Search results for: Network Time Protocol
18699 Criminal Law and Internet of Things: Challenges and Threats
Authors: Celina Nowak
Abstract:
The development of information and communication technologies (ICT) and a consequent growth of cyberspace have become a reality of modern societies. The newest addition to this complex structure has been Internet of Things which is due to the appearance of smart devices. IoT creates a new dimension of the network, as the communication is no longer the domain of just humans, but has also become possible between devices themselves. The possibility of communication between devices, devoid of human intervention and real-time supervision, generated new societal and legal challenges. Some of them may and certainly will eventually be connected to criminal law. Legislators both on national and international level have been struggling to cope with this technologically evolving environment in order to address new threats created by the ICT. There are legal instruments on cybercrime, however imperfect and not of universal scope, sometimes referring to specific types of prohibited behaviors undertaken by criminals, such as money laundering, sex offences. However, the criminal law seems largely not prepared to the challenges which may arise because of the development of IoT. This is largely due to the fact that criminal law, both on national and international level, is still based on the concept of perpetration of an offence by a human being. This is a traditional approach, historically and factually justified. Over time, some legal systems have developed or accepted the possibility of commission of an offence by a corporation, a legal person. This is in fact a legal fiction, as a legal person cannot commit an offence as such, it needs humans to actually behave in a certain way on its behalf. Yet, the legislators have come to understand that corporations have their own interests and may benefit from crime – and therefore need to be penalized. This realization however has not been welcome by all states and still give rise to doubts of ontological and theoretical nature in many legal systems. For this reason, in many legislations the liability of legal persons for commission of an offence has not been recognized as criminal responsibility. With the technological progress and the growing use of IoT the discussions referring to criminal responsibility of corporations seem rather inadequate. The world is now facing new challenges and new threats related to the ‘smart’ things. They will have to be eventually addressed by legislators if they want to, as they should, to keep up with the pace of technological and societal evolution. This will however require a reevaluation and possibly restructuring of the most fundamental notions of modern criminal law, such as perpetration, guilt, participation in crime. It remains unclear at this point what norms and legal concepts will be and may be established. The main goal of the research is to point out to the challenges ahead of the national and international legislators in the said context and to attempt to formulate some indications as to the directions of changes, having in mind serious threats related to privacy and security related to the use of IoT.Keywords: criminal law, internet of things, privacy, security threats
Procedia PDF Downloads 16718698 Quantification of Magnetic Resonance Elastography for Tissue Shear Modulus using U-Net Trained with Finite-Differential Time-Domain Simulation
Authors: Jiaying Zhang, Xin Mu, Chang Ni, Jeff L. Zhang
Abstract:
Magnetic resonance elastography (MRE) non-invasively assesses tissue elastic properties, such as shear modulus, by measuring tissue’s displacement in response to mechanical waves. The estimated metrics on tissue elasticity or stiffness have been shown to be valuable for monitoring physiologic or pathophysiologic status of tissue, such as a tumor or fatty liver. To quantify tissue shear modulus from MRE-acquired displacements (essentially an inverse problem), multiple approaches have been proposed, including Local Frequency Estimation (LFE) and Direct Inversion (DI). However, one common problem with these methods is that the estimates are severely noise-sensitive due to either the inverse-problem nature or noise propagation in the pixel-by-pixel process. With the advent of deep learning (DL) and its promise in solving inverse problems, a few groups in the field of MRE have explored the feasibility of using DL methods for quantifying shear modulus from MRE data. Most of the groups chose to use real MRE data for DL model training and to cut training images into smaller patches, which enriches feature characteristics of training data but inevitably increases computation time and results in outcomes with patched patterns. In this study, simulated wave images generated by Finite Differential Time Domain (FDTD) simulation are used for network training, and U-Net is used to extract features from each training image without cutting it into patches. The use of simulated data for model training has the flexibility of customizing training datasets to match specific applications. The proposed method aimed to estimate tissue shear modulus from MRE data with high robustness to noise and high model-training efficiency. Specifically, a set of 3000 maps of shear modulus (with a range of 1 kPa to 15 kPa) containing randomly positioned objects were simulated, and their corresponding wave images were generated. The two types of data were fed into the training of a U-Net model as its output and input, respectively. For an independently simulated set of 1000 images, the performance of the proposed method against DI and LFE was compared by the relative errors (root mean square error or RMSE divided by averaged shear modulus) between the true shear modulus map and the estimated ones. The results showed that the estimated shear modulus by the proposed method achieved a relative error of 4.91%±0.66%, substantially lower than 78.20%±1.11% by LFE. Using simulated data, the proposed method significantly outperformed LFE and DI in resilience to increasing noise levels and in resolving fine changes of shear modulus. The feasibility of the proposed method was also tested on MRE data acquired from phantoms and from human calf muscles, resulting in maps of shear modulus with low noise. In future work, the method’s performance on phantom and its repeatability on human data will be tested in a more quantitative manner. In conclusion, the proposed method showed much promise in quantifying tissue shear modulus from MRE with high robustness and efficiency.Keywords: deep learning, magnetic resonance elastography, magnetic resonance imaging, shear modulus estimation
Procedia PDF Downloads 7218697 Machine Learning Prediction of Compressive Damage and Energy Absorption in Carbon Fiber-Reinforced Polymer Tubular Structures
Authors: Milad Abbasi
Abstract:
