Search results for: lead time reduction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24317

Search results for: lead time reduction

20687 Fear of Gender-Based Crime and Women Empowerment: An Empirical Study among the Urban Residents of Bangladesh

Authors: Mohammad Ashraful Alam, Biro Judit

Abstract:

Fear of gender-based crime and fear of crime victimization for women is a major concern in the urban areas of Bangladesh. Based on the recent data from various human rights organizations and international literature the study found that gender-based crime especially sexual assault and rape are increasing in Bangladesh at a significant rate in comparison to other countries. The major focus of the study was to identify the relationship between fear of gender-based crime and women empowerment. To explore the fact the study followed the mixed methodological approach comprising with quantitative and qualitative methods and used secondary information from national and international sources. Corresponding global pictures the present study found that gender, age, complexion, social position, and ethnicity were more common factors of sexual assault and victimization in Bangladesh which lead to women become more fearful about crime victimization than men. Fear of gender-based crime traumatizes women which leads to withdrawal of their non-essential everyday works and some time from the essential works based on their social position, financial status, and social honor in the society. The increasing crime rate also increases the propensity to fear of criminal victimization, traumatization, and feeling of helplessness which make them vulnerable. The patriarchal culture and practices in Bangladesh based on religious culture and established social norms women always feel defenseless therefore they withdraw themselves from various social activities and own interest. Women who have already victimized feel more fear and become traumatized, and who do not victimize yet but know the severity of victimization from the media and others’ have the feeling of fear of crime. Women who find themselves as weak bonding and low networks with their neighbors and living for a short duration have a feeling of more fear and avoid visiting a certain place in a certain time and avoid some social activities. The study found the young women have more possibilities to become victimized through the feeling of fear of crime is higher among elderly women than young. Though women feel fear of all kinds of crime but usually all aged women are more fearful of sexual assault and rape than other violent crimes. Therefore, elderly women and another person in the family does not allow younger girls to go and involve outside activities to secure their family status. On the other hand, fear of crime in public transport is more common to all aged women at a higher level and sometimes they compromise their freedom, independence, financial opportunities, the job only to avoid the perceived threat, and save their social and cultural honor. The study also explores that fear of crime does not always depend on crime rate but the crime news, the severity of the crime, delay justice, the ineffectiveness of police, bail of criminals, corruption and political favoritism, etc. Finally, the study shows that the fear of gender-based crime and violence is working as a potential barrier to ensuring women's empowerment in Bangladesh.

Keywords: compromise personal freedom, fear of crime, fear of gender-based crime, fear of violent crime victimization, rape, sexual assaults, withdrawal from regular activities, women empowerment

Procedia PDF Downloads 128
20686 Leveraging Information for Building Supply Chain Competitiveness

Authors: Deepika Joshi

Abstract:

Operations in automotive industry rely greatly on information shared between Supply Chain (SC) partners. This leads to efficient and effective management of SC activity. Automotive sector in India is growing at 14.2 percent per annum and has huge economic importance. We find that no study has been carried out on the role of information sharing in SC management of Indian automotive manufacturers. Considering this research gap, the present study is planned to establish the significance of information sharing in Indian auto-component supply chain activity. An empirical research was conducted for large scale auto component manufacturers from India. Twenty four Supply Chain Performance Indicators (SCPIs) were collected from existing literature. These elements belong to eight diverse but internally related areas of SC management viz., demand management, cost, technology, delivery, quality, flexibility, buyer-supplier relationship, and operational factors. A pair-wise comparison and an open ended questionnaire were designed using these twenty four SCPIs. The questionnaire was then administered among managerial level employees of twenty-five auto-component manufacturing firms. Analytic Network Process (ANP) technique was used to analyze the response of pair-wise questionnaire. Finally, twenty-five priority indexes are developed, one for each respondent. These were averaged to generate an industry specific priority index. The open-ended questions depicted strategies related to information sharing between buyers and suppliers and their influence on supply chain performance. Results show that the impact of information sharing on certain performance indicators is relatively greater than their corresponding variables. For example, flexibility, delivery, demand and cost related elements have massive impact on information sharing. Technology is relatively less influenced by information sharing but it immensely influence the quality of information shared. Responses obtained from managers reveal that timely and accurate information sharing lowers the cost, increases flexibility and on-time delivery of auto parts, therefore, enhancing the competitiveness of Indian automotive industry. Any flaw in dissemination of information can disturb the cycle time of both the parties and thus increases the opportunity cost. Due to supplier’s involvement in decisions related to design of auto parts, quality conformance is found to improve, leading to reduction in rejection rate. Similarly, mutual commitment to share right information at right time between all levels of SC enhances trust level. SC partners share information to perform comprehensive quality planning to ingrain total quality management. This study contributes to operations management literature which faces scarcity of empirical examination on this subject. It views information sharing as a building block which firms can promote and evolve to leverage the operational capability of all SC members. It will provide insights for Indian managers and researchers as every market is unique and suppliers and buyers are driven by local laws, industry status and future vision. While major emphasis in this paper is given to SC operations happening between domestic partners, placing more focus on international SC can bring in distinguished results.

Keywords: Indian auto component industry, information sharing, operations management, supply chain performance indicators

Procedia PDF Downloads 542
20685 Real Time Acquisition and Psychoacoustic Analysis of Brain Wave

Authors: Shweta Singh, Dipali Bansal, Rashima Mahajan

Abstract:

Psychoacoustics has become a potential area of research due to the growing interest of both laypersons and medical and mental health professionals. Non-invasive brain computer interface like Electroencephalography (EEG) is widely being used in this field. An attempt has been made in this paper to examine the response of EEG signals to acoustic stimuli further analysing the brain electrical activity. The real time EEG is acquired for 6 participants using a cost effective and portable EMOTIV EEG neuron headset. EEG data analysis is further done using EMOTIV test bench, EDF browser and EEGLAB (MATLAB Tool) application software platforms. Spectral analysis of acquired neural signals (AF3 channel) using these software platforms are clearly indicative of increased brain activity in various bands. The inferences drawn from such an analysis have significant correlation with subject’s subjective reporting of the experiences. The results suggest that the methodology adopted can further be used to assist patients with sleeping and depressive disorders.

Keywords: OM chant, spectral analysis, EDF browser, EEGLAB, EMOTIV, real time acquisition

Procedia PDF Downloads 275
20684 Constructing a Semi-Supervised Model for Network Intrusion Detection

Authors: Tigabu Dagne Akal

Abstract:

While advances in computer and communications technology have made the network ubiquitous, they have also rendered networked systems vulnerable to malicious attacks devised from a distance. These attacks or intrusions start with attackers infiltrating a network through a vulnerable host and then launching further attacks on the local network or Intranet. Nowadays, system administrators and network professionals can attempt to prevent such attacks by developing intrusion detection tools and systems using data mining technology. In this study, the experiments were conducted following the Knowledge Discovery in Database Process Model. The Knowledge Discovery in Database Process Model starts from selection of the datasets. The dataset used in this study has been taken from Massachusetts Institute of Technology Lincoln Laboratory. After taking the data, it has been pre-processed. The major pre-processing activities include fill in missed values, remove outliers; resolve inconsistencies, integration of data that contains both labelled and unlabelled datasets, dimensionality reduction, size reduction and data transformation activity like discretization tasks were done for this study. A total of 21,533 intrusion records are used for training the models. For validating the performance of the selected model a separate 3,397 records are used as a testing set. For building a predictive model for intrusion detection J48 decision tree and the Naïve Bayes algorithms have been tested as a classification approach for both with and without feature selection approaches. The model that was created using 10-fold cross validation using the J48 decision tree algorithm with the default parameter values showed the best classification accuracy. The model has a prediction accuracy of 96.11% on the training datasets and 93.2% on the test dataset to classify the new instances as normal, DOS, U2R, R2L and probe classes. The findings of this study have shown that the data mining methods generates interesting rules that are crucial for intrusion detection and prevention in the networking industry. Future research directions are forwarded to come up an applicable system in the area of the study.

