Search results for: remote traffic microwave sensor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3915

Search results for: remote traffic microwave sensor

285 Magnetic Navigation in Underwater Networks

Authors: Kumar Divyendra

Abstract:

Underwater Sensor Networks (UWSNs) have wide applications in areas such as water quality monitoring, marine wildlife management etc. A typical UWSN system consists of a set of sensors deployed randomly underwater which communicate with each other using acoustic links. RF communication doesn't work underwater, and GPS too isn't available underwater. Additionally Automated Underwater Vehicles (AUVs) are deployed to collect data from some special nodes called Cluster Heads (CHs). These CHs aggregate data from their neighboring nodes and forward them to the AUVs using optical links when an AUV is in range. This helps reduce the number of hops covered by data packets and helps conserve energy. We consider the three-dimensional model of the UWSN. Nodes are initially deployed randomly underwater. They attach themselves to the surface using a rod and can only move upwards or downwards using a pump and bladder mechanism. We use graph theory concepts to maximize the coverage volume while every node maintaining connectivity with at least one surface node. We treat the surface nodes as landmarks and each node finds out its hop distance from every surface node. We treat these hop-distances as coordinates and use them for AUV navigation. An AUV intending to move closer to a node with given coordinates moves hop by hop through nodes that are closest to it in terms of these coordinates. In absence of GPS, multiple different approaches like Inertial Navigation System (INS), Doppler Velocity Log (DVL), computer vision-based navigation, etc., have been proposed. These systems have their own drawbacks. INS accumulates error with time, vision techniques require prior information about the environment. We propose a method that makes use of the earth's magnetic field values for navigation and combines it with other methods that simultaneously increase the coverage volume under the UWSN. The AUVs are fitted with magnetometers that measure the magnetic intensity (I), horizontal inclination (H), and Declination (D). The International Geomagnetic Reference Field (IGRF) is a mathematical model of the earth's magnetic field, which provides the field values for the geographical coordinateson earth. Researchers have developed an inverse deep learning model that takes the magnetic field values and predicts the location coordinates. We make use of this model within our work. We combine this with with the hop-by-hop movement described earlier so that the AUVs move in such a sequence that the deep learning predictor gets trained as quickly and precisely as possible We run simulations in MATLAB to prove the effectiveness of our model with respect to other methods described in the literature.

Keywords: clustering, deep learning, network backbone, parallel computing

Procedia PDF Downloads 69
284 Energy Harvesting and Storage System for Marine Applications

Authors: Sayem Zafar, Mahmood Rahi

Abstract:

Rigorous international maritime regulations are in place to limit boat and ship hydrocarbon emissions. The global sustainability goals are reducing the fuel consumption and minimizing the emissions from the ships and boats. These maritime sustainability goals have attracted a lot of research interest. Energy harvesting and storage system is designed in this study based on hybrid renewable and conventional energy systems. This energy harvesting and storage system is designed for marine applications, such as, boats and small ships. These systems can be utilized for mobile use or off-grid remote electrification. This study analyzed the use of micro power generation for boats and small ships. The energy harvesting and storage system has two distinct systems i.e. dockside shore-based system and on-board system. The shore-based system consists of a small wind turbine, photovoltaic (PV) panels, small gas turbine, hydrogen generator and high-pressure hydrogen storage tank. This dockside system is to provide easy access to the boats and small ships for supply of hydrogen. The on-board system consists of hydrogen storage tanks and fuel cells. The wind turbine and PV panels generate electricity to operate electrolyzer. A small gas turbine is used as a supplementary power system to contribute in case the hybrid renewable energy system does not provide the required energy. The electrolyzer performs the electrolysis on distilled water to produce hydrogen. The hydrogen is stored in high-pressure tanks. The hydrogen from the high-pressure tank is filled in the low-pressure tanks on-board seagoing vessels to operate the fuel cell. The boats and small ships use the hydrogen fuel cell to provide power to electric propulsion motors and for on-board auxiliary use. For shore-based system, a small wind turbine with the total length of 4.5 m and the disk diameter of 1.8 m is used. The small wind turbine dimensions make it big enough to be used to charge batteries yet small enough to be installed on the rooftops of dockside facility. The small dimensions also make the wind turbine easily transportable. In this paper, PV, sizing and solar flux are studied parametrically. System performance is evaluated under different operating and environmental conditions. The parametric study is conducted to evaluate the energy output and storage capacity of energy storage system. Results are generated for a wide range of conditions to analyze the usability of hybrid energy harvesting and storage system. This energy harvesting method significantly improves the usability and output of the renewable energy sources. It also shows that small hybrid energy systems have promising practical applications.

Keywords: energy harvesting, fuel cell, hybrid energy system, hydrogen, wind turbine

Procedia PDF Downloads 109
283 Armed Forces Special Powers Act and Human Rights in Nagaland

Authors: Khrukulu Khusoh

Abstract:

The strategies and tactics used by governments throughout the world to counter terrorism and insurgency over the past few decades include the declaration of states of siege or martial law, enactment of anti-terrorist legislation and strengthening of judicial powers. Some of these measures taken have been more successful than the other, but some have proved counterproductive, alienating the public from the authorities and further polarizing an already fractured political environment. Such cases of alienation and polarization can be seen in the northeastern states of India. The Armed Forces (Special Powers) Act which was introduced to curb insurgency in the remote jungles of the far-flung areas has remained a telling tale of agony in the north east India. Grievous trauma to humans through encounter killings, custodial deaths, unwarranted torture, exploitation of women and children in several ways have been reported in Nagaland, Manipur and other northeastern states where the Indian army has been exercising powers under the Armed Forces (Special Powers) Act. While terrorism and the insurgency are destructive of human rights, counter-terrorism does not necessarily restore and safeguard human rights. This special law has not proven effective particularly in dealing with terrorism and insurgency. The insurgency has persisted in the state of Nagaland even after sixty years notwithstanding the presence of a good number of special laws. There is a need to fight elements that threaten the security of a nation, but the methods chosen should be measured, otherwise the fight is lost. There has been no review on the effectiveness or failure of the act to realize its intended purpose. Nor was there any attempt on the part of the state to critically look at the violation of rights of innocent citizens by the state agencies. The Indian state keeps enacting laws, but none of these could be effectively applied as there was the absence of clarity of purpose. Therefore, every new law which has been enacted time and again to deal with security threats failed to bring any solution for the last six decades. The Indian state resorts to measures which are actually not giving anything in terms of strategic benefits but are short-term victories that might result in long-term tragedies. Therefore, right thinking citizens and human rights activists across the country feel that introduction of Armed Forces (Special Powers) Act was as much violation of human rights and its continuation is undesirable. What worried everyone is the arbitrary use, or rather misuse of power by the Indian armed forces particularly against the weaker sections of the society, including women. After having being subjected to indiscriminate abuse of that law, people of the north-east India have been demanding its revocation for a long time. The present paper attempts to critically examine the violation of human rights under Armed Forces (Special Powers) Act. It also attempts to bring out the impact of Armed Forces (Special Powers) Act on the Naga people.

Keywords: armed forces, insurgency, special laws, violence

Procedia PDF Downloads 469
282 The MHz Frequency Range EM Induction Device Development and Experimental Study for Low Conductive Objects Detection

Authors: D. Kakulia, L. Shoshiashvili, G. Sapharishvili

Abstract:

The results of the study are related to the direction of plastic mine detection research using electromagnetic induction, the development of appropriate equipment, and the evaluation of expected results. Electromagnetic induction sensing is effectively used in the detection of metal objects in the soil and in the discrimination of unexploded ordnances. Metal objects interact well with a low-frequency alternating magnetic field. Their electromagnetic response can be detected at the low-frequency range even when they are placed in the ground. Detection of plastic things such as plastic mines by electromagnetic induction is associated with difficulties. The interaction of non-conducting bodies or low-conductive objects with a low-frequency alternating magnetic field is very weak. At the high-frequency range where already wave processes take place, the interaction increases. Interactions with other distant objects also increase. A complex interference picture is formed, and extraction of useful information also meets difficulties. Sensing by electromagnetic induction at the intermediate MHz frequency range is the subject of research. The concept of detecting plastic mines in this range can be based on the study of the electromagnetic response of non-conductive cavity in a low-conductivity environment or the detection of small metal components in plastic mines, taking into account constructive features. The detector node based on the amplitude and phase detector 'Analog Devices ad8302' has been developed for experimental studies. The node has two inputs. At one of the inputs, the node receives a sinusoidal signal from the generator, to which a transmitting coil is also connected. The receiver coil is attached to the second input of the node. The additional circuit provides an option to amplify the signal output from the receiver coil by 20 dB. The node has two outputs. The voltages obtained at the output reflect the ratio of the amplitudes and the phase difference of the input harmonic signals. Experimental measurements were performed in different positions of the transmitter and receiver coils at the frequency range 1-20 MHz. Arbitrary/Function Generator Tektronix AFG3052C and the eight-channel high-resolution oscilloscope PICOSCOPE 4824 were used in the experiments. Experimental measurements were also performed with a low-conductive test object. The results of the measurements and comparative analysis show the capabilities of the simple detector node and the prospects for its further development in this direction. The results of the experimental measurements are compared and analyzed with the results of appropriate computer modeling based on the method of auxiliary sources (MAS). The experimental measurements are driven using the MATLAB environment. Acknowledgment -This work was supported by Shota Rustaveli National Science Foundation (SRNSF) (Grant number: NFR 17_523).

