Search results for: e-content producing algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4961

Search results for: e-content producing algorithm

1301 Molecular Farming: Plants Producing Vaccine and Diagnostic Reagent

Authors: Katerina H. Takova, Ivan N. Minkov, Gergana G. Zahmanova

Abstract:

Molecular farming is the production of recombinant proteins in plants with the aim to use the protein as a purified product, crude extract or directly in the planta. Plants gain more attention as expression systems compared to other ones due to the cost effective production of pharmaceutically important proteins, appropriate post-translational modifications, assembly of complex proteins, absence of human pathogens to name a few. In addition, transient expression in plant leaves enables production of recombinant proteins within few weeks. Hepatitis E virus (HEV) is a causative agent of acute hepatitis. HEV causes epidemics in developing countries and is primarily transmitted through the fecal-oral route. Presently, all efforts for development of Hepatitis E vaccine are focused on the Open Read Frame 2 (ORF2) capsid protein as it contains epitopes that can induce neutralizing antibodies. For our purpose, we used the CMPV-based vector-pEAQ-HT for transient expression of HEV ORF2 in Nicotiana benthamina. Different molecular analysis (Western blot and ELISA) showed that HEV ORF2 capsid protein was expressed in plant tissue in high-yield up to 1g/kg of fresh leaf tissue. Electron microscopy showed that the capsid protein spontaneously assembled in low abundance virus-like particles (VLPs), which are highly immunogenic structures and suitable for vaccine development. The expressed protein was recognized by both human and swine HEV positive sera and can be used as a diagnostic reagent for the detection of HEV infection. Production of HEV capsid protein in plants is a promising technology for further HEV vaccine investigations. Here, we reported for a rapid high-yield transient expression of a recombinant protein in plants suitable for vaccine production as well as a diagnostic reagent. Acknowledgments -The authors’ research on HEV is supported with grants from the Project PlantaSYST under the Widening Program, H2020 as well as under the UK Biotechnological and Biological Sciences Research Council (BBSRC) Institute Strategic Programme Grant ‘Understanding and Exploiting Plant and Microbial Secondary Metabolism’ (BB/J004596/1). The authors want to thank Prof. George Lomonossoff (JIC, Norwich, UK) for his contribution.

Keywords: hepatitis E virus, plant molecular farming, transient expression, vaccines

Procedia PDF Downloads 154
1300 A Difficult Advertising: A Preventive Intervention for Siblings of Children with down Syndrome

Authors: Valentina Manna, Oscar Pisanti

Abstract:

The term sibling has been adopted by Italian brothers and sisters of people with disabilities, to define themselves as a group with shared features. This choice is due to the importance of underlying the centrality of what being a brother/sister means to these people because of and beyond the disability. Being a sibling offers great opportunities to develop empathy and relational skills but it may also amplify the typical dynamics of fraternal relationships dealing with envy, rivalry and concern. This outlines a condition of potential developmental risk for the non-disabled sibling, being at the same time a great resource for the child with special needs, as actor of an intimate relationship usually lasting after that one with parents. However, young siblings are often unheeded in their needs for comprehension of disability and not considered as persons requiring attention themselves. Moreover, scholars have scarcely undertaken an exploration of siblings’ perspective as competent contributors for producing knowledge useful to the benefit of families with special needs children. This contribution describes a preventive intervention for young siblings (6 – 16 years) of children with Down syndrome, by means of a psychodynamic-oriented group where participants could communicate, explore and share their emotional experiences as siblings. Based on a participatory approach, the program represents an action-research project, involving siblings as key experts for our understanding of siblings’ lives. The initiative used social media and video technologies to rise children’s voice: as a final product, participants were involved in the realization of a video campaign –which they defined ‘a difficult advertising’– built on the insights generated by the program and addressed to other siblings to help them facing and recognizing resources and difficulties related to their status. The final video campaign realized by the participants summarizes the main themes emerged during the intervention; as revealed by a thematic analysis, they are related to the difficulty in feeling to have a personal identity, to face disability as a form of ‘untought known’ and to integrate ambivalent emotions. In conclusion, the group device revealed its efficacy as a preventive tool: it allowed participants to deeply reflect on their own experiences and to communicate them for the first time in a verbal and mentalized form.

Keywords: down syndrome, group, siblings, prevention

Procedia PDF Downloads 246
1299 Qualitative Modeling of Transforming Growth Factor Beta-Associated Biological Regulatory Network: Insight into Renal Fibrosis

Authors: Ayesha Waqar Khan, Mariam Altaf, Jamil Ahmad, Shaheen Shahzad

Abstract:

Kidney fibrosis is an anticipated outcome of possibly all types of progressive chronic kidney disease (CKD). Epithelial-mesenchymal transition (EMT) signaling pathway is responsible for production of matrix-producing fibroblasts and myofibroblasts in diseased kidney. In this study, a discrete model of TGF-beta (transforming growth factor) and CTGF (connective tissue growth factor) was constructed using Rene Thomas formalism to investigate renal fibrosis turn over. The kinetic logic proposed by Rene Thomas is a renowned approach for modeling of Biological Regulatory Networks (BRNs). This modeling approach uses a set of constraints which represents the dynamics of the BRN thus analyzing the pathway and predicting critical trajectories that lead to a normal or diseased state. The molecular connection between TGF-beta, Smad 2/3 (transcription factor) phosphorylation and CTGF is modeled using GenoTech. The order of BRN is CTGF, TGF-B, and SMAD3 respectively. The predicted cycle depicts activation of TGF-B (TGF-β) via cleavage of its own pro-domain (0,1,0) and presentation to TGFR-II receptor phosphorylating SMAD3 (Smad2/3) in the state (0,1,1). Later TGF-B is turned off (0,0,1) thereby activating SMAD3 that further stimulates the expression of CTGF in the state (1,0,1) and itself turns off in (1,0,0). Elevated CTGF expression reactivates TGF-B (1,1,0) and the cycle continues. The predicted model has generated one cycle and two steady states. Cyclic behavior in this study represents the diseased state in which all three proteins contribute to renal fibrosis. The proposed model is in accordance with the experimental findings of the existing diseased state. Extended cycle results in enhanced CTGF expression through Smad2/3 and Smad4 translocation in the nucleus. The results suggest that the system converges towards organ fibrogenesis if CTGF remains constructively active along with Smad2/3 and Smad 4 that plays an important role in kidney fibrosis. Therefore, modeling regulatory pathways of kidney fibrosis will escort to the progress of therapeutic tools and real-world useful applications such as predictive and preventive medicine.