Keywords: intrusion detection, data mining, computer science, data mining

Procedia PDF Downloads 288
20683 Immigrant Status and System Justification and Condemnation

Authors: Nancy Bartekian, Kaelan Vazquez, Christine Reyna

Abstract:

Immigrants coming into the United States of America may justify the American system (political, economic, healthcare, criminal justice) and see it as functional. This may be explained because they may come from countries that are even more unstable than the U.S. and/or come here to benefit from the promise of the “American dream” -a narrative that they might be more likely to believe in if they were willing to undergo the costly and sometimes dangerous process to immigrate. Conversely, native-born Americans, as well as immigrants who may have lived in America for a longer period of time, would have more experiences with the various broken systems in America that are dysfunctional, fail to provide adequate services equitably, and/or are steeped in systemic racism and other biases that disadvantage lower-status groups. Thus, our research expects that system justification would decrease, and condemnation would increase with more time spent in the U.S. for immigrant groups. We predict that a) those not born in the U.S. will be more likely to justify the system, b) they will also be less likely to condemn the system, and c) the longer an immigrant has been in the U.S. the less likely they will to justify, and more they will to condemn the system. We will use a mixed-model multivariate analysis of covariance (MANCOVA) and control for race, income, and education. We will also run linear regression models to test if there is a relationship between the length of time in the United States and a decrease in system justification, and length of time and an increase in system condemnation for those not born in the U.S. We will also conduct exploratory analyses to see if the predicted patterns are more likely within certain systems over other systems (political, economic, healthcare, criminal justice).

Keywords: immigration, system justification, system condemnation, system qualification

Procedia PDF Downloads 93
20682 Hardware Implementation and Real-time Experimental Validation of a Direction of Arrival Estimation Algorithm

Authors: Nizar Tayem, AbuMuhammad Moinuddeen, Ahmed A. Hussain, Redha M. Radaydeh

Abstract:

This research paper introduces an approach for estimating the direction of arrival (DOA) of multiple RF noncoherent sources in a uniform linear array (ULA). The proposed method utilizes a Capon-like estimation algorithm and incorporates LU decomposition to enhance the accuracy of DOA estimation while significantly reducing computational complexity compared to existing methods like the Capon method. Notably, the proposed method does not require prior knowledge of the number of sources. To validate its effectiveness, the proposed method undergoes validation through both software simulations and practical experimentation on a prototype testbed constructed using a software-defined radio (SDR) platform and GNU Radio software. The results obtained from MATLAB simulations and real-time experiments provide compelling evidence of the proposed method's efficacy.

Keywords: DOA estimation, real-time validation, software defined radio, computational complexity, Capon's method, GNU radio

Procedia PDF Downloads 62
20681 Preferred Service Delivery options for Female Sex Workers in the Riverine Area of lome, Togo

Authors: Gbone Akou Sophie

Abstract:

Lome state in Togo is considered to have the highest HIV prevalence in Togo according to NAIIS 2023, with the prevalence of 5.5%, Female Sex Workers (FSW) are one of the most vulnerable population, and they are vital in HIV programming. They have the highest HIV prevalence compared to others such as HRM, PWID and Transgender in lome State, Togo. Evidence from Integrated Biological Behavioral Surveillance Survey shows increasing burden of HIV infection from 13.7% in 20018 to 17.2% in 2020 and now 22.9% in 2021 among Female Sex Workers (FSW). This shows their HIV prevalence has been rising over time. The vulnerability status of the FSW in the riverine areas of lome is heightened because of cultural and economic issues where there is exchange of sex for commodities with cross border traders as well as limited access to HIV prevention information. Methods:A cross sectional study which recruited 120 FSW from two Riverine LGAs of Agoe and Kpehenou LGA of Lome State using both snowballing and simple random sampling technique. While semi-structured questionnaire was used as an instrument for data collection among the 120 FSW respondents. Additional information was also elicited from 10 FSW key opinion leaders and community members through in-depth interviews (IDI). Results: 44(36%) of respondents were willing to receive regular HIV care and services as well as visit for STI check-ups at any service point. However, 47(40%) were willing to receive services at private facilities alone, 10 (8%) were willing to receive services at public facilities, 6 (5%) were willing to access services in their homes rather than in the health facility. 13 (11%) were also willing to have peers assist in getting HIV testing services. Conclusion: integrated differentiated model of care for HIV services helps improve HIV services uptake among FSW community especially in the hard- to reach riverine areas which will further lead to epidemic control. Also targeted HIV information should be designed to suit the learning needs of the hard-to reach communities like the riverine areas. More peer educators should be engaged to ensure information and other HIV services reach the riverine communities.

Keywords: female sex workers ( FSW), human immuno-deficiency virus(HIV), prevanlence, service delivery

Procedia PDF Downloads 57
20680 Decentralized Peak-Shaving Strategies for Integrated Domestic Batteries

Authors: Corentin Jankowiak, Aggelos Zacharopoulos, Caterina Brandoni

Abstract:

In a context of increasing stress put on the electricity network by the decarbonization of many sectors, energy storage is likely to be the key mitigating element, by acting as a buffer between production and demand. In particular, the highest potential for storage is when connected closer to the loads. Yet, low voltage storage struggles to penetrate the market at a large scale due to the novelty and complexity of the solution, and the competitive advantage of fossil fuel-based technologies regarding regulations. Strong and reliable numerical simulations are required to show the benefits of storage located near loads and promote its development. The present study was restrained from excluding aggregated control of storage: it is assumed that the storage units operate independently to one another without exchanging information – as is currently mostly the case. A computationally light battery model is presented in detail and validated by direct comparison with a domestic battery operating in real conditions. This model is then used to develop Peak-Shaving (PS) control strategies as it is the decentralized service from which beneficial impacts are most likely to emerge. The aggregation of flatter, peak- shaved consumption profiles is likely to lead to flatter and arbitraged profile at higher voltage layers. Furthermore, voltage fluctuations can be expected to decrease if spikes of individual consumption are reduced. The crucial part to achieve PS lies in the charging pattern: peaks depend on the switching on and off of appliances in the dwelling by the occupants and are therefore impossible to predict accurately. A performant PS strategy must, therefore, include a smart charge recovery algorithm that can ensure enough energy is present in the battery in case it is needed without generating new peaks by charging the unit. Three categories of PS algorithms are introduced in detail. First, using a constant threshold or power rate for charge recovery, followed by algorithms using the State Of Charge (SOC) as a decision variable. Finally, using a load forecast – of which the impact of the accuracy is discussed – to generate PS. A performance metrics was defined in order to quantitatively evaluate their operating regarding peak reduction, total energy consumption, and self-consumption of domestic photovoltaic generation. The algorithms were tested on load profiles with a 1-minute granularity over a 1-year period, and their performance was assessed regarding these metrics. The results show that constant charging threshold or power are far from optimal: a certain value is not likely to fit the variability of a residential profile. As could be expected, forecast-based algorithms show the highest performance. However, these depend on the accuracy of the forecast. On the other hand, SOC based algorithms also present satisfying performance, making them a strong alternative when the reliable forecast is not available.