Keywords: EM induction sensing, detector, plastic mines, remote sensing

Procedia PDF Downloads 127
281 Architectural Wind Data Maps Using an Array of Wireless Connected Anemometers

Authors: D. Serero, L. Couton, J. D. Parisse, R. Leroy

Abstract:

In urban planning, an increasing number of cities require wind analysis to verify comfort of public spaces and around buildings. These studies are made using computer fluid dynamic simulation (CFD). However, this technique is often based on wind information taken from meteorological stations located at several kilometers of the spot of analysis. The approximated input data on project surroundings produces unprecise results for this type of analysis. They can only be used to get general behavior of wind in a zone but not to evaluate precise wind speed. This paper presents another approach to this problem, based on collecting wind data and generating an urban wind cartography using connected ultrasound anemometers. They are wireless devices that send immediate data on wind to a remote server. Assembled in array, these devices generate geo-localized data on wind such as speed, temperature, pressure and allow us to compare wind behavior on a specific site or building. These Netatmo-type anemometers communicate by wifi with central equipment, which shares data acquired by a wide variety of devices such as wind speed, indoor and outdoor temperature, rainfall, and sunshine. Beside its precision, this method extracts geo-localized data on any type of site that can be feedback looped in the architectural design of a building or a public place. Furthermore, this method allows a precise calibration of a virtual wind tunnel using numerical aeraulic simulations (like STAR CCM + software) and then to develop the complete volumetric model of wind behavior over a roof area or an entire city block. The paper showcases connected ultrasonic anemometers, which were implanted for an 18 months survey on four study sites in the Grand Paris region. This case study focuses on Paris as an urban environment with multiple historical layers whose diversity of typology and buildings allows considering different ways of capturing wind energy. The objective of this approach is to categorize the different types of wind in urban areas. This, particularly the identification of the minimum and maximum wind spectrum, helps define the choice and performance of wind energy capturing devices that could be implanted there. The localization on the roof of a building, the type of wind, the altimetry of the device in relation to the levels of the roofs, the potential nuisances generated. The method allows identifying the characteristics of wind turbines in order to maximize their performance in an urban site with turbulent wind.

Keywords: computer fluid dynamic simulation in urban environment, wind energy harvesting devices, net-zero energy building, urban wind behavior simulation, advanced building skin design methodology

Procedia PDF Downloads 77
280 Safety Tolerance Zone for Driver-Vehicle-Environment Interactions under Challenging Conditions

Authors: Matjaž Šraml, Marko Renčelj, Tomaž Tollazzi, Chiara Gruden

Abstract:

Road safety is a worldwide issue with numerous and heterogeneous factors influencing it. On the side, driver state – comprising distraction/inattention, fatigue, drowsiness, extreme emotions, and socio-cultural factors highly affect road safety. On the other side, the vehicle state has an important role in mitigating (or not) the road risk. Finally, the road environment is still one of the main determinants of road safety, defining driving task complexity. At the same time, thanks to technological development, a lot of detailed data is easily available, creating opportunities for the detection of driver state, vehicle characteristics and road conditions and, consequently, for the design of ad hoc interventions aimed at improving driver performance, increase awareness and mitigate road risks. This is the challenge faced by the i-DREAMS project. i-DREAMS, which stands for a smart Driver and Road Environment Assessment and Monitoring System, is a 3-year project funded by the European Union’s Horizon 2020 research and innovation program. It aims to set up a platform to define, develop, test and validate a ‘Safety Tolerance Zone’ to prevent drivers from getting too close to the boundaries of unsafe operation by mitigating risks in real-time and after the trip. After the definition and development of the Safety Tolerance Zone concept and the concretization of the same in an Advanced driver-assistance system (ADAS) platform, the system was tested firstly for 2 months in a driving simulator environment in 5 different countries. After that, naturalistic driving studies started for a 10-month period (comprising a 1-month pilot study, 3-month baseline study and 6 months study implementing interventions). Currently, the project team has approved a common evaluation approach, and it is developing the assessment of the usage and outcomes of the i-DREAMS system, which is turning positive insights. The i-DREAMS consortium consists of 13 partners, 7 engineering universities and research groups, 4 industry partners and 2 partners (European Transport Safety Council - ETSC - and POLIS cities and regions for transport innovation) closely linked to transport safety stakeholders, covering 8 different countries altogether.

Keywords: advanced driver assistant systems, driving simulator, safety tolerance zone, traffic safety

Procedia PDF Downloads 42
279 An Integrated Approach to Handle Sour Gas Transportation Problems and Pipeline Failures

Authors: Venkata Madhusudana Rao Kapavarapu

Abstract:

The Intermediate Slug Catcher (ISC) facility was built to process nominally 234 MSCFD of export gas from the booster station on a day-to-day basis and to receive liquid slugs up to 1600 m³ (10,000 BBLS) in volume when the incoming 24” gas pipelines are pigged following upsets or production of non-dew-pointed gas from gathering centers. The maximum slug sizes expected are 812 m³ (5100 BBLS) in winter and 542 m³ (3400 BBLS) in summer after operating for a month or more at 100 MMSCFD of wet gas, being 60 MMSCFD of treated gas from the booster station, combined with 40 MMSCFD of untreated gas from gathering center. The water content is approximately 60% but may be higher if the line is not pigged for an extended period, owing to the relative volatility of the condensate compared to water. In addition to its primary function as a slug catcher, the ISC facility will receive pigged liquids from the upstream and downstream segments of the 14” condensate pipeline, returned liquids from the AGRP, pigged through the 8” pipeline, and blown-down fluids from the 14” condensate pipeline prior to maintenance. These fluids will be received in the condensate flash vessel or the condensate separator, depending on the specific operation, for the separation of water and condensate and settlement of solids scraped from the pipelines. Condensate meeting the colour and 200 ppm water specifications will be dispatched to the AGRP through the 14” pipeline, while off-spec material will be returned to BS-171 via the existing 10” condensate pipeline. When they are not in operation, the existing 24” export gas pipeline and the 10” condensate pipeline will be maintained under export gas pressure, ready for operation. The gas manifold area contains the interconnecting piping and valves needed to align the slug catcher with either of the 24” export gas pipelines from the booster station and to direct the gas to the downstream segment of either of these pipelines. The manifold enables the slug catcher to be bypassed if it needs to be maintained or if through-pigging of the gas pipelines is to be performed. All gas, whether bypassing the slug catcher or returning to the gas pipelines from it, passes through black powder filters to reduce the level of particulates in the stream. These items are connected to the closed drain vessel to drain the liquid collected. Condensate from the booster station is transported to AGRP through 14” condensate pipeline. The existing 10” condensate pipeline will be used as a standby and for utility functions such as returning condensate from AGRP to the ISC or booster station or for transporting off-spec fluids from the ISC back to booster station. The manifold contains block valves that allow the two condensate export lines to be segmented at the ISC, thus facilitating bi-directional flow independently in the upstream and downstream segments, which ensures complete pipeline integrity and facility integrity. Pipeline failures will be attended to with the latest technologies by remote techno plug techniques, and repair activities will be carried out as needed. Pipeline integrity will be evaluated with ili pigging to estimate the pipeline conditions.

