not in line with the aim of the study and then the ones supporting a similar functionality. The KPIs finally selected were tested on a realistic dataset, which draws us to exclude additional indicators due to the unavailability of data required for their computation. The final dashboard, which was discussed and validated by experts in the field, includes a variety of KPIs able to support operational and planning decisions, early warning, and citizens’ awareness of EDs accessibility in real-time. By associating each KPI to the EMS phase it refers to, it was also possible to design a well-balanced dashboard covering both efficiency and effective performance of the entire EMS process. Indeed, just the initial phases related to the interconnection between ambulance service and patient’s care are covered by traditional KPIs compared to the subsequent phases taking place in the hospital ED. This could be taken into consideration for the potential future development of the dashboard. Moreover, the research could proceed by building a multi-layer dashboard composed of the first level with a minimal set of KPIs to measure the basic performance of the EMS system at an aggregate level and further levels with KPIs that can bring additional and more detailed information.Keywords: dashboard, decision support, emergency medical services, key performance indicators
Procedia PDF Downloads 1143840 Anthropomorphic Brand Mascot Serve as the Vehicle: To Quickly Remind Customers Who You Are and What You Stand for in Indian Cultural Context
Authors: Preeti Yadav, Dandeswar Bisoyi, Debkumar Chakrabati
Abstract:
For many years organization have been exercising a creative technique of applying brand mascots, which results in making a visual ‘ambassador’ of a brand. The goal of mascot’s is just not confined to strengthening the brand identity, improving customer perception, but also acting as a vehicle of anthropomorphic translation towards the consumer. Such that it helps in embracing the power of recognition and processing the experiences happening in our daily lives. The study examines the relationship between the specific mascot features and brand attitude. It eliminates that mascot trust is an important mediator of the mascot features on brand attitude. Anthropomorphic characters turn out to be the key players despite the application of brand mascots in today’s marketing.Keywords: advertising, mascot, branding, recall
Procedia PDF Downloads 3363839 Classification Based on Deep Neural Cellular Automata Model
Authors: Yasser F. Hassan
Abstract:
Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it.Keywords: cellular automata, neural cellular automata, deep learning, classification
Procedia PDF Downloads 2003838 Application of Deep Learning in Top Pair and Single Top Quark Production at the Large Hadron Collider
Authors: Ijaz Ahmed, Anwar Zada, Muhammad Waqas, M. U. Ashraf
Abstract:
We demonstrate the performance of a very efficient tagger applies on hadronically decaying top quark pairs as signal based on deep neural network algorithms and compares with the QCD multi-jet background events. A significant enhancement of performance in boosted top quark events is observed with our limited computing resources. We also compare modern machine learning approaches and perform a multivariate analysis of boosted top-pair as well as single top quark production through weak interaction at √s = 14 TeV proton-proton Collider. The most relevant known background processes are incorporated. Through the techniques of Boosted Decision Tree (BDT), likelihood and Multlayer Perceptron (MLP) the analysis is trained to observe the performance in comparison with the conventional cut based and count approachKeywords: top tagger, multivariate, deep learning, LHC, single top
Procedia PDF Downloads 1133837 Implications of Social Rights Adjudication on the Separation of Powers Doctrine: Colombian Case
Authors: Mariam Begadze
Abstract:
Separation of Powers (SOP) has often been the most frequently posed objection against the judicial enforcement of socio-economic rights. Although a lot has been written to refute those, very rarely has it been assessed what effect the current practice of social rights adjudication has had on the construction of SOP doctrine in specific jurisdictions. Colombia is an appropriate case-study on this question. The notion of collaborative SOP in the 1991 Constitution has affected the court’s conception of its role. On the other hand, the trends in the jurisprudence have further shaped the collaborative notion of SOP. Other institutional characteristics of the Colombian constitutional law have played its share role as well. Tutela action, particularly flexible and fast judicial action for individuals has placed the judiciary in a more confrontational relation vis-à-vis the political branches. Later interventions through abstract review of austerity measures further contributed to that development. Logically, the court’s activism in this sphere has attracted attacks from political branches, which have turned out to be unsuccessful precisely due to court’s outreach to the middle-class, whose direct reliance on the court has turned into its direct democratic legitimacy. Only later have the structural judgments attempted to revive the collaborative