Keywords: decentralised control, domestic integrated batteries, electricity network performance, peak-shaving algorithm

Procedia PDF Downloads 107
20679 Time Temperature Dependence of Long Fiber Reinforced Polypropylene Manufactured by Direct Long Fiber Thermoplastic Process

Authors: K. A. Weidenmann, M. Grigo, B. Brylka, P. Elsner, T. Böhlke

Abstract:

In order to reduce fuel consumption, the weight of automobiles has to be reduced. Fiber reinforced polymers offer the potential to reach this aim because of their high stiffness to weight ratio. Additionally, the use of fiber reinforced polymers in automotive applications has to allow for an economic large-scale production. In this regard, long fiber reinforced thermoplastics made by direct processing offer both mechanical performance and processability in injection moulding and compression moulding. The work presented in this contribution deals with long glass fiber reinforced polypropylene directly processed in compression moulding (D-LFT). For the use in automotive applications both the temperature and the time dependency of the materials properties have to be investigated to fulfill performance requirements during crash or the demands of service temperatures ranging from -40 °C to 80 °C. To consider both the influence of temperature and time, quasistatic tensile tests have been carried out at different temperatures. These tests have been complemented by high speed tensile tests at different strain rates. As expected, the increase in strain rate results in an increase of the elastic modulus which correlates to an increase of the stiffness with decreasing service temperature. The results are in good accordance with results determined by dynamic mechanical analysis within the range of 0.1 to 100 Hz. The experimental results from different testing methods were grouped and interpreted by using different time temperature shift approaches. In this regard, Williams-Landel-Ferry and Arrhenius approach based on kinetics have been used. As the theoretical shift factor follows an arctan function, an empirical approach was also taken into consideration. It could be shown that this approach describes best the time and temperature superposition for glass fiber reinforced polypropylene manufactured by D-LFT processing.

Keywords: composite, dynamic mechanical analysis, long fibre reinforced thermoplastics, mechanical properties, time temperature superposition

Procedia PDF Downloads 188
20678 Design Optimisation of a Novel Cross Vane Expander-Compressor Unit for Refrigeration System

Authors: Y. D. Lim, K. S. Yap, K. T. Ooi

Abstract:

In recent years, environmental issue has been a hot topic in the world, especially the global warming effect caused by conventional non-environmentally friendly refrigerants has increased. Several studies of a more energy-efficient and environmentally friendly refrigeration system have been conducted in order to tackle the issue. In search of a better refrigeration system, CO2 refrigeration system has been proposed as a better option. However, the high throttling loss involved during the expansion process of the refrigeration cycle leads to a relatively low efficiency and thus the system is impractical. In order to improve the efficiency of the refrigeration system, it is suggested by replacing the conventional expansion valve in the refrigeration system with an expander. Based on this issue, a new type of expander-compressor combined unit, named Cross Vane Expander-Compressor (CVEC) was introduced to replace the compressor and the expansion valve of a conventional refrigeration system. A mathematical model was developed to calculate the performance of CVEC, and it was found that the machine is capable of saving the energy consumption of a refrigeration system by as much as 18%. Apart from energy saving, CVEC is also geometrically simpler and more compact. To further improve its efficiency, optimization study of the device is carried out. In this report, several design parameters of CVEC were chosen to be the variables of optimization study. This optimization study was done in a simulation program by using complex optimization method, which is a direct search, multi-variables and constrained optimization method. It was found that the main design parameters, which was shaft radius was reduced around 8% while the inner cylinder radius was remained unchanged at its lower limit after optimization. Furthermore, the port sizes were increased to their upper limit after optimization. The changes of these design parameters have resulted in reduction of around 12% in the total frictional loss and reduction of 4% in power consumption. Eventually, the optimization study has resulted in an improvement in the mechanical efficiency CVEC by 4% and improvement in COP by 6%.

Keywords: complex optimization method, COP, cross vane expander-compressor, CVEC, design optimization, direct search, energy saving, improvement, mechanical efficiency, multi variables

Procedia PDF Downloads 362
20677 A Pilot Study on the Predictors of Child-Parent Relationship

Authors: Selen Demirtas-Zorbaz

Abstract:

This study aimed to determine if there is any relation between child–parent relationships and parental self-efficacy. The participants of this study are 208 parents, and 82,5% of them are mothers. The children’s age range are differed from 4 to 13 (x̄=7,8). The results showed that there is a significant positive correlation between positive relationship with parents and parental self-efficacy (r=0.52, p < .01); and significant negative correlation between conflict with parents and parental self-efficacy (r=-0.28, p < .01). Also, findings reveal that there was no significant correlation between the time spent with the child and conflict with parents (r=-0.08, p>.05). It was also found that there was no significant correlation between the time spends with the child and positive relationship with parents (r=0.08, p > 0.5). In addition to this; regression analysis’ results indicated that parental self-efficacy is significant predictors of conflict (β=-.268, t=-4.002, p < .001) and positive relationship with parents (β =.519, t= 8.733, p < .001) whereas time spent with children is not (β =-.070, t=-1,045, p > .05 for conflict; β =.061, t=1.023, p > .05 for positive relationship with parents).

Keywords: child-parent relationship, conflict with parents, positive relationship with parents, parental efficacy

Procedia PDF Downloads 289
20676 Optimization of Beneficiation Process for Upgrading Low Grade Egyptian Kaolin

Authors: Nagui A. Abdel-Khalek, Khaled A. Selim, Ahmed Hamdy

Abstract:

Kaolin is naturally occurring ore predominantly containing kaolinite mineral in addition to some gangue minerals. Typical impurities present in kaolin ore are quartz, iron oxides, titanoferrous minerals, mica, feldspar, organic matter, etc. The main coloring impurity, particularly in the ultrafine size range, is titanoferrous minerals. Kaolin is used in many industrial applications such as sanitary ware, table ware, ceramic, paint, and paper industries, each of which should be of certain specifications. For most industrial applications, kaolin should be processed to obtain refined clay so as to match with standard specifications. For example, kaolin used in paper and paint industries need to be of high brightness and low yellowness. Egyptian kaolin is not subjected to any beneficiation process and the Egyptian companies apply selective mining followed by, in some localities, crushing and size reduction only. Such low quality kaolin can be used in refractory and pottery production but not in white ware and paper industries. This paper aims to study the amenability of beneficiation of an Egyptian kaolin ore of El-Teih locality, Sinai, to be suitable for different industrial applications. Attrition scrubbing and classification followed by magnetic separation are applied to remove the associated impurities. Attrition scrubbing and classification are used to separate the coarse silica and feldspars. Wet high intensity magnetic separation was applied to remove colored contaminants such as iron oxide and titanium oxide. Different variables affecting of magnetic separation process such as solid percent, magnetic field, matrix loading capacity, and retention time are studied. The results indicated that substantial decrease in iron oxide (from 1.69% to 0.61% ) and TiO2 (from 3.1% to 0.83%) contents as well as improving iso-brightness (from 63.76% to 75.21% and whiteness (from 79.85% to 86.72%) of the product can be achieved.