Keywords: integrity, oil & gas, innovation, new technology

Procedia PDF Downloads 52
278 The Affordances and Challenges of Online Learning and Teaching for Secondary School Students

Authors: Hahido Samaras

Abstract:

In many cases, especially with the pandemic playing a major role in fast-tracking the growth of the digital industry, online learning has become a necessity or even a standard educational model nowadays, reliably overcoming barriers such as location, time and cost and frequently combined with a face-to-face format (e.g., in blended learning). This being the case, it is evident that students in many parts of the world, as well as their parents, will increasingly need to become aware of the pros and cons of online versus traditional courses. This fast-growing mode of learning, accelerated during the years of the pandemic, presents an abundance of exciting options especially matched for a large number of secondary school students in remote places of the world where access to stimulating educational settings and opportunities for a variety of learning alternatives are scarce, adding advantages such as flexibility, affordability, engagement, flow and personalization of the learning experience. However, online learning can also present several challenges, such as a lack of student motivation and social interactions in natural settings, digital literacy, and technical issues, to name a few. Therefore, educational researchers will need to conduct further studies focusing on the benefits and weaknesses of online learning vs. traditional learning, while instructional designers propose ways of enhancing student motivation and engagement in virtual environments. Similarly, teachers will be required to become more and more technology-capable, at the same time developing their knowledge about their students’ particular characteristics and needs so as to match them with the affordances the technology offers. And, of course, schools, education programs, and policymakers will have to invest in powerful tools and advanced courses for online instruction. By developing digital courses that incorporate intentional opportunities for community-building and interaction in the learning environment, as well as taking care to include built-in design principles and strategies that align learning outcomes with learning assignments, activities, and assessment practices, rewarding academic experiences can derive for all students. This paper raises various issues regarding the effectiveness of online learning on students by reviewing a large number of research studies related to the usefulness and impact of online learning following the COVID-19-induced digital education shift. It also discusses what students, teachers, decision-makers, and parents have reported about this mode of learning to date. Best practices are proposed for parties involved in the development of online learning materials, particularly for secondary school students, as there is a need for educators and developers to be increasingly concerned about the impact of virtual learning environments on student learning and wellbeing.

Keywords: blended learning, online learning, secondary schools, virtual environments

Procedia PDF Downloads 67
277 Building User Behavioral Models by Processing Web Logs and Clustering Mechanisms

Authors: Madhuka G. P. D. Udantha, Gihan V. Dias, Surangika Ranathunga

Abstract:

Today Websites contain very interesting applications. But there are only few methodologies to analyze User navigations through the Websites and formulating if the Website is put to correct use. The web logs are only used if some major attack or malfunctioning occurs. Web Logs contain lot interesting dealings on users in the system. Analyzing web logs has become a challenge due to the huge log volume. Finding interesting patterns is not as easy as it is due to size, distribution and importance of minor details of each log. Web logs contain very important data of user and site which are not been put to good use. Retrieving interesting information from logs gives an idea of what the users need, group users according to their various needs and improve site to build an effective and efficient site. The model we built is able to detect attacks or malfunctioning of the system and anomaly detection. Logs will be more complex as volume of traffic and the size and complexity of web site grows. Unsupervised techniques are used in this solution which is fully automated. Expert knowledge is only used in validation. In our approach first clean and purify the logs to bring them to a common platform with a standard format and structure. After cleaning module web session builder is executed. It outputs two files, Web Sessions file and Indexed URLs file. The Indexed URLs file contains the list of URLs accessed and their indices. Web Sessions file lists down the indices of each web session. Then DBSCAN and EM Algorithms are used iteratively and recursively to get the best clustering results of the web sessions. Using homogeneity, completeness, V-measure, intra and inter cluster distance and silhouette coefficient as parameters these algorithms self-evaluate themselves to input better parametric values to run the algorithms. If a cluster is found to be too large then micro-clustering is used. Using Cluster Signature Module the clusters are annotated with a unique signature called finger-print. In this module each cluster is fed to Associative Rule Learning Module. If it outputs confidence and support as value 1 for an access sequence it would be a potential signature for the cluster. Then the access sequence occurrences are checked in other clusters. If it is found to be unique for the cluster considered then the cluster is annotated with the signature. These signatures are used in anomaly detection, prevent cyber attacks, real-time dashboards that visualize users, accessing web pages, predict actions of users and various other applications in Finance, University Websites, News and Media Websites etc.

Keywords: anomaly detection, clustering, pattern recognition, web sessions

Procedia PDF Downloads 260
276 Rapid Detection of Cocaine Using Aggregation-Induced Emission and Aptamer Combined Fluorescent Probe

Authors: Jianuo Sun, Jinghan Wang, Sirui Zhang, Chenhan Xu, Hongxia Hao, Hong Zhou

Abstract:

In recent years, the diversification and industrialization of drug-related crimes have posed significant threats to public health and safety globally. The widespread and increasingly younger demographics of drug users and the persistence of drug-impaired driving incidents underscore the urgency of this issue. Drug detection, a specialized forensic activity, is pivotal in identifying and analyzing substances involved in drug crimes. It relies on pharmacological and chemical knowledge and employs analytical chemistry and modern detection techniques. However, current drug detection methods are limited by their inability to perform semi-quantitative, real-time field analyses. They require extensive, complex laboratory-based preprocessing, expensive equipment, and specialized personnel and are hindered by long processing times. This study introduces an alternative approach using nucleic acid aptamers and Aggregation-Induced Emission (AIE) technology. Nucleic acid aptamers, selected artificially for their specific binding to target molecules and stable spatial structures, represent a new generation of biosensors following antibodies. Rapid advancements in AIE technology, particularly in tetraphenyl ethene-based luminous, offer simplicity in synthesis and versatility in modifications, making them ideal for fluorescence analysis. This work successfully synthesized, isolated, and purified an AIE molecule and constructed a probe comprising the AIE molecule, nucleic acid aptamers, and exonuclease for cocaine detection. The probe demonstrated significant relative fluorescence intensity changes and selectivity towards cocaine over other drugs. Using 4-Butoxytriethylammonium Bromide Tetraphenylethene (TPE-TTA) as the fluorescent probe, the aptamer as the recognition unit, and Exo I as an auxiliary, the system achieved rapid detection of cocaine within 5 mins in aqueous and urine, with detection limits of 1.0 and 5.0 µmol/L respectively. The probe-maintained stability and interference resistance in urine, enabling quantitative cocaine detection within a certain concentration range. This fluorescent sensor significantly reduces sample preprocessing time, offers a basis for rapid onsite cocaine detection, and promises potential for miniaturized testing setups.

Keywords: drug detection, aggregation-induced emission (AIE), nucleic acid aptamer, exonuclease, cocaine

Procedia PDF Downloads 34
275 New Derivatives 7-(diethylamino)quinolin-2-(1H)-one Based Chalcone Colorimetric Probes for Detection of Bisulfite Anion in Cationic Micellar Media

Authors: Guillermo E. Quintero, Edwin G. Perez, Oriel Sanchez, Christian Espinosa-Bustos, Denis Fuentealba, Margarita E. Aliaga

Abstract:

Bisulfite ion (HSO3-) has been used as a preservative in food, drinks, and medication. However, it is well-known that HSO3- can cause health problems like asthma and allergic reactions in people. Due to the above, the development of analytical methods for detecting this ion has gained great interest. In line with the above, the current use of colorimetric and/or fluorescent probes as a detection technique has acquired great relevance due to their high sensitivity and accuracy. In this context, 2-quinolinone derivatives have been found to possess promising activity as antiviral agents, sensitizers in solar cells, antifungals, antioxidants, and sensors. In particular, 7-(diethylamino)-2-quinolinone derivatives have attracted attention in recent years since their suitable photophysical properties become promising fluorescent probes. In Addition, there is evidence that photophysical properties and reactivity can be affected by the study medium, such as micellar media. Based on the above background, 7-(diethylamino)-2-quinolinone derivatives based chalcone will be able to be incorporated into a cationic micellar environment (Cetyltrimethylammonium bromide, CTAB). Furthermore, the supramolecular control induced by the micellar environment will increase the reactivity of these derivatives towards nucleophilic analytes such as HSO3- (Michael-type addition reaction), leading to the generation of new colorimetric and/or fluorescent probes. In the present study, two derivatives of 7-(diethylamino)-2-quinolinone based chalcone DQD1-2 were synthesized according to the method reported by the literature. These derivatives were structurally characterized by 1H, 13C NMR, and HRMS-ESI. In addition, UV-VIS and fluorescence studies determined absorption bands near 450 nm, emission bands near 600 nm, fluorescence quantum yields near 0.01, and fluorescence lifetimes of 5 ps. In line with the foregoing, these photophysical properties aforementioned were improved in the presence of a cationic micellar medium using CTAB thanks to the formation of adducts presenting association constants of the order of 2,5x105 M-1, increasing the quantum yields to 0.12 and the fluorescence lifetimes corresponding to two lifetimes near to 120 and 400 ps for DQD1 and DQD2. Besides, thanks to the presence of the micellar medium, the reactivity of these derivatives with nucleophilic analytes, such as HSO3-, was increased. This was achieved through kinetic studies, which demonstrated an increase in the bimolecular rate constants in the presence of a micellar medium. Finally, probe DQD1 was chosen as the best sensor since it was assessed to detect HSO3- with excellent results.