Keywords: CTGF, renal fibrosis signaling pathway, system biology, qualitative modeling

Procedia PDF Downloads 181
1298 Influence of the Paint Coating Thickness in Digital Image Correlation Experiments

Authors: Jesús A. Pérez, Sam Coppieters, Dimitri Debruyne

Abstract:

In the past decade, the use of digital image correlation (DIC) techniques has increased significantly in the area of experimental mechanics, especially for materials behavior characterization. This non-contact tool enables full field displacement and strain measurements over a complete region of interest. The DIC algorithm requires a random contrast pattern on the surface of the specimen in order to perform properly. To create this pattern, the specimen is usually first coated using a white matt paint. Next, a black random speckle pattern is applied using any suitable method. If the applied paint coating is too thick, its top surface may not be able to exactly follow the deformation of the specimen, and consequently, the strain measurement might be underestimated. In the present article, a study of the influence of the paint thickness on the strain underestimation is performed for different strain levels. The results are then compared to typical paint coating thicknesses applied by experienced DIC users. A slight strain underestimation was observed for paint coatings thicker than about 30μm. On the other hand, this value was found to be uncommonly high compared to coating thicknesses applied by DIC users.

Keywords: digital image correlation, paint coating thickness, strain

Procedia PDF Downloads 515
1297 Reconstruction of Performace-Based Budgeting in Indonesian Local Government: Application of Soft Systems Methodology in Producing Guideline for Policy Implementation

Authors: Deddi Nordiawan

Abstract:

Effective public policy creation required a strong budget system, both in terms of design and implementation. Performance-based Budget is an evolutionary approach with two substantial characteristics; first, the strong integration between budgeting and planning, and second, its existence as guidance so that all activities and expenditures refer to measurable performance targets. There are four processes in the government that should be followed in order to make the budget become performance-based. These four processes consist of the preparation of a vision according to the bold aspiration, the formulation of outcome, the determination of output based on the analysis of organizational resources, and the formulation of Value Creation Map that contains a series of programs and activities. This is consistent with the concept of logic model which revealed that the budget performance should be placed within a relational framework of resources, activities, outputs, outcomes and impacts. Through the issuance of Law 17/2003 regarding State Finance, local governments in Indonesia have to implement performance-based budget. Central Government then issued Government Regulation 58/2005 which contains the detail guidelines how to prepare local governments budget. After a decade, implementation of performance budgeting in local government is still not fully meet expectations, though the guidance is completed, socialization routinely performed, and trainings have also been carried out at all levels. Accordingly, this study views the practice of performance-based budget at local governments as a problematic situation. This condition must be approached with a system approach that allows the solutions from many point of views. Based on the fact that the infrastructure of budgeting has already settled, the study then considering the situation as complexity. Therefore, the intervention needs to be done in the area of human activity system. Using Soft Systems Methodology, this research will reconstruct the process of performance-based budget at local governments is area of human activity system. Through conceptual models, this study will invite all actors (central government, local government, and the parliament) for dialogue and formulate interventions in human activity systems that systematically desirable and culturally feasible. The result will direct central government in revise the guidance to local government budgeting process as well as a reference to build the capacity building strategy.

Keywords: soft systems methodology, performance-based budgeting, Indonesia, public policy

Procedia PDF Downloads 253
1296 Analysis Of Non-uniform Characteristics Of Small Underwater Targets Based On Clustering

Authors: Tianyang Xu

Abstract:

Small underwater targets generally have a non-centrosymmetric geometry, and the acoustic scattering field of the target has spatial inhomogeneity under active sonar detection conditions. In view of the above problems, this paper takes the hemispherical cylindrical shell as the research object, and considers the angle continuity implied in the echo characteristics, and proposes a cluster-driven research method for the non-uniform characteristics of target echo angle. First, the target echo features are extracted, and feature vectors are constructed. Secondly, the t-SNE algorithm is used to improve the internal connection of the feature vector in the low-dimensional feature space and to construct the visual feature space. Finally, the implicit angular relationship between echo features is extracted under unsupervised condition by cluster analysis. The reconstruction results of the local geometric structure of the target corresponding to different categories show that the method can effectively divide the angle interval of the local structure of the target according to the natural acoustic scattering characteristics of the target.

Keywords: underwater target;, non-uniform characteristics;, cluster-driven method;, acoustic scattering characteristics

Procedia PDF Downloads 134
1295 Median-Based Nonparametric Estimation of Returns in Mean-Downside Risk Portfolio Frontier

Authors: H. Ben Salah, A. Gannoun, C. de Peretti, A. Trabelsi

Abstract:

The Downside Risk (DSR) model for portfolio optimisation allows to overcome the drawbacks of the classical mean-variance model concerning the asymetry of returns and the risk perception of investors. This model optimization deals with a positive definite matrix that is endogenous with respect to portfolio weights. This aspect makes the problem far more difficult to handle. For this purpose, Athayde (2001) developped a new recurcive minimization procedure that ensures the convergence to the solution. However, when a finite number of observations is available, the portfolio frontier presents an appearance which is not very smooth. In order to overcome that, Athayde (2003) proposed a mean kernel estimation of the returns, so as to create a smoother portfolio frontier. This technique provides an effect similar to the case in which we had continuous observations. In this paper, taking advantage on the the robustness of the median, we replace the mean estimator in Athayde's model by a nonparametric median estimator of the returns. Then, we give a new version of the former algorithm (of Athayde (2001, 2003)). We eventually analyse the properties of this improved portfolio frontier and apply this new method on real examples.