Keywords: Kaolin, titanoferrous minerals, beneficiation, magnetic separation, attrition scrubbing, classification

Procedia PDF Downloads 349
20675 Simulation and Performance Evaluation of Transmission Lines with Shield Wire Segmentation against Atmospheric Discharges Using ATPDraw

Authors: Marcio S. da Silva, Jose Mauricio de B. Bezerra, Antonio E. de A. Nogueira

Abstract:

This paper aims to make a performance analysis of shield wire transmission lines against atmospheric discharges when it is made the option of sectioning the shield wire and verify if the tolerability of the change. As a goal of this work, it was established to make complete modeling of a transmission line in the ATPDraw program with shield wire grounded in all the towers and in some towers. The methodology used to make the proposed evaluation was to choose an actual transmission line that served as a case study. From the choice of transmission line and verification of all its topology and materials, complete modeling of the line using the ATPDraw software was performed. Then several atmospheric discharges were simulated by striking the grounded shield wires in each tower. These simulations served to identify the behavior of the existing line against atmospheric discharges. After this first analysis, the same line was reconsidered with shield wire segmentation. The shielding wire segmentation technique aims to reduce induced losses in shield wires and is adopted in some transmission lines in Brazil. With the same conditions of atmospheric discharge the transmission line, this time with shield wire segmentation was again evaluated. The results obtained showed that it is possible to obtain similar performances against atmospheric discharges between a shield wired line in multiple towers and the same line with shield wire segmentation if some precautions are adopted as verification of the ground resistance of the wire segmented shield, adequacy of the maximum length of the segmented gap, evaluation of the separation length of the electrodes of the insulator spark, among others. As a conclusion, it is verified that since the correct assessment and adopted the correct criteria of adjustment a transmission line with shielded wire segmentation can perform very similar to the traditional use with multiple earths. This solution contributes in a very important way to the reduction of energy losses in transmission lines.

Keywords: atmospheric discharges, ATPDraw, shield wire, transmission lines

Procedia PDF Downloads 158
20674 Use of a Symptom Scale Based on Degree of Functional Impairment for Acute Concussion

Authors: Matthew T. McCarthy, Sarah Janse, Natalie M. Pizzimenti, Anthony K. Savino, Brian Crosser, Sean C. Rose

Abstract:

Concussion is diagnosed clinically using a comprehensive history and exam, supported by ancillary testing. Frequently, symptom checklists are used as part of the evaluation of concussion. Existing symptom scales are based on a subjective Likert scale, without relation of symptoms to clinical or functional impairment. This is a retrospective review of 133 patients under age 30 seen in an outpatient neurology practice within 30 days of a probable or definite concussion. Each patient completed 2 symptom checklists at the initial visit – the SCAT-3 symptom evaluation (22 symptoms, 0-6 scale) and a scale based on the degree of clinical impairment for each symptom (22 symptoms, 0-3 scale related to functional impact of the symptom). Final clearance date was determined by the treating physician. 60.9% of patients were male with mean age 15.7 years (SD 2.3). Mean time from concussion to first visit was 6.9 days (SD 6.2), and 101 patients had definite concussions (75.9%), while 32 were diagnosed as probable (24.1%). 94 patients had a known clearance date (70.7%) with mean clearance time of 20.6 days (SD 18.6) and median clearance time of 19 days (95% CI 16-21). Mean total symptom score was 27.2 (SD 22.9) on the SCAT-3 and 14.7 (SD 11.9) for the functional impairment scale. Pearson’s correlation between the two scales was 0.98 (p < 0.001). After adjusting for patient and injury characteristics, an equivalent increase in score on each scale was associated with longer time to clearance (SCAT-3 hazard ratio 0.885, 95%CI 0.835-0.938, p < 0.001; functional impairment scale hazard ratio 0.851, 95%CI 0.802-0.902, p < 0.001). A concussion symptom scale based on degree of functional impairment correlates strongly with the SCAT-3 scale and demonstrates a similar association with time to clearance. By assessing the degree of impact on clinical functioning, this symptom scale reflects a more intuitive approach to rating symptoms and can be used in the management of concussion.

Keywords: checklist, concussion, neurology, scale, sports, symptoms

Procedia PDF Downloads 144
20673 Design, Construction and Performance Evaluation of a HPGe Detector Shield

Authors: M. Sharifi, M. Mirzaii, F. Bolourinovin, H. Yousefnia, M. Akbari, K. Yousefi-Mojir

Abstract:

A multilayer passive shield composed of low-activity lead (Pb), copper (Cu), tin (Sn) and iron (Fe) was designed and manufactured for a coaxial HPGe detector placed at a surface laboratory for reducing background radiation and radiation dose to the personnel. The performance of the shield was evaluated and efficiency curves of the detector were plotted by using of the various standard sources in different distances. Monte Carlo simulations and a set of TLD chips were used for dose estimation in two distances of 20 and 40 cm. The results show that the shield reduced background spectrum and the personnel dose more than 95%.

Keywords: HPGe shield, background count, personnel dose, efficiency curve

Procedia PDF Downloads 446
20672 Integrating Nursing Informatics to Improve Patient-Centered Care: A Project to Reduce Patient Waiting Time at the Blood Pressure Counter

Authors: Pi-Chi Wu, Tsui-Ping Chu, Hsiu-Hung Wang

Abstract:

Background: The ability to provide immediate medical service in outpatient departments is one of the keys to patient satisfaction. Objectives: This project used electronic equipment to integrate nursing care information to patient care at a blood pressure diagnostic counter. Through process reengineering, the average patient waiting time decreased from 35 minutes to 5 minutes, while service satisfaction increased from a score of 2.7 to 4.6. Methods: Data was collected from a local hospital in Southern Taiwan from a daily average of 2,200 patients in the outpatient department. Previous waiting times were affected by (1) space limitations, (2) the need to help guide patient mobility, (3) the need for nurses to appease irate patients and give instructions, (4), the need for patients to replace lost counter tickets, (5) the need to re-enter information, (6) the replacement of missing patient information. An ad hoc group was established to enhance patient satisfaction and shorten waiting times for patients to see a doctor. A four step strategy consisting of (1) counter relocation, (2) queue reorganization, (3) electronic information integration, (4) process reengineering was implemented. Results: Implementation of the developed strategy decreased patient waiting time from 35 minutes to an average of 5 minutes, and increased patient satisfaction scores from 2.7 to 6.4. Conclusion: Through the integration of information technology and process transformation, waiting times were drastically reduced, patient satisfaction increased, and nurses were allowed more time to engage in more cost-effective services. This strategy was simultaneously enacted in separate hospitals throughout Taiwan.