Keywords: bisulfite detection, cationic micelle, colorimetric probes, quinolinone derivatives

Procedia PDF Downloads 62
274 Bio-Medical Equipment Technicians: Crucial Workforce to Improve Quality of Health Services in Rural Remote Hospitals in Nepal

Authors: C. M. Sapkota, B. P. Sapkota

Abstract:

Background: Continuous developments in science and technology are increasing the availability of thousands of medical devices – all of which should be of good quality and used appropriately to address global health challenges. It is obvious that bio medical devices are becoming ever more indispensable in health service delivery and among the key workforce responsible for their design, development, regulation, evaluation and training in their use: biomedical technician (BMET) is the crucial. As a pivotal member of health workforce, biomedical technicians are an essential component of the quality health service delivery mechanism supporting the attainment of the Sustainable Development Goals. Methods: The study was based on cross sectional descriptive design. Indicators measuring the quality of health services were assessed in Mechi Zonal Hospital (MZH) and Sagarmatha Zonal Hospital (SZH). Indicators were calculated based on the data about hospital utilization and performance of 2018 available in Medical record section of both hospitals. MZH had employed the BMET during 2018 but SZH had no BMET in 2018.Focus Group Discussion with health workers in both hospitals was conducted to validate the hospital records. Client exit interview was conducted to assess the level of client satisfaction in both the hospitals. Results: In MZH there was round the clock availability and utilization of Radio diagnostics equipment, Laboratory equipment. Operation Theater was functional throughout the year. Bed Occupancy rate in MZH was 97% but in SZH it was only 63%.In SZH, OT was functional only 54% of the days in 2018. CT scan machine was just installed but not functional. Computerized X-Ray in SZH was functional only in 72% of the days. Level of client satisfaction was 87% in MZH but was just 43% in SZH. MZH performed all (256) the Caesarean Sections but SZH performed only 36% of 210 Caesarean Sections in 2018. In annual performance ranking of Government Hospitals, MZH was placed in 1st rank while as SZH was placed in 19th rank out of 32 referral hospitals nationwide in 2018. Conclusion: Biomedical technicians are the crucial member of the human resource for health team with the pivotal role. Trained and qualified BMET professionals are required within health-care systems in order to design, evaluate, regulate, acquire, maintain, manage and train on safe medical technologies. Applying knowledge of engineering and technology to health-care systems to ensure availability, affordability, accessibility, acceptability and utilization of the safer, higher quality, effective, appropriate and socially acceptable bio medical technology to populations for preventive, promotive, curative, rehabilitative and palliative care across all levels of the health service delivery.

Keywords: biomedical equipment technicians, BMET, human resources for health, HRH, quality health service, rural hospitals

Procedia PDF Downloads 107
273 Evaluation of a Driver Training Intervention for People on the Autism Spectrum: A Multi-Site Randomized Control Trial

Authors: P. Vindin, R. Cordier, N. J. Wilson, H. Lee

Abstract:

Engagement in community-based activities such as education, employment, and social relationships can improve the quality of life for individuals with Autism Spectrum Disorder (ASD). Community mobility is vital to attaining independence for individuals with ASD. Learning to drive and gaining a driver’s license is a critical link to community mobility; however, for individuals with ASD acquiring safe driving skills can be a challenging process. Issues related to anxiety, executive function, and social communication may affect driving behaviours. Driving training and education aimed at addressing barriers faced by learner drivers with ASD can help them improve their driving performance. A multi-site randomized controlled trial (RCT) was conducted to evaluate the effectiveness of an autism-specific driving training intervention for improving the on-road driving performance of learner drivers with ASD. The intervention was delivered via a training manual and interactive website consisting of five modules covering varying driving environments starting with a focus on off-road preparations and progressing through basic to complex driving skill mastery. Seventy-two learner drivers with ASD aged 16 to 35 were randomized using a blinded group allocation procedure into either the intervention or control group. The intervention group received 10 driving lessons with the instructors trained in the use of an autism-specific driving training protocol, whereas the control group received 10 driving lessons as usual. Learner drivers completed a pre- and post-observation drive using a standardized driving route to measure driving performance using the Driving Performance Checklist (DPC). They also completed anxiety, executive function, and social responsiveness measures. The findings showed that there were significant improvements in driving performance for both the intervention (d = 1.02) and the control group (d = 1.15). However, the differences were not significant between groups (p = 0.614) or study sites (p = 0.842). None of the potential moderator variables (anxiety, cognition, social responsiveness, and driving instructor experience) influenced driving performance. This study is an important step toward improving community mobility for individuals with ASD showing that an autism-specific driving training intervention can improve the driving performance of leaner drivers with ASD. It also highlighted the complexity of conducting a multi-site design even when sites were matched according to geography and traffic conditions. Driving instructors also need more and clearer information on how to communicate with learner drivers with restricted verbal expression.

Keywords: autism spectrum disorder, community mobility, driving training, transportation

Procedia PDF Downloads 105
272 Challenges Faced in Hospitality and Tourism Education: Rural Versus Urban Universities

Authors: Adelaide Rethabile Motshabi Pitso-Mbili

Abstract:

The disparity between universities in rural and urban areas of South Africa is still an ongoing issue. There are a lot of variations in these universities, such as the performance of the students and the lecturers, which is viewed as a worrying discrepancy related to knowledge gaps or educational inequality. According to research, rural students routinely perform worse than urban students in sub-Saharan Africa, and the disparity is wide when compared to the global average. This may be a result of the various challenges that universities in rural and urban areas face. Hence, the aim of this study was to compare the challenges faced by rural and urban universities, especially in hospitality and tourism programs, and recommend possible solutions. This study used a qualitative methodology and included focus groups and in-depth interviews. Eight focus groups of final-year students in hospitality and tourism programs from four institutions and four department heads of those programs participated in in-depth interviews. Additionally, the study was motivated by the teacher collaboration theory, which proposes that colleagues can help one another for the benefit of students and the institution. It was revealed that rural universities face more challenges than urban universities when it comes to hospitality and tourism education. The results of the interviews showed that universities in rural areas have a high staff turnover rate and offer fewer courses due to a lack of resources, such as the infrastructure, staff, equipment, and materials needed to give students hands-on training on the campus and in various hospitality and tourism programs. Urban universities, on the other hand, provide a variety of courses in the hospitality and tourism areas, and while resources are seldom an issue, they must deal with classes that have large enrolments and insufficient funding to support them all. Additionally, students in remote locations noted that having a lack of water and electricity makes it difficult for them to perform practical lessons. It is recommended that universities work together to collaborate or develop partnerships to help one another overcome obstacles and that universities in rural areas visit those in urban areas to observe how things are done there and to determine where they can improve themselves. The significance of the study is that it will truly bring rural and urban educational processes and practices into greater alignment of standards, benefits, and achievements; this will also help retain staff members within the rural area universities. The present study contributes to the literature by increasing the accumulation of knowledge on research topics, challenges, trends and innovation in hospitality and tourism education and setting forth an agenda for future research. The current study adds to the body of literature by expanding the accumulation of knowledge on research topics that contribute to trends and innovations in hospitality and tourism education and by laying out a plan for future research.