Keywords: Downside Risk, Kernel Method, Median, Nonparametric Estimation, Semivariance

Procedia PDF Downloads 493
1294 Optimization of Reinforced Concrete Buildings According to the Algerian Seismic Code

Authors: Nesreddine Djafar Henni, Nassim Djedoui, Rachid Chebili

Abstract:

Recent decades have witnessed significant efforts being made to optimize different types of structures and components. The concept of cost optimization in reinforced concrete structures, which aims at minimizing financial resources while ensuring maximum building safety, comprises multiple materials, and the objective function for their optimal design is derived from the construction cost of the steel as well as concrete that significantly contribute to the overall weight of reinforced concrete (RC) structures. To achieve this objective, this work has been devoted to optimizing the structural design of 3D RC frame buildings which integrates, for the first time, the Algerian regulations. Three different test examples were investigated to assess the efficiency of our work in optimizing RC frame buildings. The hybrid GWOPSO algorithm is used, and 30000 generations are made. The cost of the building is reduced by iteration each time. Concrete and reinforcement bars are used in the building cost. As a result, the cost of a reinforced concrete structure is reduced by 30% compared with the initial design. This result means that the 3D cost-design optimization of the framed structure is successfully achieved.

Keywords: optimization, automation, API, Malab, RC structures

Procedia PDF Downloads 49
1293 The Effectiveness of a Hybrid Diffie-Hellman-RSA-Advanced Encryption Standard Model

Authors: Abdellahi Cheikh

Abstract:

With the emergence of quantum computers with very powerful capabilities, the security of the exchange of shared keys between two interlocutors poses a big problem in terms of the rapid development of technologies such as computing power and computing speed. Therefore, the Diffie-Hellmann (DH) algorithm is more vulnerable than ever. No mechanism guarantees the security of the key exchange, so if an intermediary manages to intercept it, it is easy to intercept. In this regard, several studies have been conducted to improve the security of key exchange between two interlocutors, which has led to interesting results. The modification made on our model Diffie-Hellman-RSA-AES (DRA), which encrypts the information exchanged between two users using the three-encryption algorithms DH, RSA and AES, by using stenographic photos to hide the contents of the p, g and ClesAES values that are sent in an unencrypted state at the level of DRA model to calculate each user's public key. This work includes a comparative study between the DRA model and all existing solutions, as well as the modification made to this model, with an emphasis on the aspect of reliability in terms of security. This study presents a simulation to demonstrate the effectiveness of the modification made to the DRA model. The obtained results show that our model has a security advantage over the existing solution, so we made these changes to reinforce the security of the DRA model.

Keywords: Diffie-Hellmann, DRA, RSA, advanced encryption standard

Procedia PDF Downloads 94
1292 Sustainable Valorization of Wine Production Waste: Unlocking the Potential of Grape Pomace and Lees in the Vinho Verde Region

Authors: Zlatina Genisheva, Pedro Ferreira-Santos, Margarida Soares, Cândida Vilarinho, Joana Carvalho

Abstract:

The wine industry produces significant quantities of waste, much of which remains underutilized as a potential raw material. Typically, this waste is either discarded in the fields or incinerated, leading to environmental concerns. By-products of wine production, like lees and grape pomace, are readily available at relatively low costs and hold promise as raw materials for biochemical conversion into valuable products. Reusing these waste materials is crucial, not only for reducing environmental impact but also for enhancing profitability. The Vinhos Verdes demarcated region, the largest wine-producing area in Portugal, has remained relatively stagnant over time. This project aims to offer an alternative income source for producers in the region while also expanding the limited existing research on this area. The main objective of this project is the study of the sustainable valorization of grape pomace and lees from the production of DOC Vinho Verde. Extraction tests were performed to obtain high-value compounds, targeting phenolic compounds from grape pomace and protein-rich extracts from lees. An environmentally friendly technique, microwave extraction, was used for this process. This method is not only efficient but also aligns with the principles of green chemistry, reducing the use of harmful solvents and minimizing energy consumption. The findings from this study have the potential to open new revenue streams for the region’s wine producers while promoting environmental sustainability. The optimal conditions for extracting proteins from lees involve the use of NaOH at 150ºC. Regardless of the solvent employed, the ideal temperature for obtaining extracts rich in polyphenol compounds and exhibiting strong antioxidant activity is also 150ºC. For grape pomace, extracts with a high concentration of polyphenols and significant antioxidant properties were obtained at 210ºC. However, the highest total tannin concentrations were achieved at 150ºC, while the maximum total flavonoid content was obtained at 170ºC.

Keywords: antioxidants, circular economy, polyphenol compounds, waste valorization

Procedia PDF Downloads 21
1291 Parameter Tuning of Complex Systems Modeled in Agent Based Modeling and Simulation

Authors: Rabia Korkmaz Tan, Şebnem Bora

Abstract:

The major problem encountered when modeling complex systems with agent-based modeling and simulation techniques is the existence of large parameter spaces. A complex system model cannot be expected to reflect the whole of the real system, but by specifying the most appropriate parameters, the actual system can be represented by the model under certain conditions. When the studies conducted in recent years were reviewed, it has been observed that there are few studies for parameter tuning problem in agent based simulations, and these studies have focused on tuning parameters of a single model. In this study, an approach of parameter tuning is proposed by using metaheuristic algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Artificial Bee Colonies (ABC), Firefly (FA) algorithms. With this hybrid structured study, the parameter tuning problems of the models in the different fields were solved. The new approach offered was tested in two different models, and its achievements in different problems were compared. The simulations and the results reveal that this proposed study is better than the existing parameter tuning studies.

Keywords: parameter tuning, agent based modeling and simulation, metaheuristic algorithms, complex systems

Procedia PDF Downloads 229
1290 Application and Assessment of Artificial Neural Networks for Biodiesel Iodine Value Prediction

Authors: Raquel M. De sousa, Sofiane Labidi, Allan Kardec D. Barros, Alex O. Barradas Filho, Aldalea L. B. Marques

Abstract:

Several parameters are established in order to measure biodiesel quality. One of them is the iodine value, which is an important parameter that measures the total unsaturation within a mixture of fatty acids. Limitation of unsaturated fatty acids is necessary since warming of a higher quantity of these ones ends in either formation of deposits inside the motor or damage of lubricant. Determination of iodine value by official procedure tends to be very laborious, with high costs and toxicity of the reagents, this study uses an artificial neural network (ANN) in order to predict the iodine value property as an alternative to these problems. The methodology of development of networks used 13 esters of fatty acids in the input with convergence algorithms of backpropagation type were optimized in order to get an architecture of prediction of iodine value. This study allowed us to demonstrate the neural networks’ ability to learn the correlation between biodiesel quality properties, in this case iodine value, and the molecular structures that make it up. The model developed in the study reached a correlation coefficient (R) of 0.99 for both network validation and network simulation, with Levenberg-Maquardt algorithm.