Keywords: process reengineering, electronic information integration, patient satisfaction, patient waiting time

Procedia PDF Downloads 370
20671 Reducing Flood Risk in a Megacity: Using Mobile Application and Value Capture for Flood Risk Prevention and Risk Reduction Financing

Authors: Dedjo Yao Simon, Takahiro Saito, Norikazu Inuzuka, Ikuo Sugiyama

Abstract:

The megacity of Abidjan is a coastal urban area where the number of floods reported and the associated impacts are on a rapid increase due to climate change, an uncontrolled urbanization, a rapid population increase, a lack of flood disaster mitigation and citizens’ awareness. The objective of this research is to reduce in the short and long term period, the human and socio-economic impact of the flood. Hydrological simulation is applied on free of charge global spatial data (digital elevation model, satellite-based rainfall estimate, landuse) to identify the flood-prone area and to map the risk of flood. A direct interview to a sample residents is used to validate the simulation results. Then a mobile application (Flood Locator) is prototyped to disseminate the risk information to the citizen. In addition, a value capture strategy is proposed to mobilize financial resource for disaster risk reduction (DRRf) to reduce the impact of the flood. The town of Cocody in Abidjan is selected as a case study area to implement this research. The mapping of the flood risk reveals that population living in the study area is highly vulnerable. For a 5-year flood, more than 60% of the floodplain is affected by a water depth of at least 0.5 meters; and more than 1000 ha with at least 5000 buildings are directly exposed. The risk becomes higher for a 50 and 100-year floods. Also, the interview reveals that the majority of the citizen are not aware of the risk and severity of flooding in their community. This shortage of information is overcome by the Flood Locator and by an urban flood database we prototype for accumulate flood data. Flood Locator App allows the users to view floodplain and depth on a digital map; the user can activate the GPS sensor of the mobile to visualize his location on the map. Some more important additional features allow the citizen user to capture flood events and damage information that they can send remotely to the database. Also, the disclosure of the risk information could result to a decrement (-14%) of the value of properties locate inside floodplain and an increment (+19%) of the value of property in the suburb area. The tax increment due to the higher tax increment in the safer area should be captured to constitute the DRRf. The fund should be allocated to the reduction of flood risk for the benefit of people living in flood-prone areas. The flood prevention system discusses in this research will minimize in the short and long term the direct damages in the risky area due to effective awareness of citizen and the availability of DRRf. It will also contribute to the growth of the urban area in the safer zone and reduce human settlement in the risky area in the long term. Data accumulated in the urban flood database through the warning app will contribute to regenerate Abidjan towards the more resilient city by means of risk avoidable landuse in the master plan.

Keywords: abidjan, database, flood, geospatial techniques, risk communication, smartphone, value capture

Procedia PDF Downloads 274
20670 Antimicrobial Nanocompositions Made of Amino Acid Based Biodegradable Polymers

Authors: Nino Kupatadze, Mzevinar Bedinashvili, Tamar Memanishvili, Manana Gurielidze, David Tugushi, Ramaz Katsarava

Abstract:

Bacteria easily colonize the surfaces of tissues, surgical devices (implants, orthopedics, catheters, etc.), and instruments causing surgical device related infections. Therefore, the battle against bacteria and the prevention of surgical devices from biofilm formation is one of the main challenges of biomedicine today. Our strategy to the solution of this problem consists in using antimicrobial polymeric coatings as effective “shields” to protect surfaces from bacteria’s colonization and biofilm formation. As one of the most promising approaches look be the use of antimicrobial bioerodible polymeric nanocomposites containing silver nanoparticles (AgNPs). We assume that the combination of an erodible polymer with a strong bactericide should put obstacles to bacteria to occupy the surface and to form biofilm. It has to be noted that this kind of nanocomposites are also promising as wound dressing materials to treat infected superficial wounds. Various synthetic and natural polymers were used for creating biocomposites containing AgNPs as both particles' stabilizers and matrices forming elastic films at surfaces. One of the most effective systems to fabricate AgNPs is an ethanol solution of polyvinylpyrrolidone(PVP) with dissolved AgNO3–ethanol serves as a AgNO3 reductant and PVP as AgNPs stabilizer (through the interaction of nanoparticles with nitrogen atom of the amide group). Though PVP is biocompatible and film-forming polymer, it is not a good candidate to design either "biofilm shield" or wound dressing material because of a high solubility in water – though the solubility of PVP provides the desirable release of AgNPs from the matrix, but the coating is easily washable away from the surfaces. More promising as matrices look water insoluble but bioerodible polymers that can provide the release of AgNPs and form long-lasting coatings at the surfaces. For creating bioerodible water-insoluble antimicrobial coatings containing AgNPs, we selected amino acid based biodegradable polymers(AABBPs)–poly(ester amide)s, poly(ester urea)s, their copolymers containing amide and related groups capable to stabilize AgNPs. Among a huge variety of AABBPs reported we selected the polymers soluble in ethanol. For preparing AgNPs containing nanocompositions AABBPs and AgNO3 were dissolved in ethanol and subjected to photochemical reduction using daylight-irradiation. The formation of AgNPs was observed visually by coloring the solutions in brownish-red. The obtained AgNPs were characterized by UV-spectroscopy, transmission electron microscopy(TEM), and dynamic light scattering(DLS). According to the UV and TEM data, the photochemical reduction resulted presumably in spherical AgNPs with rather high contribution of the particles below 10 nm that are known as responsible for the antimicrobial activity. DLS study showed that average size of nanoparticles formed after photo-reduction in ethanol solution ranged within 50 nm. The in vitro antimicrobial activity study of the new nanocomposite material is in progress now.

Keywords: nanocomposites, silver nanoparticles, polymer, biodegradable

Procedia PDF Downloads 391
20669 Experiments to Study the Vapor Bubble Dynamics in Nucleate Pool Boiling

Authors: Parul Goel, Jyeshtharaj B. Joshi, Arun K. Nayak

Abstract:

Nucleate boiling is characterized by the nucleation, growth and departure of the tiny individual vapor bubbles that originate in the cavities or imperfections present in the heating surface. It finds a wide range of applications, e.g. in heat exchangers or steam generators, core cooling in power reactors or rockets, cooling of electronic circuits, owing to its highly efficient transfer of large amount of heat flux over small temperature differences. Hence, it is important to be able to predict the rate of heat transfer and the safety limit heat flux (critical heat flux, heat flux higher than this can lead to damage of the heating surface) applicable for any given system. A large number of experimental and analytical works exist in the literature, and are based on the idea that the knowledge of the bubble dynamics on the microscopic scale can lead to the understanding of the full picture of the boiling heat transfer. However, the existing data in the literature are scattered over various sets of conditions and often in disagreement with each other. The correlations obtained from such data are also limited to the range of conditions they were established for and no single correlation is applicable over a wide range of parameters. More recently, a number of researchers have been trying to remove empiricism in the heat transfer models to arrive at more phenomenological models using extensive numerical simulations; these models require state-of-the-art experimental data for a wide range of conditions, first for input and later, for their validation. With this idea in mind, experiments with sub-cooled and saturated demineralized water have been carried out under atmospheric pressure to study the bubble dynamics- growth rate, departure size and frequencies for nucleate pool boiling. A number of heating elements have been used to study the dependence of vapor bubble dynamics on the heater surface finish and heater geometry along with the experimental conditions like the degree of sub-cooling, super heat and the heat flux. An attempt has been made to compare the data obtained with the existing data and the correlations in the literature to generate an exhaustive database for the pool boiling conditions.