notion behind SOP doctrine. However, the court-supervised monitoring process of implementation has itself manifested fluctuations in the mode of collaboration, moving into more managerial supervision recently. This is not surprising considering the highly dysfunctional political system in Colombia, where distrust seems to be the default starting point in the interaction of the branches. The paper aims to answer the question, what the appropriate judicial tools are to realize the collaborative notion of SOP in a context where the court has to strike a balance between the strong executive and the weak and largely dysfunctional legislative branch. If the recurrent abuse lies in the indifference and inaction of legislative branches to engage with political issues seriously, what are the tools in the court’s hands to activate the political process? The answer to this question partly lies in the court’s other strand of jurisprudence, in which it combines substantive objections with procedural ones concerning the operation of the legislative branch. The primary example is the decision on value-added tax on basic goods, in which the court invalidated the law based on the absence of sufficient deliberation in Congress on the question of the bills’ implications on the equity and progressiveness of the entire taxing system. The decision led to Congressional rejection of an identical bill based on the arguments put forward by the court. The case perhaps is the best illustration of the collaborative notion of SOP, in which the court refrains from categorical pronouncements, while does its bit for activating political process. This also legitimizes the court’s activism based on its role to counter the most perilous abuse in the Colombian context – failure of the political system to seriously engage with serious political questions.Keywords: Colombian constitutional court, judicial review, separation of powers, social rights
Procedia PDF Downloads 1053836 Estimating the Value of Statistical Life under the Subsidization and Cultural Effects
Authors: Mohammad A. Alolayan, John S. Evans, James K. Hammitt
Abstract:
The value of statistical life has been estimated for a middle eastern country with high economical subsidization system. In this study, in-person interviews were conducted on a stratified random sample to estimate the value of mortality risk. Double-bounded dichotomous choice questions followed by open-ended question were used in the interview to investigate the willingness to pay of the respondent for mortality risk reduction. High willingness to pay was found to be associated with high income and education. Also, females were found to have lower willingness to pay than males. The estimated value of statistical life is larger than the ones estimated for western countries where taxation system exists. This estimate provides a baseline for monetizing the health benefits for proposed policy or program to the decision makers in an eastern country. Also, the value of statistical life for a country in the region can be extrapolated from this this estimate by using the benefit transfer method.Keywords: mortality, risk, VSL, willingness-to-pay
Procedia PDF Downloads 3183835 Analyzing Soviet and Post-Soviet Contemporary Russian Foreign Policy by Applying the Theory of Political Realism
Authors: Simon Tsipis
Abstract:
In this study, we propose to analyze Russian foreign policy conduct by applying the theory of Political Realism and the qualitative comparative method of analysis. We find that the paradigm of Political Realism supplies us with significant insights into the sources of contemporary Russian foreign policy conduct since the power factor was and remains an integral element in Russian foreign policies, especially when we apply comparative analysis and compare it with the behavior of its Soviet predecessor. Through the lens of the Realist theory, a handful of Russian foreign policy-making becomes clearer and much more comprehensible.Keywords: realism, Russia, cold war, Soviet Union, European security
Procedia PDF Downloads 1203834 2.5D Face Recognition Using Gabor Discrete Cosine Transform
Authors: Ali Cheraghian, Farshid Hajati, Soheila Gheisari, Yongsheng Gao
Abstract:
In this paper, we present a novel 2.5D face recognition method based on Gabor Discrete Cosine Transform (GDCT). In the proposed method, the Gabor filter is applied to extract feature vectors from the texture and the depth information. Then, Discrete Cosine Transform (DCT) is used for dimensionality and redundancy reduction to improve computational efficiency. The system is combined texture and depth information in the decision level, which presents higher performance compared to methods, which use texture and depth information, separately. The proposed algorithm is examined on publically available Bosphorus database including models with pose variation. The experimental results show that the proposed method has a higher performance compared to the benchmark.Keywords: Gabor filter, discrete cosine transform, 2.5d face recognition, pose
Procedia PDF Downloads 3313833 Assuming the Decision of Having One (More) Child: The New Dimensions of the Post Communist Romanian Family
Authors: Horea-Serban Raluca-Ioana, Istrate Marinela
Abstract:
The first part of the paper analyzes the dynamics of the total fertility rate both at the national and regional level, pointing out the regional disparities in the distribution of this indicator. At the same time, we also focus on the collapse of the number of live births, on the changes in the fertility rate by birth rank, as well as on the failure of acquiring the desired number of children. The second part of the study centres upon a survey applied to urban families with 3 and more than 3 offspring. The preliminary analysis highlights the fact that an increased fertility (more than 3rd rank) is triggered by the parents’ above the average material condition and superior education. The current situation of Romania, which is still passing through a period of relatively rapid demographic changes, marked by numerous convulsions, requires a new approach, in compliance with the recent interpretations appropriate to a new post-transitional demographic regime.Keywords: fertility rate, family size intention, third birth rank, regional disparities
Procedia PDF Downloads 3303832 A Study of Financial Literacy among Undergraduates
Authors: Prasansha Kumari
Abstract:
Financial Literacy is the possession of knowledge and understanding of financial matters. Financial Literacy often entails the knowledge of properly making decisions pertaining to certain personal financial areas like real estate, insurance investing, and savings. This paper intends to identify and analyze the financial knowledge among university undergraduates by using 200 undergraduates in four faculties of University of Kelaniya, Sri Lanka. Collected data will be analyzed by descriptive research method using SPSS package. Expected outcomes are considerable percentage of undergraduates have basic knowledge on financial matters while it has a law percentage for advanced financial literacy among undergraduates. Students from faculty of Commerce and Management and Science have good understanding about financial matters than undergraduates in other two facultiesKeywords: advanced finance, undergraduates, financial literacy, savings
Procedia PDF Downloads 3473831 A Low-Area Fully-Reconfigurable Hardware Design of Fast Fourier Transform System for 3GPP-LTE Standard
Authors: Xin-Yu Shih, Yue-Qu Liu, Hong-Ru Chou
Abstract:
This paper presents a low-area and fully-reconfigurable Fast Fourier Transform (FFT) hardware design for 3GPP-LTE communication standard. It can fully support 32 different FFT sizes, up to 2048 FFT points. Besides, a special processing element is developed for making reconfigurable computing characteristics possible, while first-in first-out (FIFO) scheduling scheme design technique is proposed for hardware-friendly FIFO resource arranging. In a synthesis chip realization via TSMC 40 nm CMOS technology, the hardware circuit only occupies core area of 0.2325 mm2 and dissipates 233.5 mW at maximal operating frequency of 250 MHz.Keywords: reconfigurable, fast Fourier transform (FFT), single-path delay feedback (SDF), 3GPP-LTE
Procedia PDF Downloads 2803830 Collect Meaningful Information about Stock Markets from the Web
Authors: Saleem Abuleil, Khalid S. Alsamara
Abstract:
Events represent a significant source of information on the web; they deliver information about events that occurred around the world in all kind of subjects and areas. These events can be collected and organized to provide valuable and useful information for decision makers, researchers, as well as any person seeking knowledge. In this paper, we discuss an ongoing research to target stock markets domain to observe and record changes (events) when they happen, collect them, understand the meaning of each one of them, and organize the information along with meaning in a well-structured format. By using Semantic Role Labeling (SRL) technique, we identified four factors for each event in this paper: verb of action and three roles associated with it, entity name, attribute, and attribute value. We have generated a set of rules and techniques to support our approach to analyze and understand the meaning of the events taking place in stock markets.Keywords: natuaral language processing, Arabic language, event extraction and understanding, sematic role labeling, stock market
Procedia PDF Downloads 3953829 Learning Made Right: Building World Class Engineers in Tunisia
Authors: Zayen Chagra
Abstract:
Several educational institutions are experimenting new approaches in learning in order to guarantee the success of its students. In Tunisia, and since 2011, the experience of making a new software engineering branch called mobile software engineering began at ESPRIT: Higher School of Engineering and Technology. The project was surprisingly a success since its creation, and even before the graduation of the first generation, partnerships were held with the biggest mobile technology manufacturers and several international awards were won by teams of students. This session presents this experience with details of the approaches made from idea stage to the actual stage where the project counts 32 graduated engineers, 90 graduate students and 120 new participants.Keywords: innovation, education, engineering education, mobile
Procedia PDF Downloads 4273828 Cultural and Natural Heritage Conservation by GIS Tourism Inventory System Project