Keywords: artificial neural networks, biodiesel, iodine value, prediction

Procedia PDF Downloads 608
1289 Cash Flow Optimization on Synthetic CDOs

Authors: Timothée Bligny, Clément Codron, Antoine Estruch, Nicolas Girodet, Clément Ginet

Abstract:

Collateralized Debt Obligations are not as widely used nowadays as they were before 2007 Subprime crisis. Nonetheless there remains an enthralling challenge to optimize cash flows associated with synthetic CDOs. A Gaussian-based model is used here in which default correlation and unconditional probabilities of default are highlighted. Then numerous simulations are performed based on this model for different scenarios in order to evaluate the associated cash flows given a specific number of defaults at different periods of time. Cash flows are not solely calculated on a single bought or sold tranche but rather on a combination of bought and sold tranches. With some assumptions, the simplex algorithm gives a way to find the maximum cash flow according to correlation of defaults and maturities. The used Gaussian model is not realistic in crisis situations. Besides present system does not handle buying or selling a portion of a tranche but only the whole tranche. However the work provides the investor with relevant elements on how to know what and when to buy and sell.

Keywords: synthetic collateralized debt obligation (CDO), credit default swap (CDS), cash flow optimization, probability of default, default correlation, strategies, simulation, simplex

Procedia PDF Downloads 276
1288 An Efficient Encryption Scheme Using DWT and Arnold Transforms

Authors: Ali Abdrhman M. Ukasha

Abstract:

Data security needed in data transmission, storage, and communication to ensure the security. The color image is decomposed into red, green, and blue channels. The blue and green channels are compressed using 3-levels discrete wavelet transform. The Arnold transform uses to changes the locations of red image channel pixels as image scrambling process. Then all these channels are encrypted separately using a key image that has same original size and is generating using private keys and modulo operations. Performing the X-OR and modulo operations between the encrypted channels images for image pixel values change purpose. The extracted contours of color image recovery can be obtained with accepted level of distortion using Canny edge detector. Experiments have demonstrated that proposed algorithm can fully encrypt 2D color image and completely reconstructed without any distortion. It has shown that the color image can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services.

Keywords: color image, wavelet transform, edge detector, Arnold transform, lossy image encryption

Procedia PDF Downloads 487
1287 An Evaluation and Guidance for mHealth Apps

Authors: Tareq Aljaber

Abstract:

The number of mobile health apps is growing at a fast frequency as it's nearly doubled in a year between 2015 and 2016. Though, there is a lack of an effective evaluation framework to verify the usability and reliability of mobile phone health education applications which would help saving time and effort for the numerous user groups. This abstract describing a framework for evaluating mobile applications in specifically mobile health education applications, along with a guidance select tool to assist different users to select the most suitable mobile health education apps. The effective framework outcome is intended to meet the requirements and needs of the different stakeholder groups additionally to enhancing the development of mobile health education applications with software engineering approaches, by producing new and more effective techniques to evaluate such software. This abstract highlights the significance and consequences of mobile health education apps, before focusing the light on the required to create an effective evaluation framework for these apps. An explanation of the effective evaluation framework is going to be delivered in the abstract, beside with some specific evaluation metrics: an efficient hybrid of selected heuristic evaluation (HE) and usability evaluation (UE) metrics to enable the determination of the usefulness and usability of health education mobile apps. Moreover, an explanation of the qualitative and quantitative outcomes for the effective evaluation framework was accomplished using Epocrates mobile phone app in addition to some other mobile phone apps. This proposed framework-An Evaluation Framework for Mobile Health Education Apps-consists of a hybrid of 5 metrics designated from a larger set in usability evaluation and heuristic evaluation, illuminated grounded on 15 unstructured interviews from software developers (SD), health professionals (HP) and patients (P). These five metrics corresponding to explicit facets of usability recognised through a requirements analysis of typical stakeholders of mobile health apps. These five hybrid selected metrics were scattered across 24 specific questionnaire questions, which are available on request from first author. This questionnaire has been sent to 81 participants distributed in three sets of stakeholders from software developers (SD), health professionals (HP) and patients/general users (P/GU) on the purpose of ranking three sets of mobile health education applications. Finally, the outcomes from the questionnaire data helped us to approach our aims which are finding the profile for different stakeholders, finding the profile for different mobile health educations application packages, ranking different mobile health education application and guide us to build the select guidance too which is apart from the Evaluation Framework for Mobile Health Education Apps.

Keywords: evaluation framework, heuristic evaluation, usability evaluation, metrics

Procedia PDF Downloads 404
1286 Progressive Multimedia Collection Structuring via Scene Linking

Authors: Aman Berhe, Camille Guinaudeau, Claude Barras

Abstract:

In order to facilitate information seeking in large collections of multimedia documents with long and progressive content (such as broadcast news or TV series), one can extract the semantic links that exist between semantically coherent parts of documents, i.e., scenes. The links can then create a coherent collection of scenes from which it is easier to perform content analysis, topic extraction, or information retrieval. In this paper, we focus on TV series structuring and propose two approaches for scene linking at different levels of granularity (episode and season): a fuzzy online clustering technique and a graph-based community detection algorithm. When evaluated on the two first seasons of the TV series Game of Thrones, we found that the fuzzy online clustering approach performed better compared to graph-based community detection at the episode level, while graph-based approaches show better performance at the season level.