Keywords: experiment, boiling, bubbles, bubble dynamics, pool boiling

Procedia PDF Downloads 294
20668 A Quadratic Model to Early Predict the Blastocyst Stage with a Time Lapse Incubator

Authors: Cecile Edel, Sandrine Giscard D'Estaing, Elsa Labrune, Jacqueline Lornage, Mehdi Benchaib

Abstract:

Introduction: The use of incubator equipped with time-lapse technology in Artificial Reproductive Technology (ART) allows a continuous surveillance. With morphocinetic parameters, algorithms are available to predict the potential outcome of an embryo. However, the different proposed time-lapse algorithms do not take account the missing data, and then some embryos could not be classified. The aim of this work is to construct a predictive model even in the case of missing data. Materials and methods: Patients: A retrospective study was performed, in biology laboratory of reproduction at the hospital ‘Femme Mère Enfant’ (Lyon, France) between 1 May 2013 and 30 April 2015. Embryos (n= 557) obtained from couples (n=108) were cultured in a time-lapse incubator (Embryoscope®, Vitrolife, Goteborg, Sweden). Time-lapse incubator: The morphocinetic parameters obtained during the three first days of embryo life were used to build the predictive model. Predictive model: A quadratic regression was performed between the number of cells and time. N = a. T² + b. T + c. N: number of cells at T time (T in hours). The regression coefficients were calculated with Excel software (Microsoft, Redmond, WA, USA), a program with Visual Basic for Application (VBA) (Microsoft) was written for this purpose. The quadratic equation was used to find a value that allows to predict the blastocyst formation: the synthetize value. The area under the curve (AUC) obtained from the ROC curve was used to appreciate the performance of the regression coefficients and the synthetize value. A cut-off value has been calculated for each regression coefficient and for the synthetize value to obtain two groups where the difference of blastocyst formation rate according to the cut-off values was maximal. The data were analyzed with SPSS (IBM, Il, Chicago, USA). Results: Among the 557 embryos, 79.7% had reached the blastocyst stage. The synthetize value corresponds to the value calculated with time value equal to 99, the highest AUC was then obtained. The AUC for regression coefficient ‘a’ was 0.648 (p < 0.001), 0.363 (p < 0.001) for the regression coefficient ‘b’, 0.633 (p < 0.001) for the regression coefficient ‘c’, and 0.659 (p < 0.001) for the synthetize value. The results are presented as follow: blastocyst formation rate under cut-off value versus blastocyst rate formation above cut-off value. For the regression coefficient ‘a’ the optimum cut-off value was -1.14.10-3 (61.3% versus 84.3%, p < 0.001), 0.26 for the regression coefficient ‘b’ (83.9% versus 63.1%, p < 0.001), -4.4 for the regression coefficient ‘c’ (62.2% versus 83.1%, p < 0.001) and 8.89 for the synthetize value (58.6% versus 85.0%, p < 0.001). Conclusion: This quadratic regression allows to predict the outcome of an embryo even in case of missing data. Three regression coefficients and a synthetize value could represent the identity card of an embryo. ‘a’ regression coefficient represents the acceleration of cells division, ‘b’ regression coefficient represents the speed of cell division. We could hypothesize that ‘c’ regression coefficient could represent the intrinsic potential of an embryo. This intrinsic potential could be dependent from oocyte originating the embryo. These hypotheses should be confirmed by studies analyzing relationship between regression coefficients and ART parameters.

Keywords: ART procedure, blastocyst formation, time-lapse incubator, quadratic model

Procedia PDF Downloads 299
20667 Photophysics of a Coumarin Molecule in Graphene Oxide Containing Reverse Micelle

Authors: Aloke Bapli, Debabrata Seth

Abstract:

Graphene oxide (GO) is the two-dimensional (2D) nanoscale allotrope of carbon having several physiochemical properties such as high mechanical strength, high surface area, strong thermal and electrical conductivity makes it an important candidate in various modern applications such as drug delivery, supercapacitors, sensors etc. GO has been used in the photothermal treatment of cancers and Alzheimer’s disease etc. The main idea to choose GO in our work is that it is a surface active molecule, it has a large number of hydrophilic functional groups such as carboxylic acid, hydroxyl, epoxide on its surface and in basal plane. So it can easily interact with organic fluorophores through hydrogen bonding or any other kind of interaction and easily modulate the photophysics of the probe molecules. We have used different spectroscopic techniques for our work. The Ground-state absorption spectra and steady-state fluorescence emission spectra were measured by using UV-Vis spectrophotometer from Shimadzu (model-UV-2550) and spectrofluorometer from Horiba Jobin Yvon (model-Fluoromax 4P) respectively. All the fluorescence lifetime and anisotropy decays were collected by using time-correlated single photon counting (TCSPC) setup from Edinburgh instrument (model: LifeSpec-II, U.K.). Herein, we described the photophysics of a hydrophilic molecule 7-(n,n׀-diethylamino) coumarin-3-carboxylic acid (7-DCCA) in the reverse micelles containing GO. It was observed that photophysics of dye is modulated in the presence of GO compared to photophysics of dye in the absence of GO inside the reverse micelles. Here we have reported the solvent relaxation and rotational relaxation time in GO containing reverse micelle and compare our work with normal reverse micelle system by using 7-DCCA molecule. Normal reverse micelle means reverse micelle in the absence of GO. The absorption maxima of 7-DCCA were blue shifted and emission maxima were red shifted in GO containing reverse micelle compared to normal reverse micelle. The rotational relaxation time in GO containing reverse micelle is always faster compare to normal reverse micelle. Solvent relaxation time, at lower w₀ values, is always slower in GO containing reverse micelle compare to normal reverse micelle and at higher w₀ solvent relaxation time of GO containing reverse micelle becomes almost equal to normal reverse micelle. Here emission maximum of 7-DCCA exhibit bathochromic shift in GO containing reverse micelles compared to that in normal reverse micelles because in presence of GO the polarity of the system increases, as polarity increases the emission maxima was red shifted an average decay time of GO containing reverse micelle is less than that of the normal reverse micelle. In GO containing reverse micelle quantum yield, decay time, rotational relaxation time, solvent relaxation time at λₑₓ=375 nm is always higher than λₑₓ=405 nm, shows the excitation wavelength dependent photophysics of 7-DCCA in GO containing reverse micelles.

Keywords: photophysics, reverse micelle, rotational relaxation, solvent relaxation

Procedia PDF Downloads 146
20666 Impact of Emergency Medicine Department Crowding on Mortality

Authors: Morteza Gharibi, Abdolghader Pakniat, Somayeh Bahrampouri

Abstract:

Introduction: Emergency department (E.R.) crowding is a serious widespread problem in hospitals that leads to irregularities, a slower rate of delivery of services to patients, and a long-term stay. In addition, the long-term stay in the E.D. reduces the possibility of providing services with appropriate quality to other patients who are undergoing medical emergencies, which leads to dissatisfaction among patients. This study aimed to determine the relationship between ED-crowding and the mortality rate of the patients referred to the E.D. In a retrospective cohort study, all patients who expired in first 24 hours of admission were enrolled in the study. Crowding index at the moment of admission was calculated using Edwin Score. The data including history and physical examination, time of arrival in the E.D., diagnosis (using ICD 10 code), time of death, cause of death, demographic information was recoded based on triage forms on admission and patients’ medical files. Data analysis was performed by using descriptive statistics and chi square test, ANOVA tests using SPSS ver. 19. The time of arrival in E.D. to death in crowded E.D. conditions, with an average of five hours and 25 minutes, was significantly higher than the average admission Time of arrival in E.D. to death in active and crowded E.D. conditions. More physicians and nurses can be employed during crowded times to reduce staff fatigue and improve their performance during these hours.