Carbon fiber-reinforced polymer (CFRP) composite structures are increasingly being utilized in the automotive industry due to their lightweight and specific energy absorption capabilities. Although it is impossible to predict composite mechanical properties directly using theoretical methods, various research has been conducted so far in the literature for accurate simulation of CFRP structures' energy-absorbing behavior. In this research, axial compression experiments were carried out on hand lay-up unidirectional CFRP composite tubes. The fabrication method allowed the authors to extract the material properties of the CFRPs using ASTM D3039, D3410, and D3518 standards. A neural network machine learning algorithm was then utilized to build a robust prediction model to forecast the axial compressive properties of CFRP tubes while reducing high-cost experimental efforts. The predicted results have been compared with the experimental outcomes in terms of load-carrying capacity and energy absorption capability. The results showed high accuracy and precision in the prediction of the energy-absorption capacity of the CFRP tubes. This research also demonstrates the effectiveness and challenges of machine learning techniques in the robust simulation of composites' energy-absorption behavior. Interestingly, the proposed method considerably condensed numerical and experimental efforts in the simulation and calibration of CFRP composite tubes subjected to compressive loading.Keywords: CFRP composite tubes, energy absorption, crushing behavior, machine learning, neural network
Procedia PDF Downloads 15718696 Evaluation of Features Extraction Algorithms for a Real-Time Isolated Word Recognition System
Authors: Tomyslav Sledevič, Artūras Serackis, Gintautas Tamulevičius, Dalius Navakauskas
Abstract:
This paper presents a comparative evaluation of features extraction algorithm for a real-time isolated word recognition system based on FPGA. The Mel-frequency cepstral, linear frequency cepstral, linear predictive and their cepstral coefficients were implemented in hardware/software design. The proposed system was investigated in the speaker-dependent mode for 100 different Lithuanian words. The robustness of features extraction algorithms was tested recognizing the speech records at different signals to noise rates. The experiments on clean records show highest accuracy for Mel-frequency cepstral and linear frequency cepstral coefficients. For records with 15 dB signal to noise rate the linear predictive cepstral coefficients give best result. The hard and soft part of the system is clocked on 50 MHz and 100 MHz accordingly. For the classification purpose, the pipelined dynamic time warping core was implemented. The proposed word recognition system satisfies the real-time requirements and is suitable for applications in embedded systems.Keywords: isolated word recognition, features extraction, MFCC, LFCC, LPCC, LPC, FPGA, DTW
Procedia PDF Downloads 49918695 Pavement Failures and Its Maintenance
Authors: Maulik L. Sisodia, Tirth K. Raval, Aarsh S. Mistry
Abstract:
This paper summarizes the ongoing researches about the defects in both flexible and rigid pavement and the maintenance in both flexible and rigid pavements. Various defects in pavements have been identified since the existence of both flexible and rigid pavement. Flexible Pavement failure is defined in terms of decreasing serviceability caused by the development of cracks, ruts, potholes etc. Flexible Pavement structure can be destroyed in a single season due to water penetration. Defects in flexible pavements is a problem of multiple dimensions, phenomenal growth of vehicular traffic (in terms of no. of axle loading of commercial vehicles), the rapid expansion in the road network, non-availability of suitable technology, material, equipment, skilled labor and poor funds allocation have all added complexities to the problem of flexible pavements. In rigid pavements due to different type of destress the failure like joint spalling, faulting, shrinkage cracking, punch out, corner break etc. Application of correction in the existing surface will enhance the life of maintenance works as well as that of strengthening layer. Maintenance of a road network involves a variety of operations, i.e., identification of deficiencies and planning, programming and scheduling for actual implementation in the field and monitoring. The essential objective should be to keep the road surface and appurtenances in good condition and to extend the life of the road assets to its design life. The paper describes lessons learnt from pavement failures and problems experienced during the last few years on a number of projects in India. Broadly, the activities include identification of defects and the possible cause there off, determination of appropriate remedial measures; implement these in the field and monitoring of the results.Keywords: Flexible Pavements, Rigid Pavements, Defects, Maintenance
Procedia PDF Downloads 17718694 Analysis of Public Space Usage Characteristics Based on Computer Vision Technology - Taking Shaping Park as an Example
Authors: Guantao Bai
Abstract:
Public space is an indispensable and important component of the urban built environment. How to more accurately evaluate the usage characteristics of public space can help improve its spatial quality. Compared to traditional survey methods, computer vision technology based on deep learning has advantages such as dynamic observation and low cost. This study takes the public space of Shaping Park as an example and, based on deep learning computer vision technology, processes and analyzes the image data of the public space to obtain the spatial usage characteristics and spatiotemporal characteristics of the public space. Research has found that the spontaneous activity time in public spaces is relatively random with a relatively short average activity time, while social activities have a relatively stable activity time with a longer average activity time. Computer vision technology based on deep learning can effectively describe the spatial usage characteristics of the research area, making up for the shortcomings of traditional research methods and providing relevant support for creating a good public space.Keywords: computer vision, deep learning, public spaces, using features
Procedia PDF Downloads 7518693 Modular Probe for Basic Monitoring of Water and Air Quality
Authors: Andrés Calvillo Téllez, Marianne Martínez Zanzarric, José Cruz Núñez Pérez
Abstract:
A modular system that performs basic monitoring of both water and air quality is presented. Monitoring is essential for environmental, aquaculture, and agricultural disciplines, where this type of instrumentation is necessary for data collection. The system uses low-cost components, which allows readings close to those with high-cost probes. The probe collects readings such as the coordinates of the geographical position, as well as the time it records the target parameters of the monitored. The modules or subsystems that make up the probe are the global positioning (GPS), which shows the altitude, latitude, and longitude data of the point where the reading will be recorded, a real-time clock stage, the date marking the time, the module SD memory continuously stores data, data acquisition system, central processing unit, and energy. The system acquires parameters to measure water quality, conductivity, pressure, and temperature, and for air, three types of ammonia, dioxide, and carbon monoxide gases were censored. The information obtained allowed us to identify the schedule of modification of the parameters and the identification of the ideal conditions for the growth of microorganisms in the water.Keywords: calibration, conductivity, datalogger, monitoring, real time clock, water quality
Procedia PDF Downloads 10818692 Unraveling the Complexity of Hyperacusis: A Metric Dimension of a Graph Concept
Authors: Hassan Ibrahim
Abstract:
The prevalence of hyperacusis, an auditory condition characterized by heightened sensitivity to sounds, continues to rise, posing challenges for effective diagnosis and intervention. It is believed that this work deepens will deepens the understanding of hyperacusis etiology by employing graph theory as a novel analytical framework. it constructed a comprehensive graph wherein nodes represent various factors associated with hyperacusis, including aging, head or neck trauma, infection/virus, depression, migraines, ear infection, anxiety, and other potential contributors. Relationships between factors are modeled as edges, allowing us to visualize and quantify the interactions within the etiological landscape of hyperacusis. it employ the concept of the metric dimension of a connected graph to identify key nodes (landmarks) that serve as critical influencers in the interconnected web of hyperacusis causes. This approach offers a unique perspective on the relative importance and centrality of different factors, shedding light on the complex interplay between physiological, psychological, and environmental determinants. Visualization techniques were also employed to enhance the interpretation and facilitate the identification of the central nodes. This research contributes to the growing body of knowledge surrounding hyperacusis by offering a network-centric perspective on its multifaceted causes. The outcomes hold the potential to inform clinical practices, guiding healthcare professionals in prioritizing interventions and personalized treatment plans based on the identified landmarks within the etiological network. Through the integration of graph theory into hyperacusis research, the complexity of this auditory condition was unraveled and pave the way for more effective approaches to its management.Keywords: auditory condition, connected graph, hyperacusis, metric dimension
Procedia PDF Downloads 3218691 Entropy-Based Multichannel Stationary Measure for Characterization of Non-Stationary Patterns
Authors: J. D. Martínez-Vargas, C. Castro-Hoyos, G. Castellanos-Dominguez
Abstract:
In this work, we propose a novel approach for measuring the stationarity level of a multichannel time-series. This measure is based on a stationarity definition over time-varying spectrum, and it is aimed to quantify the relation between local stationarity (single-channel) and global dynamic behavior (multichannel dynamics). To assess the proposed approach validity, we use a well known EEG-BCI database, that was constructed for separate between motor/imagery tasks. Thus, based on the statement that imagination of movements implies an increase on the EEG dynamics, we use as discriminant features the proposed measure computed over an estimation of the non-stationary components of input time-series. As measure of separability we use a t-student test, and the obtained results evidence that such measure is able to accurately detect the brain areas projected on the scalp where motor tasks are realized.Keywords: stationary measure, entropy, sub-space projection, multichannel dynamics
Procedia PDF Downloads 41918690 An Improved Method to Compute Sparse Graphs for Traveling Salesman Problem
Authors: Y. Wang
Abstract:
The Traveling salesman problem (TSP) is NP-hard in combinatorial optimization. The research shows the algorithms for TSP on the sparse graphs have the shorter computation time than those for TSP according to the complete graphs. We present an improved iterative algorithm to compute the sparse graphs for TSP by frequency graphs computed with frequency quadrilaterals. The iterative algorithm is enhanced by adjusting two parameters of the algorithm. The computation time of the algorithm is O(CNmaxn2) where C is the iterations, Nmax is the maximum number of frequency quadrilaterals containing each edge and n is the scale of TSP. The experimental results showed the computed sparse graphs generally have less than 5n edges for most of these Euclidean instances. Moreover, the maximum degree and minimum degree of the vertices in the sparse graphs do not have much difference. Thus, the computation time of the methods to resolve the TSP on these sparse graphs will be greatly reduced.Keywords: frequency quadrilateral, iterative algorithm, sparse graph, traveling salesman problem
Procedia PDF Downloads 23718689 The Association between Health-Related Quality of Life and Physical Activity in Different Domains with Other Factors in Croatian Male Police Officers
Authors: Goran Sporiš, Dinko Vuleta, Stefan Lovro
Abstract:
The purpose of the present study was to determine the associations between health-related quality of life (HRQOL) and physical activity (PA) in different domains. In this cross-sectional study, participants were 169 Croatian police officers (mean age 35.14±8.95 yrs, mean height 180.93±7.53 cm, mean weight 88.39±14.05 kg, mean body-mass index 26.90±3.39 kg/m2). The dependent variables were two general domains extracted from the HRQOL questionnaire: (1) physical component scale (PCS) and (2) mental component scale (MCS). The independent variables were job-related, transport, domestic and leisure-time PA, along with other factors: age, body-mass index, smoking status, psychological distress, socioeconomic status and time spent in sedentary behaviour. The associations between dependent and independent variables were analyzed by using multiple regression analysis. Significance was set up at p < 0.05. PCS was positively associated with leisure-time PA (β 0.28, p < 0.001) and socioeconomic status (SES) (β 0.16, p=0.005), but inversely associated with job-related PA (β -0.15, p=0.012), domestic-time PA (β -0.14, p=0.014), age (β -0.12, p=0.050), psychological distress (β -0.43, p<0.001) and sedentary behaviour (β -0.15, p=0.009). MCS was positively associated with leisure-time PA (β 0.19, p=0.013) and SES (β 0.20, p=0.002), while inversely associated with age (β -0.23, p=0.001), psychological distress (β -0.27, p<0.001) and sedentary behaviour (β -0.22, p=0.001). Our results added new information about the associations between domain-specific PA and both physical and mental component scale in police officers. Future studies should deal with the same associations in other stressful occupations.Keywords: health, fitness, police force, relations