Authors: Gamze Safak, Umut Arslanoglu
Abstract:
Cultural and tourism conservation and development zones and tourism centers are the boundaries declared for the purpose of protecting, using, and evaluating the sectoral development and planned development in areas where historical and cultural values are heavily involved and/or where tourism potential is high. The most rapidly changing regions in Turkey are tourism areas, especially the coastal areas. Planning these regions is not about only an economic gain but also a natural and physical environment and refers to a complex process. If the tourism sector is not well controlled, excessive use of natural resources and wrong location choices may cause damage to natural areas, historical values, and socio-cultural structure. Since the strategic decisions taken in the environmental order and zoning plans, which are the means of guiding the physical environment of the Ministry of Culture and Tourism, which have the authority to make plans in tourism centers, are transformed into plan decisions that find the spatial expression, comprehensive evaluation of all kinds of data, following the historical development and based on the correct and current data is required. In addition, the authority has a number of competences in tourism promotion as well as the authority to plan, leading to the necessity of taking part in the applications requiring complex analysis such as the management and integration of the country's economic, political, social and cultural resources. For this purpose, Tourism Inventory System (TES) project, which consists of a series of subsystems, has been developed in order to solve complex planning and method problems in the management of site-related information. The scope of the project is based on the integration of numerical and verbal data in the regions within the jurisdiction of the authority, and the monitoring of the historical development of urban planning studies, making the spatial data of the institution easily accessible, shared, questionable and traceable in international standards. A dynamic and continuous system design has been put into practice by utilizing the advantage of the use of Geographical Information Systems in the planning process to play a role in making the right decisions, revealing the tools of social, economic, cultural development, and preservation of natural and cultural values. This paper, which is prepared by the project team members in TES (Tourism Inventory System), will present a study regarding the applicability of GIS in cultural and natural heritage conservation.Keywords: cultural conservation, GIS, geographic information system, tourism inventory system, urban planning
Procedia PDF Downloads 1203827 Occurrence of Half-Metallicity by Sb-Substitution in Non-Magnetic Fe₂TiSn
Authors: S. Chaudhuri, P. A. Bhobe
Abstract:
Fe₂TiSn is a non-magnetic full Heusler alloy with a small gap (~ 0.07 eV) at the Fermi level. The electronic structure is highly symmetric in both the spin bands and a small percentage of substitution of holes or electrons can push the system towards spin polarization. A stable 100% spin polarization or half-metallicity is very desirable in the field of spintronics, making Fe₂TiSn a highly attractive material. However, this composition suffers from an inherent anti-site disorder between Fe and Ti sites. This paper reports on the method adopted to control the anti-site disorder and the realization of the half-metallic ground state in Fe₂TiSn, achieved by chemical substitution. Here, Sb was substituted at Sn site to obtain Fe₂TiSn₁₋ₓSbₓ compositions with x = 0, 0.1, 0.25, 0.5 and 0.6. All prepared compositions with x ≤ 0.6 exhibit long-range L2₁ ordering and a decrease in Fe – Ti anti-site disorder. The transport and magnetic properties of Fe₂TiSn₁₋ₓSbₓ compositions were investigated as a function of temperature in the range, 5 K to 400 K. Electrical resistivity, magnetization, and Hall voltage measurements were carried out. All the experimental results indicate the presence of the half-metallic ground state in x ≥ 0.25 compositions. However, the value of saturation magnetization is small, indicating the presence of compensated magnetic moments. The observed magnetic moments' values are in close agreement with the Slater–Pauling rule in half-metallic systems. Magnetic interactions in Fe₂TiSn₁₋ₓSbₓ are understood from the local crystal structural perspective using extended X-ray absorption fine structure (EXAFS) spectroscopy. The changes in bond distances extracted from EXAFS analysis can be correlated with the hybridization between constituent atoms and hence the RKKY type magnetic interactions that govern the magnetic ground state of these alloys. To complement the experimental findings, first principle electronic structure calculations were also undertaken. The spin-polarized DOS complies with the experimental results for Fe₂TiSn₁₋ₓSbₓ. Substitution of Sb (an electron excess element) at Sn–site shifts the majority spin band to the lower energy side of Fermi level, thus making the system 100% spin polarized and inducing long-range magnetic order in an otherwise non-magnetic Fe₂TiSn. The present study concludes that a stable half-metallic system can be realized in Fe₂TiSn with ≥ 50% Sb – substitution at Sn – site.Keywords: antisite disorder, EXAFS, Full Heusler alloy, half metallic ferrimagnetism, RKKY interactions