Keywords: hospitality and tourism education, rural and urban universities, collaboration, teacher and student performance, educational inequality

Procedia PDF Downloads 31
271 Experimental Investigation of Hydrogen Addition in the Intake Air of Compressed Engines Running on Biodiesel Blend

Authors: Hendrick Maxil Zárate Rocha, Ricardo da Silva Pereira, Manoel Fernandes Martins Nogueira, Carlos R. Pereira Belchior, Maria Emilia de Lima Tostes

Abstract:

This study investigates experimentally the effects of hydrogen addition in the intake manifold of a diesel generator operating with a 7% biodiesel-diesel oil blend (B7). An experimental apparatus setup was used to conduct performance and emissions tests in a single cylinder, air cooled diesel engine. This setup consisted of a generator set connected to a wirewound resistor load bank that was used to vary engine load. In addition, a flowmeter was used to determine hydrogen volumetric flowrate and a digital anemometer coupled with an air box to measure air flowrate. Furthermore, a digital precision electronic scale was used to measure engine fuel consumption and a gas analyzer was used to determine exhaust gas composition and exhaust gas temperature. A thermopar was installed near the exhaust collection to measure cylinder temperature. In-cylinder pressure was measured using an AVL Indumicro data acquisition system with a piezoelectric pressure sensor. An AVL optical encoder was installed in the crankshaft and synchronized with in-cylinder pressure in real time. The experimental procedure consisted of injecting hydrogen into the engine intake manifold at different mass concentrations of 2,6,8 and 10% of total fuel mass (B7 + hydrogen), which represented energy fractions of 5,15, 20 and 24% of total fuel energy respectively. Due to hydrogen addition, the total amount of fuel energy introduced increased and the generators fuel injection governor prevented any increases of engine speed. Several conclusions can be stated from the test results. A reduction in specific fuel consumption as a function of hydrogen concentration increase was noted. Likewise, carbon dioxide emissions (CO2), carbon monoxide (CO) and unburned hydrocarbons (HC) decreased as hydrogen concentration increased. On the other hand, nitrogen oxides emissions (NOx) increased due to average temperatures inside the cylinder being higher. There was also an increase in peak cylinder pressure and heat release rate inside the cylinder, since the fuel ignition delay was smaller due to hydrogen content increase. All this indicates that hydrogen promotes faster combustion and higher heat release rates and can be an important additive to all kind of fuels used in diesel generators.

Keywords: diesel engine, hydrogen, dual fuel, combustion analysis, performance, emissions

Procedia PDF Downloads 331
270 A Versatile Data Processing Package for Ground-Based Synthetic Aperture Radar Deformation Monitoring

Authors: Zheng Wang, Zhenhong Li, Jon Mills

Abstract:

Ground-based synthetic aperture radar (GBSAR) represents a powerful remote sensing tool for deformation monitoring towards various geohazards, e.g. landslides, mudflows, avalanches, infrastructure failures, and the subsidence of residential areas. Unlike spaceborne SAR with a fixed revisit period, GBSAR data can be acquired with an adjustable temporal resolution through either continuous or discontinuous operation. However, challenges arise from processing high temporal-resolution continuous GBSAR data, including the extreme cost of computational random-access-memory (RAM), the delay of displacement maps, and the loss of temporal evolution. Moreover, repositioning errors between discontinuous campaigns impede the accurate measurement of surface displacements. Therefore, a versatile package with two complete chains is developed in this study in order to process both continuous and discontinuous GBSAR data and address the aforementioned issues. The first chain is based on a small-baseline subset concept and it processes continuous GBSAR images unit by unit. Images within a window form a basic unit. By taking this strategy, the RAM requirement is reduced to only one unit of images and the chain can theoretically process an infinite number of images. The evolution of surface displacements can be detected as it keeps temporarily-coherent pixels which are present only in some certain units but not in the whole observation period. The chain supports real-time processing of the continuous data and the delay of creating displacement maps can be shortened without waiting for the entire dataset. The other chain aims to measure deformation between discontinuous campaigns. Temporal averaging is carried out on a stack of images in a single campaign in order to improve the signal-to-noise ratio of discontinuous data and minimise the loss of coherence. The temporal-averaged images are then processed by a particular interferometry procedure integrated with advanced interferometric SAR algorithms such as robust coherence estimation, non-local filtering, and selection of partially-coherent pixels. Experiments are conducted using both synthetic and real-world GBSAR data. Displacement time series at the level of a few sub-millimetres are achieved in several applications (e.g. a coastal cliff, a sand dune, a bridge, and a residential area), indicating the feasibility of the developed GBSAR data processing package for deformation monitoring of a wide range of scientific and practical applications.

Keywords: ground-based synthetic aperture radar, interferometry, small baseline subset algorithm, deformation monitoring

Procedia PDF Downloads 135
269 Security Issues in Long Term Evolution-Based Vehicle-To-Everything Communication Networks

Authors: Mujahid Muhammad, Paul Kearney, Adel Aneiba

Abstract:

The ability for vehicles to communicate with other vehicles (V2V), the physical (V2I) and network (V2N) infrastructures, pedestrians (V2P), etc. – collectively known as V2X (Vehicle to Everything) – will enable a broad and growing set of applications and services within the intelligent transport domain for improving road safety, alleviate traffic congestion and support autonomous driving. The telecommunication research and industry communities and standardization bodies (notably 3GPP) has finally approved in Release 14, cellular communications connectivity to support V2X communication (known as LTE – V2X). LTE – V2X system will combine simultaneous connectivity across existing LTE network infrastructures via LTE-Uu interface and direct device-to-device (D2D) communications. In order for V2X services to function effectively, a robust security mechanism is needed to ensure legal and safe interaction among authenticated V2X entities in the LTE-based V2X architecture. The characteristics of vehicular networks, and the nature of most V2X applications, which involve human safety makes it significant to protect V2X messages from attacks that can result in catastrophically wrong decisions/actions include ones affecting road safety. Attack vectors include impersonation attacks, modification, masquerading, replay, MiM attacks, and Sybil attacks. In this paper, we focus our attention on LTE-based V2X security and access control mechanisms. The current LTE-A security framework provides its own access authentication scheme, the AKA protocol for mutual authentication and other essential cryptographic operations between UEs and the network. V2N systems can leverage this protocol to achieve mutual authentication between vehicles and the mobile core network. However, this protocol experiences technical challenges, such as high signaling overhead, lack of synchronization, handover delay and potential control plane signaling overloads, as well as privacy preservation issues, which cannot satisfy the adequate security requirements for majority of LTE-based V2X services. This paper examines these challenges and points to possible ways by which they can be addressed. One possible solution, is the implementation of the distributed peer-to-peer LTE security mechanism based on the Bitcoin/Namecoin framework, to allow for security operations with minimal overhead cost, which is desirable for V2X services. The proposed architecture can ensure fast, secure and robust V2X services under LTE network while meeting V2X security requirements.

Keywords: authentication, long term evolution, security, vehicle-to-everything

Procedia PDF Downloads 146
268 Analog Railway Signal Object Controller Development

Authors: Ercan Kızılay, Mustafa Demi̇rel, Selçuk Coşkun

Abstract:

Railway signaling systems consist of vital products that regulate railway traffic and provide safe route arrangements and maneuvers of trains. SIL 4 signal lamps are produced by many manufacturers today. There is a need for systems that enable these signal lamps to be controlled by commands from the interlocking. These systems should act as fail-safe and give error indications to the interlocking system when an unexpected situation occurs for the safe operation of railway systems from the RAMS perspective. In the past, driving and proving the lamp in relay-based systems was typically done via signaling relays. Today, the proving of lamps is done by comparing the current values read over the return circuit, the lower and upper threshold values. The purpose is an analog electronic object controller with the possibility of easy integration with vital systems and the signal lamp itself. During the study, the EN50126 standard approach was considered, and the concept, definition, risk analysis, requirements, architecture, design, and prototyping were performed throughout this study. FMEA (Failure Modes and Effects Analysis) and FTA (Fault Tree) Analysis) have been used for safety analysis in accordance with EN 50129. Concerning these analyzes, the 1oo2D reactive fail-safe hardware design of a controller has been researched. Electromagnetic compatibility (EMC) effects on the functional safety of equipment, insulation coordination, and over-voltage protection were discussed during hardware design according to EN 50124 and EN 50122 standards. As vital equipment for railway signaling, railway signal object controllers should be developed according to EN 50126 and EN 50129 standards which identify the steps and requirements of the development in accordance with the SIL 4(Safety Integrity Level) target. In conclusion of this study, an analog railway signal object controller, which takes command from the interlocking system, is processed in driver cards. Driver cards arrange the voltage level according to desired visibility by means of semiconductors. Additionally, prover cards evaluate the current upper and lower thresholds. Evaluated values are processed via logic gates which are composed as 1oo2D by means of analog electronic technologies. This logic evaluates the voltage level of the lamp and mitigates the risks of undue dimming.