Keywords: mortality, emergency, department, crowding

Procedia PDF Downloads 87
20665 The Evaluation of Superiority of Foot Local Anesthesia Method in Dairy Cows

Authors: Samaneh Yavari, Christiane Pferrer, Elisabeth Engelke, Alexander Starke, Juergen Rehage

Abstract:

Background: Nowadays, bovine limb interventions, especially any claw surgeries, raises selection of the most qualified and appropriate local anesthesia technique applicable for any superficial or deep interventions of the limbs. Currently, two local anesthesia methods of Intravenous Regional Anesthesia (IVRA), as well as Nerve Blocks, have been routine to apply. However, the lack of studies investigating the quality and duration as well as quantity and onset of full (complete) local anesthesia, is noticeable. Therefore, the aim of our study was comparing the onset and quality of both IVRA and our modified NBA at the hind limb of dairy cows. For this abstract, only the onset of full local anesthesia would be consider. Materials and Methods: For that reason, we used six healthy non pregnant non lactating Holestein Frisian cows in a cross-over study design. Those cows divided into two groups to receive IVRA and our modified four-point NBA. For IVRA, 20 ml procaine without epinephrine was injected into the vein digitalis dorsalis communis III and for our modified four-point NBA, 10-15 ml procaine without epinephrine preneurally to the nerves, superficial and deep peroneal as well as lateral and medial branches of metatarsal nerves. For pain stimulation, electrical stimulator Grass S48 was applied. Results: The results of electrical stimuli revealed the faster onset of full local anesthesia (p < 0.05) by application of our modified NBA in comparison to IVRA about 10 minutes. Conclusion and discussion: Despite of available references showing faster onset of foot local anesthesia of IVRA, our study demonstrated that our modified four point NBA not only can be well known as a standard foot local anesthesia method applicable to desensitize the hind limb of dairy cows, but also, selection of this modified validated local anesthesia method can lead to have a faster start of complete desensitization of distal hind limb that is remarkable in any bovine limb interventions under time constraint.

Keywords: IVRA, four point NBA, dairy cow, hind limb, full onset

Procedia PDF Downloads 143
20664 Spatiotemporal Analysis of Visual Evoked Responses Using Dense EEG

Authors: Rima Hleiss, Elie Bitar, Mahmoud Hassan, Mohamad Khalil

Abstract:

A comprehensive study of object recognition in the human brain requires combining both spatial and temporal analysis of brain activity. Here, we are mainly interested in three issues: the time perception of visual objects, the ability of discrimination between two particular categories (objects vs. animals), and the possibility to identify a particular spatial representation of visual objects. Our experiment consisted of acquiring dense electroencephalographic (EEG) signals during a picture-naming task comprising a set of objects and animals’ images. These EEG responses were recorded from nine participants. In order to determine the time perception of the presented visual stimulus, we analyzed the Event Related Potentials (ERPs) derived from the recorded EEG signals. The analysis of these signals showed that the brain perceives animals and objects with different time instants. Concerning the discrimination of the two categories, the support vector machine (SVM) was applied on the instantaneous EEG (excellent temporal resolution: on the order of millisecond) to categorize the visual stimuli into two different classes. The spatial differences between the evoked responses of the two categories were also investigated. The results showed a variation of the neural activity with the properties of the visual input. Results showed also the existence of a spatial pattern of electrodes over particular regions of the scalp in correspondence to their responses to the visual inputs.

Keywords: brain activity, categorization, dense EEG, evoked responses, spatio-temporal analysis, SVM, time perception

Procedia PDF Downloads 414
20663 A 500 MWₑ Coal-Fired Power Plant Operated under Partial Oxy-Combustion: Methodology and Economic Evaluation

Authors: Fernando Vega, Esmeralda Portillo, Sara Camino, Benito Navarrete, Elena Montavez

Abstract:

The European Union aims at strongly reducing their CO₂ emissions from energy and industrial sector by 2030. The energy sector contributes with more than two-thirds of the CO₂ emission share derived from anthropogenic activities. Although efforts are mainly focused on the use of renewables by energy production sector, carbon capture and storage (CCS) remains as a frontline option to reduce CO₂ emissions from industrial process, particularly from fossil-fuel power plants and cement production. Among the most feasible and near-to-market CCS technologies, namely post-combustion and oxy-combustion, partial oxy-combustion is a novel concept that can potentially reduce the overall energy requirements of the CO₂ capture process. This technology consists in the use of higher oxygen content in the oxidizer that should increase the CO₂ concentration of the flue gas once the fuel is burnt. The CO₂ is then separated from the flue gas downstream by means of a conventional CO₂ chemical absorption process. The production of a higher CO₂ concentrated flue gas should enhance the CO₂ absorption into the solvent, leading to further reductions of the CO₂ separation performance in terms of solvent flow-rate, equipment size, and energy penalty related to the solvent regeneration. This work evaluates a portfolio of CCS technologies applied to fossil-fuel power plants. For this purpose, an economic evaluation methodology was developed in detail to determine the main economical parameters for CO₂ emission removal such as the levelized cost of electricity (LCOE) and the CO₂ captured and avoided costs. ASPEN Plus™ software was used to simulate the main units of power plant and solve the energy and mass balance. Capital and investment costs were determined from the purchased cost of equipment, also engineering costs and project and process contingencies. The annual capital cost and operating and maintenance costs were later obtained. A complete energy balance was performed to determine the net power produced in each case. The baseline case consists of a supercritical 500 MWe coal-fired power plant using anthracite as a fuel without any CO₂ capture system. Four cases were proposed: conventional post-combustion capture, oxy-combustion and partial oxy-combustion using two levels of oxygen-enriched air (40%v/v and 75%v/v). CO₂ chemical absorption process using monoethanolamine (MEA) was used as a CO₂ separation process whereas the O₂ requirement was achieved using a conventional air separation unit (ASU) based on Linde's cryogenic process. Results showed a reduction of 15% of the total investment cost of the CO₂ separation process when partial oxy-combustion was used. Oxygen-enriched air production also reduced almost half the investment costs required for ASU in comparison with oxy-combustion cases. Partial oxy-combustion has a significant impact on the performance of both CO₂ separation and O₂ production technologies, and it can lead to further energy reductions using new developments on both CO₂ and O₂ separation processes.

Keywords: carbon capture, cost methodology, economic evaluation, partial oxy-combustion

Procedia PDF Downloads 135
20662 Implementation of a Lattice Boltzmann Method for Pulsatile Flow with Moment Based Boundary Condition

Authors: Zainab A. Bu Sinnah, David I. Graham

Abstract:

The Lattice Boltzmann Method has been developed and used to simulate both steady and unsteady fluid flow problems such as turbulent flows, multiphase flow and flows in the vascular system. As an example, the study of blood flow and its properties can give a greater understanding of atherosclerosis and the flow parameters which influence this phenomenon. The blood flow in the vascular system is driven by a pulsating pressure gradient which is produced by the heart. As a very simple model of this, we simulate plane channel flow under periodic forcing. This pulsatile flow is essentially the standard Poiseuille flow except that the flow is driven by the periodic forcing term. Moment boundary conditions, where various moments of the particle distribution function are specified, are applied at solid walls. We used a second-order single relaxation time model and investigated grid convergence using two distinct approaches. In the first approach, we fixed both Reynolds and Womersley numbers and varied relaxation time with grid size. In the second approach, we fixed the Womersley number and relaxation time. The expected second-order convergence was obtained for the second approach. For the first approach, however, the numerical method converged, but not necessarily to the appropriate analytical result. An explanation is given for these observations.