Keywords: multimedia collection structuring, progressive content, scene linking, fuzzy clustering, community detection

Procedia PDF Downloads 101
1285 Generating 3D Battery Cathode Microstructures using Gaussian Mixture Models and Pix2Pix

Authors: Wesley Teskey, Vedran Glavas, Julian Wegener

Abstract:

Generating battery cathode microstructures is an important area of research, given the proliferation of the use of automotive batteries. Currently, finite element analysis (FEA) is often used for simulations of battery cathode microstructures before physical batteries can be manufactured and tested to verify the simulation results. Unfortunately, a key drawback of using FEA is that this method of simulation is very slow in terms of computational runtime. Generative AI offers the key advantage of speed when compared to FEA, and because of this, generative AI is capable of evaluating very large numbers of candidate microstructures. Given AI generated candidate microstructures, a subset of the promising microstructures can be selected for further validation using FEA. Leveraging the speed advantage of AI allows for a better final microstructural selection because high speed allows for the evaluation of many more candidate microstructures. For the approach presented, battery cathode 3D candidate microstructures are generated using Gaussian Mixture Models (GMMs) and pix2pix. This approach first uses GMMs to generate a population of spheres (representing the “active material” of the cathode). Once spheres have been sampled from the GMM, they are placed within a microstructure. Subsequently, the pix2pix sweeps over the 3D microstructure (iteratively) slice by slice and adds details to the microstructure to determine what portions of the microstructure will become electrolyte and what part of the microstructure will become binder. In this manner, each subsequent slice of the microstructure is evaluated using pix2pix, where the inputs into pix2pix are the previously processed layers of the microstructure. By feeding into pix2pix previously fully processed layers of the microstructure, pix2pix can be used to ensure candidate microstructures represent a realistic physical reality. More specifically, in order for the microstructure to represent a realistic physical reality, the locations of electrolyte and binder in each layer of the microstructure must reasonably match the locations of electrolyte and binder in previous layers to ensure geometric continuity. Using the above outlined approach, a 10x to 100x speed increase was possible when generating candidate microstructures using AI when compared to using a FEA only approach for this task. A key metric for evaluating microstructures was the battery specific power value that the microstructures would be able to produce. The best generative AI result obtained was a 12% increase in specific power for a candidate microstructure when compared to what a FEA only approach was capable of producing. This 12% increase in specific power was verified by FEA simulation.

Keywords: finite element analysis, gaussian mixture models, generative design, Pix2Pix, structural design

Procedia PDF Downloads 109
1284 Novel Adomet Analogs as Tools for Nucleic Acids Labeling

Authors: Milda Nainyte, Viktoras Masevicius

Abstract:

Biological methylation is a methyl group transfer from S-adenosyl-L-methionine (AdoMet) onto N-, C-, O- or S-nucleophiles in DNA, RNA, proteins or small biomolecules. The reaction is catalyzed by enzymes called AdoMet-dependent methyltransferases (MTases), which represent more than 3 % of the proteins in the cell. As a general mechanism, the methyl group from AdoMet replaces a hydrogen atom of nucleophilic center producing methylated DNA and S-adenosyl-L-homocysteine (AdoHcy). Recently, DNA methyltransferases have been used for the sequence-specific, covalent labeling of biopolymers. Two types of MTase catalyzed labeling of biopolymers are known, referred as two-step and one-step. During two-step labeling, an alkylating fragment is transferred onto DNA in a sequence-specific manner and then the reporter group, such as biotin, is attached for selective visualization using suitable chemistries of coupling. This approach of labeling is quite difficult and the chemical hitching does not always proceed at 100 %, but in the second step the variety of reporter groups can be selected and that gives the flexibility for this labeling method. In the one-step labeling, AdoMet analog is designed with the reporter group already attached to the functional group. Thus, the one-step labeling method would be more comfortable tool for labeling of biopolymers in order to prevent additional chemical reactions and selection of reaction conditions. Also, time costs would be reduced. However, effective AdoMet analog appropriate for one-step labeling of biopolymers and containing cleavable bond, required for reduction of PCR interferation, is still not known. To expand the practical utility of this important enzymatic reaction, cofactors with activated sulfonium-bound side-chains have been produced and can serve as surrogate cofactors for a variety of wild-type and mutant DNA and RNA MTases enabling covalent attachment of these chains to their target sites in DNA, RNA or proteins (the approach named methyltransferase-directed Transfer of Activated Groups, mTAG). Compounds containing hex-2-yn-1-yl moiety has proved to be efficient alkylating agents for labeling of DNA. Herein we describe synthetic procedures for the preparation of N-biotinoyl-N’-(pent-4-ynoyl)cystamine starting from the coupling of cystamine with pentynoic acid and finally attaching the biotin as a reporter group. The synthesis of the first AdoMet based cofactor containing a cleavable reporter group and appropriate for one-step labeling was developed.

Keywords: adoMet analogs, DNA alkylation, cofactor, methyltransferases

Procedia PDF Downloads 195
1283 A Neuron Model of Facial Recognition and Detection of an Authorized Entity Using Machine Learning System

Authors: J. K. Adedeji, M. O. Oyekanmi

Abstract:

This paper has critically examined the use of Machine Learning procedures in curbing unauthorized access into valuable areas of an organization. The use of passwords, pin codes, user’s identification in recent times has been partially successful in curbing crimes involving identities, hence the need for the design of a system which incorporates biometric characteristics such as DNA and pattern recognition of variations in facial expressions. The facial model used is the OpenCV library which is based on the use of certain physiological features, the Raspberry Pi 3 module is used to compile the OpenCV library, which extracts and stores the detected faces into the datasets directory through the use of camera. The model is trained with 50 epoch run in the database and recognized by the Local Binary Pattern Histogram (LBPH) recognizer contained in the OpenCV. The training algorithm used by the neural network is back propagation coded using python algorithmic language with 200 epoch runs to identify specific resemblance in the exclusive OR (XOR) output neurons. The research however confirmed that physiological parameters are better effective measures to curb crimes relating to identities.

Keywords: biometric characters, facial recognition, neural network, OpenCV

Procedia PDF Downloads 258
1282 Fuzzy-Machine Learning Models for the Prediction of Fire Outbreak: A Comparative Analysis

Authors: Uduak Umoh, Imo Eyoh, Emmauel Nyoho

Abstract:

This paper compares fuzzy-machine learning algorithms such as Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) for the predicting cases of fire outbreak. The paper uses the fire outbreak dataset with three features (Temperature, Smoke, and Flame). The data is pre-processed using Interval Type-2 Fuzzy Logic (IT2FL) algorithm. Min-Max Normalization and Principal Component Analysis (PCA) are used to predict feature labels in the dataset, normalize the dataset, and select relevant features respectively. The output of the pre-processing is a dataset with two principal components (PC1 and PC2). The pre-processed dataset is then used in the training of the aforementioned machine learning models. K-fold (with K=10) cross-validation method is used to evaluate the performance of the models using the matrices – ROC (Receiver Operating Curve), Specificity, and Sensitivity. The model is also tested with 20% of the dataset. The validation result shows KNN is the better model for fire outbreak detection with an ROC value of 0.99878, followed by SVM with an ROC value of 0.99753.