Procedia PDF Downloads 30218688 Time and Cost Prediction Models for Language Classification Over a Large Corpus on Spark
Authors: Jairson Barbosa Rodrigues, Paulo Romero Martins Maciel, Germano Crispim Vasconcelos
Abstract:
This paper presents an investigation of the performance impacts regarding the variation of five factors (input data size, node number, cores, memory, and disks) when applying a distributed implementation of Naïve Bayes for text classification of a large Corpus on the Spark big data processing framework. Problem: The algorithm's performance depends on multiple factors, and knowing before-hand the effects of each factor becomes especially critical as hardware is priced by time slice in cloud environments. Objectives: To explain the functional relationship between factors and performance and to develop linear predictor models for time and cost. Methods: the solid statistical principles of Design of Experiments (DoE), particularly the randomized two-level fractional factorial design with replications. This research involved 48 real clusters with different hardware arrangements. The metrics were analyzed using linear models for screening, ranking, and measurement of each factor's impact. Results: Our findings include prediction models and show some non-intuitive results about the small influence of cores and the neutrality of memory and disks on total execution time, and the non-significant impact of data input scale on costs, although notably impacts the execution time.Keywords: big data, design of experiments, distributed machine learning, natural language processing, spark
Procedia PDF Downloads 12318687 Dynamics of a Susceptible-Infected-Recovered Model along with Time Delay, Modulated Incidence, and Nonlinear Treatment
Authors: Abhishek Kumar, Nilam
Abstract:
As we know that, time delay exists almost in every biological phenomenon. Therefore, in the present study, we propose a susceptible–infected–recovered (SIR) epidemic model along with time delay, modulated incidence rate of infection, and Holling Type II nonlinear treatment rate. The present model aims to provide a strategy to control the spread of epidemics. In the mathematical study of the model, it has been shown that the model has two equilibriums which are named as disease-free equilibrium (DFE) and endemic equilibrium (EE). Further, stability analysis of the model is discussed. To prove the stability of the model at DFE, we derived basic reproduction number, denoted by (R₀). With the help of basic reproduction number (R₀), we showed that the model is locally asymptotically stable at DFE when the basic reproduction number (R₀) less than unity and unstable when the basic reproduction number (R₀) is greater than unity. Furthermore, stability analysis of the model at endemic equilibrium has also been discussed. Finally, numerical simulations have been done using MATLAB 2012b to exemplify the theoretical results.Keywords: time delayed SIR epidemic model, modulated incidence rate, Holling type II nonlinear treatment rate, stability
Procedia PDF Downloads 16118686 Optimisation of Extraction of Phenolic Compounds in Algerian Lavandula multifida, Algeria, NW
Authors: Mustapha Mahmoud Dif, Fouzia Benali-Toumi, Mohamed Benyahia, Sofiane Bouazza, Abbes Dellal, Slimane Baha
Abstract:
L. multifida is applied to treat rheumatism and cold and has hypoglycemic and anti-inflammatory properties. The present study is to optimize the extraction of phenolic compounds in Algerian Lavandula multifida. The influences of parameters including temperature (decoction and maceration) and extraction time (15min to 45 min) on the flavonoids concentration are studied. The optimal conditions are determined and the quadratic response surfaces draw from the mathematical models. Total phenols were evaluated using Folin sicaltieu methods, total flavonoids were estimated using the Tri chloral aluminum method. The maximum concentration extracted, for total flavonoids, equal to 0.043 mg/g was achieved with decoction and extraction time of 41.55 min. However, for total phenol compounds highest concentration of 0.218 mg/g, is obtained with 45 min at 49.99°C.Keywords: L multifidi, phenolic content, optimization, time, temperature
Procedia PDF Downloads 42418685 Assessing Natura 2000 Network Effectiveness in Landscape Conservation: A Case Study in Castile and León, Spain (1990-2018)
Authors: Paula García-Llamas, Polonia Díez González, Angela Taboada
Abstract:
In an era marked by unprecedented anthropogenic alterations to landscapes and biodiversity, the consequential loss of fauna, flora, and habitats poses a grave concern. It is imperative to evaluate our capacity to manage and mitigate such changes effectively. This study aims to scrutinize the efficacy of the Natura 2000 Network (NN2000) in landscape conservation within the autonomous community of Castile and Leon (Spain), spanning from 1990 to 2018. Leveraging land use change maps from the European Corine Land Cover database across four subperiods (1990-2000, 2000-2006, 2006-2012, and 2012-2018), we quantified alterations occurring both within NN2000 protected sites and within a 5km buffer zone. Additionally, we spatially assess land use/land cover patterns of change considering fluxes of various habitat types defined within NN2000. Our findings reveal that the protected areas under NN2000 were particularly susceptible to change, with the most significant transformations observed during the 1990-2000 period. Predominant change processes include secondary succession and scrubland formation due to land use cessation, deforestation, and agricultural intensification. While NN2000 demonstrates efficacy in curtailing urbanization and industrialization within buffer zones, its management measures have proven insufficient in safeguarding landscapes against the dynamic changes witnessed between 1990 and 2018, especially in relation to rural abandonment.Keywords: Corine land cover, land cover changes, site of community importance, special protection area
Procedia PDF Downloads 5418684 Mammographic Multi-View Cancer Identification Using Siamese Neural Networks
Authors: Alisher Ibragimov, Sofya Senotrusova, Aleksandra Beliaeva, Egor Ushakov, Yuri Markin
Abstract:
Mammography plays a critical role in screening for breast cancer in women, and artificial intelligence has enabled the automatic detection of diseases in medical images. Many of the current techniques used for mammogram analysis focus on a single view (mediolateral or craniocaudal view), while in clinical practice, radiologists consider multiple views of mammograms from both breasts to make a correct decision. Consequently, computer-aided diagnosis (CAD) systems could benefit from incorporating information gathered from multiple views. In this study, the introduce a method based on a Siamese neural network (SNN) model that simultaneously analyzes mammographic images from tri-view: bilateral and ipsilateral. In this way, when a decision is made on a single image of one breast, attention is also paid to two other images – a view of the same breast in a different projection and an image of the other breast as well. Consequently, the algorithm closely mimics the radiologist's practice of paying attention to the entire examination of a patient rather than to a single image. Additionally, to the best of our knowledge, this research represents the first experiments conducted using the recently released Vietnamese dataset of digital mammography (VinDr-Mammo). On an independent test set of images from this dataset, the best model achieved an AUC of 0.87 per image. Therefore, this suggests that there is a valuable automated second opinion in the interpretation of mammograms and breast cancer diagnosis, which in the future may help to alleviate the burden on radiologists and serve as an additional layer of verification.Keywords: breast cancer, computer-aided diagnosis, deep learning, multi-view mammogram, siamese neural network
Procedia PDF Downloads 14118683 Teaching How to Speak ‘Correct’ English in No Time: An Assessment of the ‘Success’ of Professor Higgins’ Motivation in George Bernard Shaw’s Pygmalion
Authors: Armel Mbon
Abstract:
This paper examines the ‘success’ of George Bernard Shaw's main character Professor Higgins' motivation in teaching Eliza Doolittle, a young Cockney flower girl, how to speak 'correct' English in no time in Pygmalion. Notice should be given that Shaw in whose writings, language issues feature prominently, does not believe there is such a thing as perfectly correct English, but believes in the varieties of spoken English as a source of its richness. Indeed, along with his fellow phonetician Colonel Pickering, Henry Higgins succeeds in teaching Eliza that he first judges unfairly, the dialect of the upper classes and Received Pronunciation, to facilitate her social advancement. So, after six months of rigorous learning, Eliza's speech and manners are transformed, and she is able to pass herself off as a lady. Such is the success of Professor Higgins’ motivation in linguistically transforming his learner in record time. On the other side, his motivation is unsuccessful since, by the end of the play, he cannot have Eliza he believes he has shaped to his so-called good image, for wife. So, this paper aims to show, in support of the psychological approach, that in motivation, feelings, pride and prejudice cannot be combined, and that one has not to pre-judge someone’s attitude based purely on how well they speak English.Keywords: teaching, speak, in no time, success
Procedia PDF Downloads 7518682 Comparing Deep Architectures for Selecting Optimal Machine Translation
Authors: Despoina Mouratidis, Katia Lida Kermanidis
Abstract:
Machine translation (MT) is a very important task in Natural Language Processing (NLP). MT evaluation is crucial in MT development, as it constitutes the means to assess the success of an MT system, and also helps improve its performance. Several methods have been proposed for the evaluation of (MT) systems. Some of the most popular ones in automatic MT evaluation are score-based, such as the BLEU score, and others are based on lexical similarity or syntactic similarity between the MT outputs and the reference involving higher-level information like part of speech tagging (POS). This paper presents a language-independent machine learning framework for classifying pairwise translations. This framework uses vector representations of two machine-produced translations, one from a statistical machine translation model (SMT) and one from a neural machine translation model (NMT). The vector representations consist of automatically extracted word embeddings and string-like language-independent features. These vector representations used as an input to a multi-layer neural network (NN) that models the similarity between each MT output and the reference, as well as between the two MT outputs. To evaluate the proposed approach, a professional translation and a "ground-truth" annotation are used. The parallel corpora used are English-Greek (EN-GR) and English-Italian (EN-IT), in the educational domain and of informal genres (video lecture subtitles, course forum text, etc.) that are difficult to be reliably translated. They have tested three basic deep learning (DL) architectures to this schema: (i) fully-connected dense, (ii) Convolutional Neural Network (CNN), and (iii) Long Short-Term Memory (LSTM). Experiments show that all tested architectures achieved better results when compared against those of some of the well-known basic approaches, such as Random Forest (RF) and Support Vector Machine (SVM). Better accuracy results are obtained when LSTM layers are used in our schema. In terms of a balance between the results, better accuracy results are obtained when dense layers are used. The reason for this is that the model correctly classifies more sentences of the minority class (SMT). For a more integrated analysis of the accuracy results, a qualitative linguistic analysis is carried out. In this context, problems have been identified about some figures of speech, as the metaphors, or about certain linguistic phenomena, such as per etymology: paronyms. It is quite interesting to find out why all the classifiers led to worse accuracy results in Italian as compared to Greek, taking into account that the linguistic features employed are language independent.Keywords: machine learning, machine translation evaluation, neural network architecture, pairwise classification
Procedia PDF Downloads 13518681 Axial, Bending Interaction Diagrams of Reinforced Concrete Columns Exposed to Chloride Attack
Authors: Rita Greco, Giuseppe Carlo Marano
Abstract:
Chloride induced reinforcement corrosion is widely accepted to be the most frequent mechanism causing premature degradation of reinforced concrete members, whose economic and social consequences are growing up continuously. Prevention of these phenomena has a great importance in structural design, and modern Codes and Standard impose prescriptions concerning design details and concrete mix proportion for structures exposed to different external aggressive conditions, grouped in environmental classes. This paper focuses on reinforced concrete columns load carrying capacity degradation over time due to chloride induced steel pitting corrosion. The structural element is considered to be exposed to marine environment and the effects of corrosion are described by the time degradation of the axial-bending interaction diagram. Because chlorides ingress and consequent pitting corrosion propagation are both time-dependent mechanisms, the study adopts a time-variant predictive approach to evaluate the residual strength of corroded reinforced concrete columns at different lifetimes. Corrosion initiation and propagation process is modelled by taking into account all the parameters, such as external environmental conditions, concrete mix proportion, concrete cover and so on, which influence the time evolution of the corrosion phenomenon and its effects on the residual strength of RC columns.Keywords: pitting corrosion, strength deterioration, diffusion coefficient, surface chloride concentration, concrete structures, marine environment