Keywords: object controller, railway electronic, analog electronic, safety, railway signal

Procedia PDF Downloads 65
267 Enabling Self-Care and Shared Decision Making for People Living with Dementia

Authors: Jonathan Turner, Julie Doyle, Laura O’Philbin, Dympna O’Sullivan

Abstract:

People living with dementia should be at the centre of decision-making regarding goals for daily living. These goals include basic activities (dressing, hygiene, and mobility), advanced activities (finances, transportation, and shopping), and meaningful activities that promote well-being (pastimes and intellectual pursuits). However, there is limited involvement of people living with dementia in the design of technology to support their goals. A project is described that is co-designing intelligent computer-based support for, and with, people affected by dementia and their carers. The technology will support self-management, empower participation in shared decision-making with carers and help people living with dementia remain healthy and independent in their homes for longer. It includes information from the patient’s care plan, which documents medications, contacts, and the patient's wishes on end-of-life care. Importantly for this work, the plan can outline activities that should be maintained or worked towards, such as exercise or social contact. The authors discuss how to integrate care goal information from such a care plan with data collected from passive sensors in the patient’s home in order to deliver individualized planning and interventions for persons with dementia. A number of scientific challenges are addressed: First, to co-design with dementia patients and their carers computerized support for shared decision-making about their care while allowing the patient to share the care plan. Second, to develop a new and open monitoring framework with which to configure sensor technologies to collect data about whether goals and actions specified for a person in their care plan are being achieved. This is developed top-down by associating care quality types and metrics elicited from the co-design activities with types of data that can be collected within the home, from passive and active sensors, and from the patient’s feedback collected through a simple co-designed interface. These activities and data will be mapped to appropriate sensors and technological infrastructure with which to collect the data. Third, the application of machine learning models to analyze data collected via the sensing devices in order to investigate whether and to what extent activities outlined via the care plan are being achieved. The models will capture longitudinal data to track disease progression over time; as the disease progresses and captured data show that activities outlined in the care plan are not being achieved, the care plan may recommend alternative activities. Disease progression may also require care changes, and a data-driven approach can capture changes in a condition more quickly and allow care plans to evolve and be updated.

Keywords: care goals, decision-making, dementia, self-care, sensors

Procedia PDF Downloads 145
266 Investigation of a Technology Enabled Model of Home Care: the eShift Model of Palliative Care

Authors: L. Donelle, S. Regan, R. Booth, M. Kerr, J. McMurray, D. Fitzsimmons

Abstract:

Palliative home health care provision within the Canadian context is challenged by: (i) a shortage of registered nurses (RN) and RNs with palliative care expertise, (ii) an aging population, (iii) reliance on unpaid family caregivers to sustain home care services with limited support to conduct this ‘care work’, (iv) a model of healthcare that assumes client self-care, and (v) competing economic priorities. In response, an interprofessional team of service provider organizations, a software/technology provider, and health care providers developed and implemented a technology-enabled model of home care, the eShift model of palliative home care (eShift). The eShift model combines communication and documentation technology with non-traditional utilization of health human resources to meet patient needs for palliative care in the home. The purpose of this study was to investigate the structure, processes, and outcomes of the eShift model of care. Methodology: Guided by Donebedian’s evaluation framework for health care, this qualitative-descriptive study investigated the structure, processes, and outcomes care of the eShift model of palliative home care. Interviews and focus groups were conducted with health care providers (n= 45), decision-makers (n=13), technology providers (n=3) and family care givers (n=8). Interviews were recorded, transcribed, and a deductive analysis of transcripts was conducted. Study Findings (1) Structure: The eShift model consists of a remotely-situated RN using technology to direct care provision virtually to patients in their home. The remote RN is connected virtually to a health technician (an unregulated care provider) in the patient’s home using real-time communication. The health technician uses a smartphone modified with the eShift application and communicates with the RN who uses a computer with the eShift application/dashboard. Documentation and communication about patient observations and care activities occur in the eShift portal. The RN is typically accountable for four to six health technicians and patients over an 8-hour shift. The technology provider was identified as an important member of the healthcare team. Other members of the team include family members, care coordinators, nurse practitioners, physicians, and allied health. (2) Processes: Conventionally, patient needs are the focus of care; however within eShift, the patient and the family caregiver were the focus of care. Enhanced medication administration was seen as one of the most important processes, and family caregivers reported high satisfaction with the care provided. There was perceived enhanced teamwork among health care providers. (3) Outcomes: Patients were able to die at home. The eShift model enabled consistency and continuity of care, and effective management of patient symptoms and caregiver respite. Conclusion: More than a technology solution, the eShift model of care was viewed as transforming home care practice and an innovative way to resolve the shortage of palliative care nurses within home care.

Keywords: palliative home care, health information technology, patient-centred care, interprofessional health care team

Procedia PDF Downloads 391
265 The Use of Geographic Information System Technologies for Geotechnical Monitoring of Pipeline Systems

Authors: A. G. Akhundov

Abstract:

Issues of obtaining unbiased data on the status of pipeline systems of oil- and oil product transportation become especially important when laying and operating pipelines under severe nature and climatic conditions. The essential attention is paid here to researching exogenous processes and their impact on linear facilities of the pipeline system. Reliable operation of pipelines under severe nature and climatic conditions, timely planning and implementation of compensating measures are only possible if operation conditions of pipeline systems are regularly monitored, and changes of permafrost soil and hydrological operation conditions are accounted for. One of the main reasons for emergency situations to appear is the geodynamic factor. Emergency situations are proved by the experience to occur within areas characterized by certain conditions of the environment and to develop according to similar scenarios depending on active processes. The analysis of natural and technical systems of main pipelines at different stages of monitoring gives a possibility of making a forecast of the change dynamics. The integration of GIS technologies, traditional means of geotechnical monitoring (in-line inspection, geodetic methods, field observations), and remote methods (aero-visual inspection, aero photo shooting, air and ground laser scanning) provides the most efficient solution of the problem. The united environment of geo information system (GIS) is a comfortable way to implement the monitoring system on the main pipelines since it provides means to describe a complex natural and technical system and every element thereof with any set of parameters. Such GIS enables a comfortable simulation of main pipelines (both in 2D and 3D), the analysis of situations and selection of recommendations to prevent negative natural or man-made processes and to mitigate their consequences. The specifics of such systems include: a multi-dimensions simulation of facilities in the pipeline system, math modelling of the processes to be observed, and the use of efficient numeric algorithms and software packets for forecasting and analyzing. We see one of the most interesting possibilities of using the monitoring results as generating of up-to-date 3D models of a facility and the surrounding area on the basis of aero laser scanning, data of aerophotoshooting, and data of in-line inspection and instrument measurements. The resulting 3D model shall be the basis of the information system providing means to store and process data of geotechnical observations with references to the facilities of the main pipeline; to plan compensating measures, and to control their implementation. The use of GISs for geotechnical monitoring of pipeline systems is aimed at improving the reliability of their operation, reducing the probability of negative events (accidents and disasters), and at mitigation of consequences thereof if they still are to occur.

Keywords: databases, 3D GIS, geotechnical monitoring, pipelines, laser scaning

Procedia PDF Downloads 166
264 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series

Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold

Abstract:

To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.

Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network

Procedia PDF Downloads 110
263 Spatial Setting in Translation: A Comparative Evaluation of translations from Pre-Islamic Poetry

Authors: Raja Lahiani

Abstract:

This study is concerned with scrutinising translations into English and French of references to locations in the desert of pre-Islamic Arabia. These references are used in the Source Text (ST) within a poetic image. Reference is made to the names of three different mountains in Arabia, namely Qatan, Sitar, and Yadhbul. As these mountains are referred to in the context of the poet’s description of the density and expansion of the clouds, it is crucial to know that while Sitar and Yadhbul are close to each other, Qatan is far away from them. This distance was functional for the poet to describe the expansion of the clouds. This reflects the spacious place (desert) he handled, and the fact that it was possible for him to physically see what he described. The purpose of this image is for the poet to communicate the vastness of the space he managed to see as he was in a moment of contemplation. Thus, knowledge of this characteristic about the setting is capital for the receiver to understand the communicative function of the verse. A corpus of eighteen translations is gathered. These vary between verse and prose renderings. The methodology adopted in this research work is comparative. Comparison is conducted at both the synchronic and diachronic levels; every translation shall be compared to the ST and then to previous translations. The comparative work will prove at the end that the translators who target historical facts do not necessarily succeed in preserving the image of the ST. It also proves that the more recent the translation is, the deeper the translator’s awareness is the link between imagery, setting, and point of view. Since the late eighteenth century and until nowadays, pre-Islamic poetry has been translated into Western languages. Translators differ as to motives, sources, priorities and intellectual backgrounds. A translator's skopoi undoubtedly affect the way s/he handles aspects of the ST. When it comes to culture-specific aspects and details related to setting, the problem is even more complex. Setting is a very important factor that reveals a great deal of the culture of pre-Islamic Arabia as this is remote in place, historical framework and literary tradition from its translators. History is present in pre-Islamic poetry, which justifies the important literature that has been written to extract information and data from it. These are imbedded not only by signalling given facts, events, and meditations but also by means of references to specific locations and landmarks that used to exist at the time. Spatial setting is an integral part of a literary text as it places it within its historical context. The importance of the translator’s awareness of spatial anthropological data before indulging in the process of translation is tested. This is also crucial in measuring the effect of setting loss and setting gain in translation. The findings of this research would ultimately evaluate the extent to which a comparative methodology is reliable in investigating the role of spatial setting awareness in translation.