Keywords: Machine Learning Algorithms , Interval Type-2 Fuzzy Logic, Fire Outbreak, Support Vector Machine, K-Nearest Neighbour, Principal Component Analysis

Procedia PDF Downloads 185
1281 Predictive Modelling Approach to Identify Spare Parts Inventory Obsolescence

Authors: Madhu Babu Cherukuri, Tamoghna Ghosh

Abstract:

Factory supply chain management spends billions of dollars every year to procure and manage equipment spare parts. Due to technology -and processes changes some of these spares become obsolete/dead inventory. Factories have huge dead inventory worth millions of dollars accumulating over time. This is due to lack of a scientific methodology to identify them and send the inventory back to the suppliers on a timely basis. The standard approach followed across industries to deal with this is: if a part is not used for a set pre-defined period of time it is declared dead. This leads to accumulation of dead parts over time and these parts cannot be sold back to the suppliers as it is too late as per contract agreement. Our main idea is the time period for identifying a part as dead cannot be a fixed pre-defined duration across all parts. Rather, it should depend on various properties of the part like historical consumption pattern, type of part, how many machines it is being used in, whether it- is a preventive maintenance part etc. We have designed a predictive algorithm which predicts part obsolescence well in advance with reasonable accuracy and which can help save millions.

Keywords: obsolete inventory, machine learning, big data, supply chain analytics, dead inventory

Procedia PDF Downloads 319
1280 Antioxidative, Anticholinesterase and Anti-Neuroinflammatory Properties of Malaysian Brown and Green Seaweeds

Authors: Siti Aisya Gany, Swee Ching Tan, Sook Yee Gan

Abstract:

Diminished antioxidant defense or increased production of reactive oxygen species in the biological system can result in oxidative stress which may lead to various neurodegenerative diseases including Alzheimer’s disease (AD). Microglial activation also contributes to the progression of AD by producing several pro-inflammatory cytokines, nitric oxide (NO), and prostaglandin E2 (PGE2). Oxidative stress and inflammation have been reported to be possible pathophysiological mechanisms underlying AD. In addition, the cholinergic hypothesis postulates that memory impairment in patient with AD is also associated with the deficit of cholinergic function in the brain. Although a number of drugs have been approved for the treatment of AD, most of these synthetic drugs have diverse side effects and yield relatively modest benefits. Marine algae have great potential in pharmaceutical and biomedical applications as they are valuable sources of bioactive properties such as anti-coagulation, anti-microbial, anti-oxidative, anti-cancer and anti-inflammatory. Hence, this study aimed to provide an overview of the properties of Malaysian seaweeds (Padina australis, Sargassum polycystum and Caulerpa racemosa) in inhibiting oxidative stress, neuroinflammation and cholinesterase enzymes. All tested samples significantly exhibit potent DPPH and moderate Superoxide anion radical scavenging ability (P<0.05). Hexane and methanol extracts of S. polycystum exhibited the most potent radical scavenging ability with IC50 values of 0.1572 ± 0.004 mg/ml and 0.8493 ± 0.02 for DPPH and ABTS assays, respectively. Hexane extract of C. racemosa gave the strongest superoxide radical inhibitory effect (IC50 of 0.3862± 0.01 mg/ml). Most seaweed extracts significantly inhibited the production of cytokine (IL-6, IL-1 β, TNFα) and NO in a concentration-dependent manner without causing significant cytotoxicity to the lipopolysaccharide (LPS)-stimulated microglia cells (P<0.05). All extracts suppressed cytokine and NO level by more than 80% at the concentration of 0.4mg/ml. In addition, C. racemosa and S. polycystum also showed anti-acetylcholinesterase activities with the IC50 values ranging from 0.086-0.115 mg/ml. Moreover, C. racemosa and P. australis were also found to be active against butyrylcholinesterase with IC50 values ranging from 0.118-0.287 mg/ml.

Keywords: anti-cholinesterase, anti-oxidative, neuroinflammation, seaweeds

Procedia PDF Downloads 663
1279 Open Source, Open Hardware Ground Truth for Visual Odometry and Simultaneous Localization and Mapping Applications

Authors: Janusz Bedkowski, Grzegorz Kisala, Michal Wlasiuk, Piotr Pokorski

Abstract:

Ground-truth data is essential for VO (Visual Odometry) and SLAM (Simultaneous Localization and Mapping) quantitative evaluation using e.g. ATE (Absolute Trajectory Error) and RPE (Relative Pose Error). Many open-access data sets provide raw and ground-truth data for benchmark purposes. The issue appears when one would like to validate Visual Odometry and/or SLAM approaches on data captured using the device for which the algorithm is targeted for example mobile phone and disseminate data for other researchers. For this reason, we propose an open source, open hardware groundtruth system that provides an accurate and precise trajectory with a 3D point cloud. It is based on LiDAR Livox Mid-360 with a non-repetitive scanning pattern, on-board Raspberry Pi 4B computer, battery and software for off-line calculations (camera to LiDAR calibration, LiDAR odometry, SLAM, georeferencing). We show how this system can be used for the evaluation of various the state of the art algorithms (Stella SLAM, ORB SLAM3, DSO) in typical indoor monocular VO/SLAM.