Procedia PDF Downloads 1423826 Algorithm Development of Individual Lumped Parameter Modelling for Blood Circulatory System: An Optimization Study
Authors: Bao Li, Aike Qiao, Gaoyang Li, Youjun Liu
Abstract:
Background: Lumped parameter model (LPM) is a common numerical model for hemodynamic calculation. LPM uses circuit elements to simulate the human blood circulatory system. Physiological indicators and characteristics can be acquired through the model. However, due to the different physiological indicators of each individual, parameters in LPM should be personalized in order for convincing calculated results, which can reflect the individual physiological information. This study aimed to develop an automatic and effective optimization method to personalize the parameters in LPM of the blood circulatory system, which is of great significance to the numerical simulation of individual hemodynamics. Methods: A closed-loop LPM of the human blood circulatory system that is applicable for most persons were established based on the anatomical structures and physiological parameters. The patient-specific physiological data of 5 volunteers were non-invasively collected as personalized objectives of individual LPM. In this study, the blood pressure and flow rate of heart, brain, and limbs were the main concerns. The collected systolic blood pressure, diastolic blood pressure, cardiac output, and heart rate were set as objective data, and the waveforms of carotid artery flow and ankle pressure were set as objective waveforms. Aiming at the collected data and waveforms, sensitivity analysis of each parameter in LPM was conducted to determine the sensitive parameters that have an obvious influence on the objectives. Simulated annealing was adopted to iteratively optimize the sensitive parameters, and the objective function during optimization was the root mean square error between the collected waveforms and data and simulated waveforms and data. Each parameter in LPM was optimized 500 times. Results: In this study, the sensitive parameters in LPM were optimized according to the collected data of 5 individuals. Results show a slight error between collected and simulated data. The average relative root mean square error of all optimization objectives of 5 samples were 2.21%, 3.59%, 4.75%, 4.24%, and 3.56%, respectively. Conclusions: Slight error demonstrated good effects of optimization. The individual modeling algorithm developed in this study can effectively achieve the individualization of LPM for the blood circulatory system. LPM with individual parameters can output the individual physiological indicators after optimization, which are applicable for the numerical simulation of patient-specific hemodynamics.Keywords: blood circulatory system, individual physiological indicators, lumped parameter model, optimization algorithm
Procedia PDF Downloads 1393825 Evaluation of the Boiling Liquid Expanding Vapor Explosion Thermal Effects in Hassi R'Mel Gas Processing Plant Using Fire Dynamics Simulator
Authors: Brady Manescau, Ilyas Sellami, Khaled Chetehouna, Charles De Izarra, Rachid Nait-Said, Fati Zidani
Abstract:
During a fire in an oil and gas refinery, several thermal accidents can occur and cause serious damage to people and environment. Among these accidents, the BLEVE (Boiling Liquid Expanding Vapor Explosion) is most observed and remains a major concern for risk decision-makers. It corresponds to a violent vaporization of explosive nature following the rupture of a vessel containing a liquid at a temperature significantly higher than its normal boiling point at atmospheric pressure. Their effects on the environment generally appear in three ways: blast overpressure, radiation from the fireball if the liquid involved is flammable and fragment hazards. In order to estimate the potential damage that would be caused by such an explosion, risk decision-makers often use quantitative risk analysis (QRA). This analysis is a rigorous and advanced approach that requires a reliable data in order to obtain a good estimate and control of risks. However, in most cases, the data used in QRA are obtained from the empirical correlations. These empirical correlations generally overestimate BLEVE effects because they are based on simplifications and do not take into account real parameters like the geometry effect. Considering that these risk analyses are based on an assessment of BLEVE effects on human life and plant equipment, more precise and reliable data should be provided. From this point of view, the CFD modeling of BLEVE effects appears as a solution to the empirical law limitations. In this context, the main objective is to develop a numerical tool in order to predict BLEVE thermal effects using the CFD code FDS version 6. Simulations are carried out with a mesh size of 1 m. The fireball source is modeled as a vertical release of hot fuel in a short time. The modeling of fireball dynamics is based on a single step combustion using an EDC model coupled with the default LES turbulence model. Fireball characteristics (diameter, height, heat flux and lifetime) issued from the large scale BAM experiment are used to demonstrate the ability of FDS to simulate the various steps of the BLEVE phenomenon from ignition up to total burnout. The influence of release parameters such as the injection rate and the radiative fraction on the fireball heat flux is also presented. Predictions are very encouraging and show good agreement in comparison with BAM experiment data. In addition, a numerical study is carried out on an operational propane accumulator in an Algerian gas processing plant of SONATRACH company located in the Hassi R’Mel Gas Field (the largest gas field in Algeria).Keywords: BLEVE effects, CFD, FDS, fireball, LES, QRA