Keywords: historical context, translation, comparative literature, spatial setting

Procedia PDF Downloads 225
262 Use of Cellulosic Fibres in Double Layer Porous Asphalt

Authors: Márcia Afonso, Marisa Dinis-Almeida, Cristina Fael

Abstract:

Climate change, namely precipitation patterns alteration, has led to extreme conditions such as floods and droughts. In turn, excessive construction has led to the waterproofing of the soil, increasing the surface runoff and decreasing the groundwater recharge capacity. The permeable pavements used in areas with low traffic lead to a decrease in the probability of floods peaks occurrence and the sediments reduction and pollutants transport, ensuring rainwater quality improvement. This study aims to evaluate the porous asphalt performance, developed in the laboratory, with addition of cellulosic fibres. One of the main objectives of cellulosic fibres use is to stop binder drainage, preventing its loss during storage and transport. Comparing to the conventional porous asphalt the cellulosic fibres addition improved the porous asphalt performance. The cellulosic fibres allowed the bitumen content increase, enabling retention and better aggregates coating and, consequently, a greater mixture durability. With this solution, it is intended to develop better practices of resilience and adaptation to the extreme climate changes and respond to the sustainability current demands, through the eco-friendly materials use. The mix design was performed for different size aggregates (with fine aggregates – PA1 and with coarse aggregates – PA2). The percentage influence of the fibres to be used was studied. It was observed that overall, the binder drainage decreases as the cellulose fibres percentage increases. It was found that the PA2 mixture obtained most binder drainage relative to PA1 mixture, irrespective of the fibres percentage used. Subsequently, the performance was evaluated through laboratory tests of indirect tensile stiffness modulus, water sensitivity, permeability and permanent deformation. The stiffness modulus for the two mixtures groups (with and without cellulosic fibres) presented very similar values between them. For the water sensitivity test it was observed that porous asphalt containing more fine aggregates are more susceptible to the water presence than mixtures with coarse aggregates. The porous asphalt with coarse aggregates have more air voids which allow water to pass easily leading to ITSR higher values. In the permeability test was observed that asphalt porous without cellulosic fibres presented had lower permeability than asphalt porous with cellulosic fibres. The resistance to permanent deformation results indicates better behaviour of porous asphalt with cellulosic fibres, verifying a bigger rut depth in porous asphalt without cellulosic fibres. In this study, it was observed that porous asphalt with bitumen higher percentages improve the performance to permanent deformation. This fact was only possible due to the bitumen retention by the cellulosic fibres.

Keywords: binder drainage, cellulosic fibres, permanent deformation, porous asphalt

Procedia PDF Downloads 198
261 Soybean Seed Composition Prediction From Standing Crops Using Planet Scope Satellite Imagery and Machine Learning

Authors: Supria Sarkar, Vasit Sagan, Sourav Bhadra, Meghnath Pokharel, Felix B.Fritschi

Abstract:

Soybean and their derivatives are very important agricultural commodities around the world because of their wide applicability in human food, animal feed, biofuel, and industries. However, the significance of soybean production depends on the quality of the soybean seeds rather than the yield alone. Seed composition is widely dependent on plant physiological properties, aerobic and anaerobic environmental conditions, nutrient content, and plant phenological characteristics, which can be captured by high temporal resolution remote sensing datasets. Planet scope (PS) satellite images have high potential in sequential information of crop growth due to their frequent revisit throughout the world. In this study, we estimate soybean seed composition while the plants are in the field by utilizing PlanetScope (PS) satellite images and different machine learning algorithms. Several experimental fields were established with varying genotypes and different seed compositions were measured from the samples as ground truth data. The PS images were processed to extract 462 hand-crafted vegetative and textural features. Four machine learning algorithms, i.e., partial least squares (PLSR), random forest (RFR), gradient boosting machine (GBM), support vector machine (SVM), and two recurrent neural network architectures, i.e., long short-term memory (LSTM) and gated recurrent unit (GRU) were used in this study to predict oil, protein, sucrose, ash, starch, and fiber of soybean seed samples. The GRU and LSTM architectures had two separate branches, one for vegetative features and the other for textures features, which were later concatenated together to predict seed composition. The results show that sucrose, ash, protein, and oil yielded comparable prediction results. Machine learning algorithms that best predicted the six seed composition traits differed. GRU worked well for oil (R-Squared: of 0.53) and protein (R-Squared: 0.36), whereas SVR and PLSR showed the best result for sucrose (R-Squared: 0.74) and ash (R-Squared: 0.60), respectively. Although, the RFR and GBM provided comparable performance, the models tended to extremely overfit. Among the features, vegetative features were found as the most important variables compared to texture features. It is suggested to utilize many vegetation indices for machine learning training and select the best ones by using feature selection methods. Overall, the study reveals the feasibility and efficiency of PS images and machine learning for plot-level seed composition estimation. However, special care should be given while designing the plot size in the experiments to avoid mixed pixel issues.

Keywords: agriculture, computer vision, data science, geospatial technology

Procedia PDF Downloads 106
260 Evaluating the Service Quality and Customers’ Satisfaction for Lihpaoland in Taiwan

Authors: Wan-Yu Liu, Tiffany April Lin, Yu-Chieh Tang, Yi-Lin Wang, Chieh-Hui Li

Abstract:

As the national income in Taiwan has been raised, the life style of the public has also been changed, so that the tourism industry gradually moves from a service industry to an experience economy. The Lihpaoland is one of the most popular theme parks in Taiwan. However, the related works on performance of service quality of the park have been lacking since its re-operation in 2012. Therefore, this study investigates the quality of software/hardware facilities and services of the Lihpaoland, and aims to achieve the following three goals: 1) analyzing how various sample data of tourists leads to different results for service quality of LihpaoLand; 2) analyzing how tourists respond to the service tangibility, service reliability, service responsiveness, service guarantee, and service empathy of LihpaoLand; 3) according to the theoretical and empirical results, proposing how to improve the overall facilities and services of LihpaoLand, and hoping to provide suggestions to the LihpaoLand or other related businesses to make decision. The survey was conducted on the tourists to the LihpaoLand using convenience sampling, and 400 questionnaires were collected successfully. Analysis results show that tourists paid much attention to maintenance of amusement facilities and safety of the park, and were satisfied with them, which are great advantages of the park. However, transportation around the LihpaoLand was inadequate, and the price of the Fullon hotel (which is the hotel closest to the LihpaoLand) were not accepted by tourists – more promotion events are recommended. Additionally, the shows are not diversified, and should be improved with the highest priority. Tourists did not pay attention to service personnel’s clothing and the ticket price, but they were not satisfied with them. Hence, this study recommends to design more distinctive costumes and conduct ticket promotions. Accordingly, the suggestions made in this study for LihpaoLand are stated as follows: 1) Diversified amusement facilities should be provided to satisfy the needs at different ages. 2) Cheep but tasty catering and more distinctive souvenirs should be offered. 3) Diversified propaganda schemes should be strengthened to increase number of tourists. 4) Quality and professional of the service staff should be enhanced to acquire public praise and tourists revisiting. 5) Ticket promotions in peak seasons, low seasons, and special events should be conducted. 6) Proper traffic flows should be planned and combined with technologies to reduce waiting time of tourists. 7) The features of theme landscape in LihpaoLand should be strengthened to increase willingness of the tourists with special preferences to visit the park. 8) Ticket discounts or premier points card promotions should be adopted to reward the tourists with high loyalty.