Keywords: SLAM, ground truth, navigation, LiDAR, visual odometry, mapping

Procedia PDF Downloads 76
1278 Development and Compositional Analysis of Functional Bread and Biscuit from Soybean, Peas and Rice Flour

Authors: Jean Paul Hategekimana, Bampire Claudine, Niyonsenga Nadia, Irakoze Josiane

Abstract:

Peas, soybeans and rice are crops which are grown in Rwanda and are available in rural and urban local markets and they give contribution in reduction of health problems especially in fighting malnutrition and food insecurity in Rwanda. Several research activities have been conducted on how cereals flour can be mixed with legumes flour for developing baked products which are rich in protein, fiber, minerals as they are found in legumes. However, such activity was not yet well studied in Rwanda. The aim of the present study was to develop bread and biscuit products from peas, soybeans and rice as functional ingredients combined with wheat flour and then analyze the nutritional content and consumer acceptability of new developed products. The malnutrition problem can be reduced by producing bread and biscuits which are rich in protein and are very accessible for every individual. The processing of bread and biscuit were made by taking peas flour, soybeans flour and rice flour mixed with wheat flour and other ingredients then a dough was made followed by baking. For bread, two kind of products were processed, for each product one control and three experimental samples in different three ratios of peas and rice were prepared. These ratios were 95:5, 90:10 and 80:20 for bread from peas and 85:5:10, 80:10:10 and 70:10:20 for bread from peas and rice. For biscuit, two kind of products were also processed, for each product one control sample and three experimental samples in three different ratios were prepared. These ratios are 90:5:5,80:10:10 and 70:10:20 for biscuit from peas and rice and 90:5:5,80:10:10 and 70:10:20 for biscuit from soybean and rice. All samples including the control sample were analyzed for the consumer acceptability (sensory attributes) and nutritional composition. For sensory analysis, bread from of peas and rice flour with wheat flour at ratio 85:5:10 and bread from peas only as functional ingredient with wheat flour at ratio 95:5 and biscuits made from a of soybeans and rice at a ratio 90:5:5 and biscuit made from peas and rice at ratio 90:5:5 were most acceptable compared to control sample and other samples in different ratio. The moisture, protein, fat, fiber and minerals (Sodium and iron.) content were analyzed where bread from peas in all ratios was found to be rich in protein and fiber compare to control sample and biscuit from soybean and rice in all ratios was found to be rich in protein and fiber compare to control sample.

Keywords: bakery products, peas and rice flour, wheat flour, sensory evaluation, proximate composition

Procedia PDF Downloads 64
1277 Transformation in Palliative Care Delivery in Surgery

Authors: W. L. Tsang, H. Y. Li, S. L. Wong, T. Y. Kwok, S. C. Yuen, S. S. Kwok, P. S. Ko, S. Y. Lau

Abstract:

Introduction: Palliative care is no doubt necessary in surgery. When one looks at studies of what patients with life-threatening illness want and compares to what they experience in surgical units, the gap is huge. Surgical nurses, being patient advocates, should engage with patients and families sooner rather than later in their illness trajectories to consider how to manage the illness, not just their capacity to survive. Objective: This clinical practice guide aims to fill the service gap of palliative care in surgery by producing a quality-driven, evidence-based yet straightforward clinical practice guide based on a focus strategy. Methodology: In line with Guide to Good Nursing Practice: End-of-Life Care recommended by Nursing Council of Hong Kong and the strategic goal of improving quality of palliative care proposed in HA Strategic Plan 2017-2022, multiple phases of work were undertaken from July 2015 to December 2017. A pragmatic clinical practice guide for surgical patients facing life-threatening conditions was developed based on assessments on knowledge of and attitudes towards end-of-life care of surgical nurses. Key domains, including preparation for bereavement, nursing care for imminently dying patients and at the dying scene were crystallized according to the results of the assessments and the palliative care checklist formulated by UCH Palliative Care Team. After a year of rollout, its content was refined through analyses of implementation in routine practice and consensus opinions from frontline nurses. Results and Outcomes: This clinical practice guide inspires surgical nurses with the art of care to provide for patients’ comfort, function, and longevity. It provides practical directions and assists nurses to master the skills on advance care planning and learn how to be clear with patients, families and themselves about the realities of the disease pictures. Through the implementation, patients and families are included in the decision process, and their wishes are honored. The delivery of explicit and high-quality palliative care maintains good nurse-to-patient relations and enhances satisfaction of hospital care of patients and families. Conclusion: Surgical nursing has always been up to the unique challenges of the era. This clinical practice guide has become an island of credibility for our nurses as they traverse the often stormy waters of life-limiting illness.

Keywords: palliative care delivery, palliative care in surgery, hospice care, end-of-life care

Procedia PDF Downloads 257
1276 Production, Characterisation and Assessment of Biomixture Fuels for Compression Ignition Engine Application

Authors: K. Masera, A. K. Hossain

Abstract:

Hardly any neat biodiesel satisfies the European EN14214 standard for compression ignition engine application. To satisfy the EN14214 standard, various additives are doped into biodiesel; however, biodiesel additives might cause other problems such as increase in the particular emission and increased specific fuel consumption. In addition, the additives could be expensive. Considering the increasing level of greenhouse gas GHG emissions and fossil fuel depletion, it is forecasted that the use of biodiesel will be higher in the near future. Hence, the negative aspects of the biodiesel additives will likely to gain much more importance and need to be replaced with better solutions. This study aims to satisfy the European standard EN14214 by blending the biodiesels derived from sustainable feedstocks. Waste Cooking Oil (WCO) and Animal Fat Oil (AFO) are two sustainable feedstocks in the EU (including the UK) for producing biodiesels. In the first stage of the study, these oils were transesterified separately and neat biodiesels (W100 & A100) were produced. Secondly, the biodiesels were blended together in various ratios: 80% WCO biodiesel and 20% AFO biodiesel (W80A20), 60% WCO biodiesel and 40% AFO biodiesel (W60A40), 50% WCO biodiesel and 50% AFO biodiesel (W50A50), 30% WCO biodiesel and 70% AFO biodiesel (W30A70), 10% WCO biodiesel and 90% AFO biodiesel (W10A90). The prepared samples were analysed using Thermo Scientific Trace 1300 Gas Chromatograph and ISQ LT Mass Spectrometer (GC-MS). The GS-MS analysis gave Fatty Acid Methyl Ester (FAME) breakdowns of the fuel samples. It was found that total saturation degree of the samples was linearly increasing (from 15% for W100 to 54% for A100) as the percentage of the AFO biodiesel was increased. Furthermore, it was found that WCO biodiesel was mainly (82%) composed of polyunsaturated FAMEs. Cetane numbers, iodine numbers, calorific values, lower heating values and the densities (at 15 oC) of the samples were estimated by using the mass percentages data of the FAMEs. Besides, kinematic viscosities (at 40 °C and 20 °C), densities (at 15 °C), heating values and flash point temperatures of the biomixture samples were measured in the lab. It was found that estimated and measured characterisation results were comparable. The current study concluded that biomixture fuel samples W60A40 and W50A50 were perfectly satisfying the European EN 14214 norms without any need of additives. Investigation on engine performance, exhaust emission and combustion characteristics will be conducted to assess the full feasibility of the proposed biomixture fuels.