Procedia PDF Downloads 32618680 The Quality of Business Relationships in the Tourism System: An Imaginary Organisation Approach
Authors: Armando Luis Vieira, Carlos Costa, Arthur Araújo
Abstract:
The tourism system is viewable as a network of relationships amongst business partners where the success of each actor will ultimately be determined by the success of the whole network. Especially since the publication of Gümmesson’s (1996) ‘theory of imaginary organisations’, which suggests that organisational effectiveness largely depends on managing relationships and sharing resources and activities, relationship quality (RQ) has been increasingly recognised as a main source of value creation and competitive advantage. However, there is still ambiguity around this topic, and managers and researchers have been recurrently reporting the need to better understand and capitalise on the quality of interactions with business partners. This research aims at testing an RQ model from a relational, imaginary organisation’s approach. Two mail surveys provide the perceptions of 725 hotel representatives about their business relationships with tour operators, and 1,224 corporate client representatives about their business relationships with hotels (21.9 % and 38.8 % response rate, respectively). The analysis contributes to enhance our understanding on the linkages between RQ and its determinants, and identifies the role of their dimensions. Structural equation modelling results highlight trust as the dominant dimension, the crucial role of commitment and satisfaction, and suggest customer orientation as complementary building block. Findings also emphasise problem solving behaviour and selling orientation as the most relevant dimensions of customer orientation. The comparison of the two ‘dyads’ deepens the discussion and enriches the suggested theoretical and managerial guidelines concerning the contribution of quality relationships to business performance.Keywords: corporate clients, destination competitiveness, hotels, relationship quality, structural equations modelling, tour operators
Procedia PDF Downloads 40018679 Effects of an Envious Experience on Schadenfreude and Economic Decisions Making
Authors: Pablo Reyes, Vanessa Riveros Fiallo, Cesar Acevedo, Camila Castellanos, Catalina Moncaleano, Maria F. Parra, Laura Colmenares
Abstract:
Social emotions are physiological, cognitive and behavioral phenomenon that intervene in the mechanisms of adaptation of individuals and their context. These are mediated by interpersonal relationship and language. Such emotions are subdivided into moral and comparison. The present research emphasizes two comparative emotions: Envy and Schadenfreude. Envy arises when a person lack of quality, possessions or achievements and these are superior in someone else. The Schadenfreude (SC) expresses the pleasure that someone experienced by the misfortune of the other. The relationship between both emotions has been questioned before. Hence there are reports showing that envy increases and modulates SC response. Other documents suggest that envy causes SC response. However, the methodological approach of the topic has been made through self-reports, as well as the hypothetical scenarios. Given this problematic, the neuroscience social framework provides an alternative and demonstrates that social emotions have neurophysiological correlates that can be measured. This is relevant when studying social emotions that are reprehensible like envy or SC are. When tested, the individuals tend to report low ratings due to social desirability. In this study, it was drawn up a proposal in research's protocol and the progress on its own piloting. The aim is to evaluate the effect of feeling envy and Schadenfreude has on the decision-making process, as well as the cooperative behavior in an economic game. To such a degree, it was proposed an experimental model that will provoke to feel envious by performing games against an unknown opponent. The game consists of asking general knowledge questions. The difficulty level in questions and the strangers' facial response have been manipulated in order to generate an ecological comparison framework and be able to arise both envy and SC emotions. During the game, an electromyography registry will be made for two facial muscles that have been associated with the expressiveness of envy and SC emotions. One of the innovations of the current proposal is the measurement of the effect that emotions have on a specific behavior. To that extent, it was evaluated the effect of each condition on the dictators' economic game. The main intention is to evaluate if a social emotion can modulate actions that have been associated with social norms, in the literacy. The result of the evaluation of a pilot model (without electromyography record and self-report) have shown an association between envy and SC, in a way that as the individuals report a greater sense of envy, the greater the chance to experience SC. The results of the economic game show a slight tendency towards profit maximization decisions. It is expected that at the time of using real cash this behavior will be strengthened and also to correlate with the responses of electromyography.Keywords: envy, schadenfreude, electromyography, economic games
Procedia PDF Downloads 37318678 Personalized Social Resource Recommender Systems on Interest-Based Social Networks
Authors: C. L. Huang, J. J. Sia
Abstract:
The interest-based social networks, also known as social bookmark sharing systems, are useful platforms for people to conveniently read and collect internet resources. These platforms also providing function of social networks, and users can share and explore internet resources from the social networks. Providing personalized internet resources to users is an important issue on these platforms. This study uses two types of relationship on the social networks—following and follower and proposes a collaborative recommender system, consisting of two main steps. First, this study calculates the relationship strength between the target user and the target user's followings and followers to find top-N similar neighbors. Second, from the top-N similar neighbors, the articles (internet resources) that may interest the target user are recommended to the target user. In this system, users can efficiently obtain recent, related and diverse internet resources (knowledge) from the interest-based social network. This study collected the experimental dataset from Diigo, which is a famous bookmark sharing system. The experimental results show that the proposed recommendation model is more accurate than two traditional baseline recommendation models but slightly lower than the cosine model in accuracy. However, in the metrics of the diversity and executing time, our proposed model outperforms the cosine model.Keywords: recommender systems, social networks, tagging, bookmark sharing systems, collaborative recommender systems, knowledge management
Procedia PDF Downloads 17618677 Exploratory Data Analysis of Passenger Movement on Delhi Urban Bus Route
Authors: Sourabh Jain, Sukhvir Singh Jain, Gaurav V. Jain
Abstract:
Intelligent Transportation System is an integrated application of communication, control and monitoring and display process technologies for developing a user–friendly transportation system for urban areas in developing countries. In fact, the development of a country and the progress of its transportation system are complementary to each other. Urban traffic has been growing vigorously due to population growth as well as escalation of vehicle ownership causing congestion, delays, pollution, accidents, high-energy consumption and low productivity of resources. The development and management of urban transport in developing countries like India however, is at tryout stage with very few accumulations. Under the umbrella of ITS, urban corridor management strategy have proven to be one of the most successful system in accomplishing these objectives. The present study interprets and figures out the performance of the 27.4 km long Urban Bus route having six intersections, five flyovers and 29 bus stops that covers significant area of the city by causality analysis. Performance interpretations incorporate Passenger Boarding and Alighting, Dwell time, Distance between Bus Stops and Total trip time taken by bus on selected urban route.Keywords: congestion, dwell time, passengers boarding alighting, travel time
Procedia PDF Downloads 34118676 Implementation of Social Network Analysis to Analyze the Dependency between Construction Bid Packages
Authors: Kawalpreet Kaur, Panagiotis Mitropoulos
Abstract:
The division of the project scope into work packages is the most important step in the preconstruction phase of construction projects. The work division determines the scope and complexity of each bid package, resulting in dependencies between project participants performing these work packages. The coordination between project participants is necessary because of these dependencies. Excessive dependencies between the bid packages create coordination difficulties, leading to delays, added costs, and contractual friction among project participants. However, the literature on construction provides limited knowledge regarding work structuring approaches, issues, and challenges. Manufacturing industry literature provides a systematic approach to defining the project scope into work packages, and the implementation of social network analysis (SNA) in manufacturing is an effective approach to defining and analyzing the divided scope of work at the dependencies level. This paper presents a case study of implementing a similar approach using SNA in construction bid packages. The study uses SNA to analyze the scope of bid packages and determine the dependency between scope elements. The method successfully identifies the bid package with the maximum interaction with other trade contractors and the scope elements that are crucial for project performance. The analysis provided graphical and quantitative information on bid package dependencies. The study can be helpful in performing an analysis to determine the dependencies between bid packages and their scope elements and how these scope elements are critical for project performance. The study illustrates the potential use of SNA as a systematic approach to analyzing bid package dependencies in construction projects, which can guide the division of crucial scope elements to minimize negative impacts on project performance.Keywords: work structuring, bid packages, work breakdown, project participants
Procedia PDF Downloads 8218675 Computational Insights Into Allosteric Regulation of Lyn Protein Kinase: Structural Dynamics and Impacts of Cancer-Related Mutations
Authors: Mina Rabipour, Elena Pallaske, Floyd Hassenrück, Rocio Rebollido-Rios
Abstract:
Protein tyrosine kinases, including Lyn kinase of the Src family kinases (SFK), regulate cell proliferation, survival, and differentiation. Lyn kinase has been implicated in various cancers, positioning it as a promising therapeutic target. However, the conserved ATP-binding pocket across SFKs makes developing selective inhibitors challenging. This study aims to address this limitation by exploring the potential for allosteric modulation of Lyn kinase, focusing on how its structural dynamics and specific oncogenic mutations impact its conformation and function. To achieve this, we combined homology modeling, molecular dynamics simulations, and data science techniques to conduct microsecond-length simulations. Our approach allowed a detailed investigation into the interplay between Lyn’s catalytic and regulatory domains, identifying key conformational states involved in allosteric regulation. Additionally, we evaluated the structural effects of Dasatinib, a competitive inhibitor, and ATP binding on Lyn active conformation. Notably, our simulations show that cancer-related mutations, specifically I364L/N and E290D/K, shift Lyn toward an inactive conformation, contrasting with the active state of the wild-type protein. This may suggest how these mutations contribute to aberrant signaling in cancer cells. We conducted a dynamical network analysis to assess residue-residue interactions and the impact of mutations on the Lyn intramolecular network. This revealed significant disruptions due to mutations, especially in regions distant from the ATP-binding site. These disruptions suggest potential allosteric sites as therapeutic targets, offering an alternative strategy for Lyn inhibition with higher specificity and fewer off-target effects compared to ATP-competitive inhibitors. Our findings provide insights into Lyn kinase regulation and highlight allosteric sites as avenues for selective drug development. Targeting these sites may modulate Lyn activity in cancer cells, reducing toxicity and improving outcomes. Furthermore, our computational strategy offers a scalable approach for analyzing other SFK members or kinases with similar properties, facilitating the discovery of selective allosteric modulators and contributing to precise cancer therapies.Keywords: lyn tyrosine kinase, mutation analysis, conformational changes, dynamic network analysis, allosteric modulation, targeted inhibition