Keywords: service quality, customers’ satisfaction, theme park, Taiwan

Procedia PDF Downloads 447
259 Wildlife Habitat Corridor Mapping in Urban Environments: A GIS-Based Approach Using Preliminary Category Weightings

Authors: Stefan Peters, Phillip Roetman

Abstract:

The global loss of biodiversity is threatening the benefits nature provides to human populations and has become a more pressing issue than climate change and requires immediate attention. While there have been successful global agreements for environmental protection, such as the Montreal Protocol, these are rare, and we cannot rely on them solely. Thus, it is crucial to take national and local actions to support biodiversity. Australia is one of the 17 countries in the world with a high level of biodiversity, and its cities are vital habitats for endangered species, with more of them found in urban areas than in non-urban ones. However, the protection of biodiversity in metropolitan Adelaide has been inadequate, with over 130 species disappearing since European colonization in 1836. In this research project we conceptualized, developed and implemented a framework for wildlife Habitat Hotspots and Habitat Corridor modelling in an urban context using geographic data and GIS modelling and analysis. We used detailed topographic and other geographic data provided by a local council, including spatial and attributive properties of trees, parcels, water features, vegetated areas, roads, verges, traffic, and census data. Weighted factors considered in our raster-based Habitat Hotspot model include parcel size, parcel shape, population density, canopy cover, habitat quality and proximity to habitats and water features. Weighted factors considered in our raster-based Habitat Corridor model include habitat potential (resulting from the Habitat Hotspot model), verge size, road hierarchy, road widths, human density, and presence of remnant indigenous vegetation species. We developed a GIS model, using Python scripting and ArcGIS-Pro Model-Builder, to establish an automated reproducible and adjustable geoprocessing workflow, adaptable to any study area of interest. Our habitat hotspot and corridor modelling framework allow to determine and map existing habitat hotspots and wildlife habitat corridors. Our research had been applied to the study case of Burnside, a local council in Adelaide, Australia, which encompass an area of 30 km2. We applied end-user expertise-based category weightings to refine our models and optimize the use of our habitat map outputs towards informing local strategic decision-making.

Keywords: biodiversity, GIS modeling, habitat hotspot, wildlife corridor

Procedia PDF Downloads 86
258 The Learning Loops in the Public Realm Project in South Verona: Air Quality and Noise Pollution Participatory Data Collection towards Co-Design, Planning and Construction of Mitigation Measures in Urban Areas

Authors: Massimiliano Condotta, Giovanni Borga, Chiara Scanagatta

Abstract:

Urban systems are places where the various actors involved interact and enter in conflict, in particular with reference to topics such as traffic congestion and security. But topics of discussion, and often clash because of their strong complexity, are air and noise pollution. For air pollution, the complexity stems from the fact that atmospheric pollution is due to many factors, but above all, the observation and measurement of the amount of pollution of a transparent, mobile and ethereal element like air is very difficult. Often the perceived condition of the inhabitants does not coincide with the real conditions, because it is conditioned - sometimes in positive ways other in negative ways - from many other factors such as the presence, or absence, of natural elements such as trees or rivers. These problems are seen with noise pollution as well, which is also less considered as an issue even if it’s problematic just as much as air quality. Starting from these opposite positions, it is difficult to identify and implement valid, and at the same time shared, mitigation solutions for the problem of urban pollution (air and noise pollution). The LOOPER (Learning Loops in the Public Realm) project –described in this paper – wants to build and test a methodology and a platform for participatory co-design, planning, and construction process inside a learning loop process. Novelties in this approach are various; the most relevant are three. The first is that citizens participation starts since from the research of problems and air quality analysis through a participatory data collection, and that continues in all process steps (design and construction). The second is that the methodology is characterized by a learning loop process. It means that after the first cycle of (1) problems identification, (2) planning and definition of design solution and (3) construction and implementation of mitigation measures, the effectiveness of implemented solutions is measured and verified through a new participatory data collection campaign. In this way, it is possible to understand if the policies and design solution had a positive impact on the territory. As a result of the learning process produced by the first loop, it will be possible to improve the design of the mitigation measures and start the second loop with new and more effective measures. The third relevant aspect is that the citizens' participation is carried out via Urban Living Labs that involve all stakeholder of the city (citizens, public administrators, associations of all urban stakeholders,…) and that the Urban Living Labs last for all the cycling of the design, planning and construction process. The paper will describe in detail the LOOPER methodology and the technical solution adopted for the participatory data collection and design and construction phases.

Keywords: air quality, co-design, learning loops, noise pollution, urban living labs

Procedia PDF Downloads 339
257 The Situation of Transgender Individuals Was Worsened During Covid-19

Authors: Kajal Attri

Abstract:

Introduction: Transgender people are considered third gender in India, although they still face identification issues and alienated from society. Furthermore, they face several challenges, including discrimination in employment, resources, education, and property as a result, most transgender people make a living through begging at traffic lights, trains, and buses; attending auspicious occasions such as childbirth and weddings; and engaging in sex work, which includes both home-based and street-based sex work. During COVID-19, maintaining social distance exacerbates transgender people's circumstances and prevents them from accessing health care services, sexual reassignment surgery, identity-based resources, government security, and financial stability. Nonetheless, the pandemic raised unfavorable attitudes about transgender persons, such as unsupportive family members and trouble forming emotional relationships. This study focuses on how we missed transgender people during COVID-19 to provide better facilities to cope with this situation when they are already the most vulnerable segment of the society. Methodology: The research was conducted using secondary data from published publications and grey literature obtained from four databases: Pubmed, Psychinfo, Science direct, and Google scholar. The literature included total 25 articles that met the inclusion criteria for a review. Result and Discussion: Transgender people, who are considered the most vulnerable sector of society, have already faced several obstacles as a result of the outbreak. The analysis underscores the difficulties that transgender persons faced during COVID-19, such as, They had trouble accessing the government's social security programmes during the lockdown, which provide rations and pensions since they lack the necessary identifying cards. The impact of COVID-19 leaves transgender people at heightened risk of poverty and ill health because they exist on the margins of society, those livelihood base on sex work, begging, and participation on auspicious occasions. They had a significant risk of contracting SARS-CoV2 because they lived in congested areas or did not have permanent shelter, and they were predominantly infected with HIV, cancer, and other non-communicable illnesses. The pandemic raised unfavorable attitudes about transgender persons, such as unsupportive family members and trouble forming emotional relationships. Conclusion: The study comes forward with useful suggestions based on content analysis and information to reduce the existing woes of transgenders during any pandemic like COVID-19.

Keywords: COVID-19, transgender, lockdown, transwomen, stigmatization

Procedia PDF Downloads 49
256 Perception of Hazards and Risks in Road Utilization as Space for Social Ceremonies in Indigenous Residential Area of Ogbomoso, Nigeria

Authors: Okanlawon Simon Ayorinde, Odunjo Oluronke Omolola, Fadamiro Joseph Akinlabi, Adedibu Afolabi Adebgite

Abstract:

A road is a path established over land, especially prepared way between places for the use of pedestrian, riders, and vehicles: a hard surface built for vehicles to travel on. The social, economic and health importance of roads in any community and nation cannot be underestimated. Roads provide access to properties and they also provide mobility which is ability to transport goods and services from one place to another. In the residential zones of many indigenous cities in Nigeria, roads are usually blocked for social ceremonies. Road blocked for ceremonies as used in this study are a temporary barrier across a road, used to stop or hinder traffic from passing through to the other side. Social ceremonies that could warrant road blockage include marriage, child naming, funeral, celebration of life’s achievement, birthday anniversary etc. These activities are likely to generate environmental hazards and their attendant risks. The assessment of these hazards and risks in residential zones of indigenous cities in Nigeria becomes imperative. The study is focused on Ogbomoso, Oyo State, Nigeria. The town has two local government councils namely Ogbomoso North and Ogbomoso South. Urban tracts that are easy to identify are political wards in the absence of land use segregation, houses numbering and street naming. The wards that had residential having a minimum of 60% of their land use components were surveyed and fifteen out of twenty wards identified in the town were surveyed. The study utilized primary data collected through questionnaire administration The three major road categories (Trunk A-Federal; Trunk B- State; Trunk C-Local) were identified and trunk C-Local roads were purposively selected being the concern of this study because they are the ones often blocked for social activities. The major stakeholders interviewed and the respective sampling methods are residents (random and systematic), social ceremony organizers (purposive), government officials (purposive) and road users namely commercial motorists and commercial motor cyclists (random and incidental). Data analysis was mainly descriptive. Two indices to measure respondents’ perception were developed. These are ‘Hazard Severity Index’ (HSI) and ‘Relative Awareness Index’ (RAI).Thereafter, policy implications and recommendations were provided.

Keywords: road, residential zones, indigenous cities, blocked, social ceremonies

Procedia PDF Downloads 491