Procedia PDF Downloads 1873824 Electroencephalogram Based Alzheimer Disease Classification using Machine and Deep Learning Methods
Authors: Carlos Roncero-Parra, Alfonso Parreño-Torres, Jorge Mateo Sotos, Alejandro L. Borja
Abstract:
In this research, different methods based on machine/deep learning algorithms are presented for the classification and diagnosis of patients with mental disorders such as alzheimer. For this purpose, the signals obtained from 32 unipolar electrodes identified by non-invasive EEG were examined, and their basic properties were obtained. More specifically, different well-known machine learning based classifiers have been used, i.e., support vector machine (SVM), Bayesian linear discriminant analysis (BLDA), decision tree (DT), Gaussian Naïve Bayes (GNB), K-nearest neighbor (KNN) and Convolutional Neural Network (CNN). A total of 668 patients from five different hospitals have been studied in the period from 2011 to 2021. The best accuracy is obtained was around 93 % in both ADM and ADA classifications. It can be concluded that such a classification will enable the training of algorithms that can be used to identify and classify different mental disorders with high accuracy.Keywords: alzheimer, machine learning, deep learning, EEG
Procedia PDF Downloads 1323823 An Interview and PhotoVoice Exploration of Sexual Education Provision to Women with Physical Disability and Potential Experiences of Violence
Authors: D. Beckwith
Abstract:
This research explored sexual identity for women with physical disability, both congenital and acquired. It also explored whether exposure to violence or negative risk-taking had played a role in their intimate relationships. This phenomenological research used semi-structured interviews and photo elicitation with the researcher’s insider knowledge adding experiential substance and understanding to the discussion. Findings confirm sexuality for women with physical disability is marginalised and de-gendered making it less of a priority for professionals and policy makers and emphasising the need to more effectively support women with disability in relation to their sexuality, sexual expression and violence.Keywords: lived-experience, identity, PhotoVoice, sexuality, violence, women with physical disability
Procedia PDF Downloads 1353822 Miniaturized Wideband Single-Feed Shorted-Edge Stacked Patch Antenna for C-Band Applications
Authors: Abdelheq Boukarkar, Omar Guermoua
Abstract:
In this paper, we propose a miniaturized and wideband patch antenna for C-band applications. The antenna miniaturization is obtained by loading shorting vias along one patch edge. At the same time, the wideband performance is achieved by combining two resonances using one feed line. The measured results reveal that the antenna covers the frequency band 4.32 GHz to 6.52 GHz (41%) with a peak gain and a peak efficiency of 5.5 dBi and 87%, respectively. The antenna occupies a relatively small size of only 26 x 22 x 5.6 mm3, making it suitable for compact wireless devices requiring a stable unidirectional gain over a wide frequency range.Keywords: miniaturized antennas, patch antennas, stable gain, wideband antennas
Procedia PDF Downloads 2193821 The Factors that Effect to User Satisfaction of Information System in Bangkok Hospital
Authors: Somchai Buaroong
Abstract:
This research attempted to study information system success in dimensions of the user satisfaction level and to find the association between the independent factors of the user experiences, user knowledge, and user attitude. The study sample was selected using simple random sampling that comprised of 190 users who had used the Bangkok HIS. The data were reported from 165 questionnaires. The results found that the user satisfaction was at a moderate level, user satisfaction on the information quality and system quality was at a moderate level, while satisfaction on service quality was at a high level. The computer knowledge of the user was at a moderate level, and the user attitude was at a positive level. The participation of the user was at a low level and the participation in decision and in evaluation was at a low level; however participation in implementation and in benefit was at a moderate.Keywords: information system success, hospital information system, user attitude, user satisfaction
Procedia PDF Downloads 3243820 Enhancing African Students’ Learning Experience by Creating Multilingual Resources at a South African University of Technology
Authors: Lisa Graham, Kathleen Grant
Abstract:
South Africa is a multicultural country with eleven official languages, yet most of the formal education at institutions of higher education in the country is in English. It is well known that many students, irrespective of their home language, struggle to grasp difficult scientific concepts and the same is true for students enrolled in the Extended Curriculum Programme at the Cape Peninsula University of Technology (CPUT), studying biomedical sciences. Today we are fortunate in that there is a plethora of resources available to students to research and better understand subject matter online. For example, the students often use YouTube videos to supplement the formal education provided in our course. Unfortunately, most of this material is presented in English. The rationale behind this project lies in that it is well documented that students think and grasp concepts easier in their home language and addresses the fact that the lingua franca of instruction in the field of biomedical science is English. A project aimed at addressing the lack of available resources in most of the South African languages is planned, where students studying Bachelor of Health Science in Medical Laboratory Science will collaborate with those studying Film and Video Technology to create educational videos, explaining scientific concepts in their home languages. These videos will then be published on our own YouTube channel, thereby making them accessible to fellow students, future students and anybody with interest in the subject. Research will be conducted to determine the benefit of the project as well as the published videos to the student community. It is suspected that the students engaged in making the videos will benefit in such a way as to gain further understanding of their course content, a broader appreciation of the discipline, an enhanced sense of civic responsibility, as well as greater respect for the different languages and cultures in our classes. Indeed, an increase in student engagement has been shown to play a central role in student success, and it is well noted that deeper learning and more innovative solutions take place in collaborative groups. We aim to make a meaningful contribution towards the production and repository of knowledge in multilingual teaching and learning for the benefit of the diverse student population and staff. This would strengthen language development, multilingualism, and multiculturalism at CPUT and empower and promote African languages as languages of science and education at CPUT, in other institutions of higher learning, and in South Africa as a whole.Keywords: educational videos, multiculturalism, multilingualism, student engagement
Procedia PDF Downloads 1583819 Analysis of Influencing Factors on Infield-Logistics: A Survey of Different Farm Types in Germany
Authors: Michael Mederle, Heinz Bernhardt
Abstract:
The Management of machine fleets or autonomous vehicle control will considerably increase efficiency in future agricultural production. Especially entire process chains, e.g. harvesting complexes with several interacting combine harvesters, grain carts, and removal trucks, provide lots of optimization potential. Organization and pre-planning ensure to get these efficiency reserves accessible. One way to achieve this is to optimize infield path planning. Particularly autonomous machinery requires precise specifications about infield logistics to be navigated effectively and process optimized in the fields individually or in machine complexes. In the past, a lot of theoretical optimization has been done regarding infield logistics, mainly based on field geometry. However, there are reasons why farmers often do not apply the infield strategy suggested by mathematical route planning tools. To make the computational optimization more useful for farmers this study focuses on these influencing factors by expert interviews. As a result practice-oriented navigation not only to the field but also within the field will be possible. The survey study is intended to cover the entire range of German agriculture. Rural mixed farms with simple technology equipment are considered as well as large agricultural cooperatives which farm thousands of hectares using track guidance and various other electronic assistance systems. First results show that farm managers using guidance systems increasingly attune their infield-logistics on direction giving obstacles such as power lines. In consequence, they can avoid inefficient boom flippings while doing plant protection with the sprayer. Livestock farmers rather focus on the application of organic manure with its specific requirements concerning road conditions, landscape terrain or field access points. Cultivation of sugar beets makes great demands on infield patterns because of its particularities such as the row crop system or high logistics demands. Furthermore, several machines working in the same field simultaneously influence each other, regardless whether or not they are of the equal type. Specific infield strategies always are based on interactions of several different influences and decision criteria. Single working steps like tillage, seeding, plant protection or harvest mostly cannot be considered each individually. The entire production process has to be taken into consideration to detect the right infield logistics. One long-term objective of this examination is to integrate the obtained influences on infield strategies as decision criteria into an infield navigation tool. In this way, path planning will become more practical for farmers which is a basic requirement for automatic vehicle control and increasing process efficiency.Keywords: autonomous vehicle control, infield logistics, path planning, process optimizing