Procedia PDF Downloads 2318674 Potentiality of the Wind Energy in Algeria
Authors: C. Benoudjafer, M. N. Tandjaoui, C. Benachaiba
Abstract:
The use of kinetic energy of the wind is in full rise in the world and it starts to be known in our country but timidly. One or more aero generators can be installed to produce for example electricity on isolated places or not connected to the electrical supply network. To use the wind as energy source, it is necessary to know first the energy needs for the population and study the wind intensity, speed, frequency and direction.Keywords: Algeria, renewable energies, wind, wind power, aero-generators, wind energetic potential
Procedia PDF Downloads 43518673 Seismic Behavior of a Jumbo Container Crane in the Low Seismicity Zone Using Time-History Analyses
Authors: Huy Q. Tran, Bac V. Nguyen, Choonghyun Kang, Jungwon Huh
Abstract:
Jumbo container crane is an important part of port structures that needs to be designed properly, even when the port locates in low seismicity zone such as in Korea. In this paper, 30 artificial ground motions derived from the elastic response spectra of Korean Building Code (2005) are used for time history analysis. It is found that the uplift might not occur in this analysis when the crane locates in the low seismic zone. Therefore, a selection of a pinned or a gap element for base supporting has not much effect on the determination of the total base shear. The relationships between the total base shear and peak ground acceleration (PGA) and the relationships between the portal drift and the PGA are proposed in this study.Keywords: jumbo container crane, portal drift, time history analysis, total base shear
Procedia PDF Downloads 19118672 Introduction of Digital Radiology to Improve the Timeliness in Availability of Radiological Diagnostic Images for Trauma Care
Authors: Anuruddha Jagoda, Samiddhi Samarakoon, Anil Jasinghe
Abstract:
In an emergency department ‘where every second count for patient’s management’ timely availability of X- rays play a vital role in early diagnosis and management of patients. Trauma care centers rely heavily on timely radiologic imaging for patient care and radiology plays a crucial role in the emergency department (ED) operations. A research study was carried out to assess timeliness of availability of X-rays and total turnaround time at the Accident Service of National Hospital of Sri Lanka which is the premier trauma center in the country. Digital Radiology system was implemented as an intervention to improve the timeliness of availability of X-rays. Post-implementation assessment was carried out to assess the effectiveness of the intervention. Reduction in all three aspects of waiting times namely waiting for initial examination by doctors, waiting until X –ray is performed and waiting for image availability was observed after implementation of the intervention. However, the most significant improvement was seen in waiting time for image availability and reduction in time for image availability had indirect impact on reducing waiting time for initial examination by doctors and waiting until X –ray is performed. The most significant reduction in time for image availability was observed when performing 4-5 X rays with DR system. The least improvement in timeliness was seen in patients who are categorized as critical.Keywords: emergency department, digital radilogy, timeliness, trauma care
Procedia PDF Downloads 26818671 Calcium Phosphate Cement/Gypsum Composite as Dental Pulp Capping
Authors: Jung-Feng Lin, Wei-Tang Chen, Chung-King Hsu, Chun-Pin Lin, Feng-Huei Lin
Abstract:
One of the objectives of operative dentistry is to maintain pulp health in compromised teeth. Mostly used methods for this purpose are direct pulp capping and pulpotomy, which consist of placement of biocompatible materials and bio-inductors on the exposed pulp tissue to preserve its health and stimulate repair by mineralized tissue formation. In this study, we developed a material (calcium phosphate cement (CPC)/gypsum composite) as the dental pulp capping material for shortening setting time and improving handling properties. We further discussed the influence of five different ratio of gypsum to CPC on HAP conversion, microstructure, setting time, weight loss, pH value, temperature difference, viscosity, mechanical properties, porosity, and biocompatibility.Keywords: calcium phosphate cement, calcium sulphate hemihydrate, pulp capping, fast setting time
Procedia PDF Downloads 39118670 Understanding the Excited State Dynamics of a Phase Transformable Photo-Active Metal-Organic Framework MIP 177 through Time-Resolved Infrared Spectroscopy
Authors: Aneek Kuila, Yaron Paz
Abstract:
MIP 177 LT and HT are two-phase transformable metal organic frameworks consisting of a Ti12O15 oxocluster and a tetracarboxylate ligand that exhibits robust chemical stability and improved photoactivity. LT to HT only shows the changes in dimensionality from 0D to 1D without any change in the overall chemical structure. In terms of chemical and photoactivity MIP 177 LT is found to perform better than the MIP 177HT. Step-scan Fourier transform absorption difference time-resolved spectroscopy has been used to collect mid-IR time-resolved infrared spectra of the transient electronic excited states of a nano-porous metal–organic framework MIP 177-LT and HT with 2.5 ns time resolution. Analyzing the time-resolved vibrational data after 355nm LASER excitation reveals the presence of the temporal changes of ν (O-Ti-O) of Ti-O metal cluster and ν (-COO) of the ligand concluding the fact that these moieties are the ultimate acceptors of the excited charges which are localized over those regions on the nanosecond timescale. A direct negative correlation between the differential absorbance (Δ Absorbance) reveals the charge transfer relation among these two moieties. A longer-lived transient signal up to 180ns for MIP 177 LT compared to the 100 ns of MIP 177 HT shows the extended lifetime of the reactive charges over the surface that exerts in their effectivity. An ultrafast change of bidentate to monodentate bridging in the -COO-Ti-O ligand-metal coordination environment was observed after the photoexcitation of MIP 177 LT which remains and lives with for seconds after photoexcitation is halted. This phenomenon is very unique to MIP 177 LT but not observed with HT. This in-situ change in the coordination denticity during the photoexcitation was not observed previously which can rationalize the reason behind the ability of MIP 177 LT to accumulate electrons during continuous photoexcitation leading to a superior photocatalytic activity.Keywords: time resolved FTIR, metal organic framework, denticity, photoacatalysis
Procedia PDF Downloads 64