Keywords: biodiesel, blending, characterisation, CI engine

Procedia PDF Downloads 166
1275 Hybrid Fermentation System for Improvement of Ergosterol Biosynthesis

Authors: Alexandra Tucaliuc, Alexandra C. Blaga, Anca I. Galaction, Lenuta Kloetzer, Dan Cascaval

Abstract:

Ergosterol (ergosta-5,7,22-trien-3β-ol), also known as provitamin D2, is the precursor of vitamin D2 (ergocalciferol), because it is converted under UV radiation to this vitamin. The natural sources of ergosterol are mainly the yeasts (Saccharomyces sp., Candida sp.), but it can be also found in fungus (Claviceps sp.) or plants (orchids). In the yeasts cells, ergosterol is accumulated in membranes, especially in free form in the plasma membrane, but also as esters with fatty acids in membrane lipids. The chemical synthesis of ergosterol does not represent an efficient method for its production, in these circumstances, the most attractive alternative for producing ergosterol at larger-scale remains the aerobic fermentation using S. cerevisiae on glucose or by-products from agriculture of food industry as substrates, in batch or fed-batch operating systems. The aim of this work is to analyze comparatively the influence of aeration efficiency on ergosterol production by S. cerevisiae in batch and fed-batch fermentations, by considering different levels of mixing intensity, aeration rate, and n-dodecane concentration. The effects of the studied factors are quantitatively described by means of the mathematical correlations proposed for each of the two fermentation systems, valid both for the absence and presence of oxygen-vector inside the broth. The experiments were carried out in a laboratory stirred bioreactor, provided with computer-controlled and recorded parameters. n-Dodecane was used as oxygen-vector and the ergosterol content inside the yeasts cells has been considered at the fermentation moment related to the maximum concentration of ergosterol, 9 hrs for batch process and 20 hrs for fed-batch one. Ergosterol biosynthesis is strongly dependent on the dissolved oxygen concentration. The hydrocarbon concentration exhibits a significant influence on ergosterol production mainly by accelerating the oxygen transfer rate. Regardless of n-dodecane addition, by maintaining the glucose concentration at a constant level in the fed-batch process, the amount of ergosterol accumulated into the yeasts cells has been almost tripled. In the presence of hydrocarbon, the ergosterol concentration increased by over 50%. The value of oxygen-vector concentration corresponding to the maximum level of ergosterol depends mainly on biomass concentration, due to its negative influences on broth viscosity and interfacial phenomena of air bubbles blockage through the adsorption of hydrocarbon droplets–yeast cells associations. Therefore, for the batch process, the maximum ergosterol amount was reached for 5% vol. n-dodecane, while for the fed-batch process for 10% vol. hydrocarbon.

Keywords: bioreactors, ergosterol, fermentation, oxygen-vector

Procedia PDF Downloads 190
1274 Implementation of Edge Detection Based on Autofluorescence Endoscopic Image of Field Programmable Gate Array

Authors: Hao Cheng, Zhiwu Wang, Guozheng Yan, Pingping Jiang, Shijia Qin, Shuai Kuang

Abstract:

Autofluorescence Imaging (AFI) is a technology for detecting early carcinogenesis of the gastrointestinal tract in recent years. Compared with traditional white light endoscopy (WLE), this technology greatly improves the detection accuracy of early carcinogenesis, because the colors of normal tissues are different from cancerous tissues. Thus, edge detection can distinguish them in grayscale images. In this paper, based on the traditional Sobel edge detection method, optimization has been performed on this method which considers the environment of the gastrointestinal, including adaptive threshold and morphological processing. All of the processes are implemented on our self-designed system based on the image sensor OV6930 and Field Programmable Gate Array (FPGA), The system can capture the gastrointestinal image taken by the lens in real time and detect edges. The final experiments verified the feasibility of our system and the effectiveness and accuracy of the edge detection algorithm.

Keywords: AFI, edge detection, adaptive threshold, morphological processing, OV6930, FPGA

Procedia PDF Downloads 230
1273 Output-Feedback Control Design for a General Class of Systems Subject to Sampling and Uncertainties

Authors: Tomas Menard

Abstract:

The synthesis of output-feedback control law has been investigated by many researchers since the last century. While many results exist for the case of Linear Time Invariant systems whose measurements are continuously available, nowadays, control laws are usually implemented on micro-controller, then the measurements are discrete-time by nature. This fact has to be taken into account explicitly in order to obtain a satisfactory behavior of the closed-loop system. One considers here a general class of systems corresponding to an observability normal form and which is subject to uncertainties in the dynamics and sampling of the output. Indeed, in practice, the modeling of the system is never perfect, this results in unknown uncertainties in the dynamics of the model. We propose here an output feedback algorithm which is based on a linear state feedback and a continuous-discrete time observer. The main feature of the proposed control law is that only discrete-time measurements of the output are needed. Furthermore, it is formally proven that the state of the closed loop system exponentially converges toward the origin despite the unknown uncertainties. Finally, the performances of this control scheme are illustrated with simulations.

Keywords: dynamical systems, output feedback control law, sampling, uncertain systems

Procedia PDF Downloads 286
1272 A Comparison of Methods for Neural Network Aggregation

Authors: John Pomerat, Aviv Segev

Abstract:

Recently, deep learning has had many theoretical breakthroughs. For deep learning to be successful in the industry, however, there need to be practical algorithms capable of handling many real-world hiccups preventing the immediate application of a learning algorithm. Although AI promises to revolutionize the healthcare industry, getting access to patient data in order to train learning algorithms has not been easy. One proposed solution to this is data- sharing. In this paper, we propose an alternative protocol, based on multi-party computation, to train deep learning models while maintaining both the privacy and security of training data. We examine three methods of training neural networks in this way: Transfer learning, average ensemble learning, and series network learning. We compare these methods to the equivalent model obtained through data-sharing across two different experiments. Additionally, we address the security concerns of this protocol. While the motivating example is healthcare, our findings regarding multi-party computation of neural network training are purely theoretical and have use-cases outside the domain of healthcare.

Keywords: neural network aggregation, multi-party computation, transfer learning, average ensemble learning

Procedia PDF Downloads 163