Procedia PDF Downloads 2353818 Citation Analysis of New Zealand Court Decisions
Authors: Tobias Milz, L. Macpherson, Varvara Vetrova
Abstract:
The law is a fundamental pillar of human societies as it shapes, controls and governs how humans conduct business, behave and interact with each other. Recent advances in computer-assisted technologies such as NLP, data science and AI are creating opportunities to support the practice, research and study of this pervasive domain. It is therefore not surprising that there has been an increase in investments into supporting technologies for the legal industry (also known as “legal tech” or “law tech”) over the last decade. A sub-discipline of particular appeal is concerned with assisted legal research. Supporting law researchers and practitioners to retrieve information from the vast amount of ever-growing legal documentation is of natural interest to the legal research community. One tool that has been in use for this purpose since the early nineteenth century is legal citation indexing. Among other use cases, they provided an effective means to discover new precedent cases. Nowadays, computer-assisted network analysis tools can allow for new and more efficient ways to reveal the “hidden” information that is conveyed through citation behavior. Unfortunately, access to openly available legal data is still lacking in New Zealand and access to such networks is only commercially available via providers such as LexisNexis. Consequently, there is a need to create, analyze and provide a legal citation network with sufficient data to support legal research tasks. This paper describes the development and analysis of a legal citation Network for New Zealand containing over 300.000 decisions from 125 different courts of all areas of law and jurisdiction. Using python, the authors assembled web crawlers, scrapers and an OCR pipeline to collect and convert court decisions from openly available sources such as NZLII into uniform and machine-readable text. This facilitated the use of regular expressions to identify references to other court decisions from within the decision text. The data was then imported into a graph-based database (Neo4j) with the courts and their respective cases represented as nodes and the extracted citations as links. Furthermore, additional links between courts of connected cases were added to indicate an indirect citation between the courts. Neo4j, as a graph-based database, allows efficient querying and use of network algorithms such as PageRank to reveal the most influential/most cited courts and court decisions over time. This paper shows that the in-degree distribution of the New Zealand legal citation network resembles a power-law distribution, which indicates a possible scale-free behavior of the network. This is in line with findings of the respective citation networks of the U.S. Supreme Court, Austria and Germany. The authors of this paper provide the database as an openly available data source to support further legal research. The decision texts can be exported from the database to be used for NLP-related legal research, while the network can be used for in-depth analysis. For example, users of the database can specify the network algorithms and metrics to only include specific courts to filter the results to the area of law of interest.Keywords: case citation network, citation analysis, network analysis, Neo4j
Procedia PDF Downloads 1103817 Models of Innovation Processes and Their Evolution: A Literature Review
Authors: Maier Dorin, Maier Andreea
Abstract:
Today, any organization - regardless of the specific activity - must be prepared to face continuous radical changes, innovation thus becoming a condition of survival in a globalized market. Not all managers have an overall view on the real size of necessary innovation potential. Unfortunately there is still no common (and correct) understanding of the term of innovation among managers. Moreover, not all managers are aware of the need for innovation. This article highlights and analyzes a series of models of innovation processes and their evolution. The models analyzed encompass both the strategic level and the operational one within an organization, indicating performance innovation on each landing. As the literature review shows, there are no easy answers to the innovation process as there are no shortcuts to great results. Successful companies do not have a silver innovative bullet - they do not get results by making one or few things better than others, they make everything better.Keywords: innovation, innovation process, business success, models of innovation
Procedia PDF Downloads 4043816 Microgrid Design Under Optimal Control With Batch Reinforcement Learning
Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion
Abstract:
Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.Keywords: batch-constrained reinforcement learning, control, design, optimal
Procedia PDF Downloads 126