Keywords: Lattice Boltzmann method, single relaxation time, pulsatile flow, moment based boundary condition

Procedia PDF Downloads 221
20661 Performance Study of Geopolymer Concrete by Partial Replacement of Fly Ash with Cement and Full Replacement of River Sand by Crushed Sand

Authors: Asis Kumar Khan, Rajeev Kumar Goel

Abstract:

Recent infrastructure growth all around the world lead to increase in demand for concrete day by day. Cement being binding material for concrete the usage of cement also gone up significantly. Cement manufacturing utilizes abundant natural resources and causes environment pollution by releasing a huge quantity of CO₂ into the atmosphere. So, it is high time to look for alternates to reduce the cement consumption in concrete. Geopolymer concrete is one such material which utilizes the industrial waste such as fly ash, ground granulated blast furnace slag and low-cost alkaline liquids such as sodium hydroxide and sodium silicate to produce the concrete. On the other side, river sand is becoming very expensive due to its large-scale depletion at source and the high cost of transportation. In this view, river sand is replaced by crushed sand in this study. In this work, an attempt has been made to understand the durability parameters of geopolymer concrete by partially replacing fly ash with cement. Fly ash is replaced by cement at various levels e.g., from 0 to 50%. Concrete cubes of 100x100x100mm were used for investigating different durability parameters. The various parameters studied includes compressive strength, split tensile strength, drying shrinkage, sodium sulphate attack resistance, sulphuric acid attack resistance and chloride permeability. Highest compressive strength & highest split tensile strength is observed in 30% replacement level. Least drying is observed with 30% replacement level. Very good resistance for sulphuric acid & sodium sulphate is found with 30% replacement. However, it was not possible to find out the chloride permeability due to the high conductivity of geopolymer samples of all replacement levels.

Keywords: crushed sand, compressive strength, drying shrinkage, geopolymer concrete, split tensile strength, sodium sulphate attack resistance, sulphuric acid attack resistance

Procedia PDF Downloads 281
20660 Reduction of Cooling Demands in a Subtropical Humid Climate Zone: A Study on Roofs of Existing Residential Building Using Passive

Authors: Megha Jain, K. K. Pathak

Abstract:

In sub-tropical humid climates, it is estimated most of the urban peak load of energy consumption is used to satisfy air-conditioning or air-coolers cooling demand in summer time. As the urbanization rate in developing nation – like the case in India is rising rapidly, the pressure placed on energy resources to satisfy inhabitants’ indoor comfort requirements is consequently increasing too. This paper introduces passive cooling through roof as a means of reducing energy cooling loads for satisfying human comfort requirements in a sub-tropical climate. Experiments were performed by applying different insulators which are locally available solar reflective materials to insulate the roofs of five rooms of 4 case buildings; three rooms having RCC (Reinforced Cement Concrete) roof and two having Asbestos sheet roof of existing buildings. The results are verified by computer simulation using Computational Fluid Dynamics tools with FLUENT software. The result of using solar reflective paint with high albedo coating shows a fall of 4.8⁰C in peak hours and saves 303 kWh considering energy load with air conditioner during the summer season in comparison to non insulated flat roof energy load of residential buildings in Bhopal. An optimum solution of insulator for both types of roofs is presented. It is recommended that the selected cool roof solution be combined with insulation on other elements of envelope, to increase the indoor thermal comfort. The application is intended for low cost residential buildings in composite and warm climate like Bhopal.

Keywords: cool roof, computational fluid dynamics, energy loads, insulators, passive cooling, subtropical climate, thermal performance

Procedia PDF Downloads 159
20659 Thermal Energy Storage Based on Molten Salts Containing Nano-Particles: Dispersion Stability and Thermal Conductivity Using Multi-Scale Computational Modelling

Authors: Bashar Mahmoud, Lee Mortimer, Michael Fairweather

Abstract:

New methods have recently been introduced to improve the thermal property values of molten nitrate salts (a binary mixture of NaNO3:KNO3in 60:40 wt. %), by doping them with minute concentration of nanoparticles in the range of 0.5 to 1.5 wt. % to form the so-called: Nano-heat-transfer-fluid, apt for thermal energy transfer and storage applications. The present study aims to assess the stability of these nanofluids using the advanced computational modelling technique, Lagrangian particle tracking. A multi-phase solid-liquid model is used, where the motion of embedded nanoparticles in the suspended fluid is treated by an Euler-Lagrange hybrid scheme with fixed time stepping. This technique enables measurements of various multi-scale forces whose characteristic (length and timescales) are quite different. Two systems are considered, both consisting of 50 nm Al2O3 ceramic nanoparticles suspended in fluids of different density ratios. This includes both water (5 to 95 °C) and molten nitrate salt (220 to 500 °C) at various volume fractions ranging between 1% to 5%. Dynamic properties of both phases are coupled to the ambient temperature of the fluid suspension. The three-dimensional computational region consists of a 1μm cube and particles are homogeneously distributed across the domain. Periodic boundary conditions are enforced. The particle equations of motion are integrated using the fourth order Runge-Kutta algorithm with a very small time-step, Δts, set at 10-11 s. The implemented technique demonstrates the key dynamics of aggregated nanoparticles and this involves: Brownian motion, soft-sphere particle-particle collisions, and Derjaguin, Landau, Vervey, and Overbeek (DLVO) forces. These mechanisms are responsible for the predictive model of aggregation of nano-suspensions. An energy transport-based method of predicting the thermal conductivity of the nanofluids is also used to determine thermal properties of the suspension. The simulation results confirms the effectiveness of the technique. The values are in excellent agreement with the theoretical and experimental data obtained from similar studies. The predictions indicates the role of Brownian motion and DLVO force (represented by both the repulsive electric double layer and an attractive Van der Waals) and its influence in the level of nanoparticles agglomeration. As to the nano-aggregates formed that was found to play a key role in governing the thermal behavior of nanofluids at various particle concentration. The presentation will include a quantitative assessment of these forces and mechanisms, which would lead to conclusions about nanofluids, heat transfer performance and thermal characteristics and its potential application in solar thermal energy plants.

Keywords: thermal energy storage, molten salt, nano-fluids, multi-scale computational modelling

Procedia PDF Downloads 183
20658 Synthesis and Characterization of Anti-Psychotic Drugs Based DNA Aptamers

Authors: Shringika Soni, Utkarsh Jain, Nidhi Chauhan

Abstract:

Aptamers are recently discovered ~80-100 bp long artificial oligonucleotides that not only demonstrated their applications in therapeutics; it is tremendously used in diagnostic and sensing application to detect different biomarkers and drugs. Synthesizing aptamers for proteins or genomic template is comparatively feasible in laboratory, but drugs or other chemical target based aptamers require major specification and proper optimization and validation. One has to optimize all selection, amplification, and characterization steps of the end product, which is extremely time-consuming. Therefore, we performed asymmetric PCR (polymerase chain reaction) for random oligonucleotides pool synthesis, and further use them in Systematic evolution of ligands by exponential enrichment (SELEX) for anti-psychotic drugs based aptamers synthesis. Anti-psychotic drugs are major tranquilizers to control psychosis for proper cognitive functions. Though their low medical use, their misuse may lead to severe medical condition as addiction and can promote crime in social and economical impact. In this work, we have approached the in-vitro SELEX method for ssDNA synthesis for anti-psychotic drugs (in this case ‘target’) based aptamer synthesis. The study was performed in three stages, where first stage included synthesis of random oligonucleotides pool via asymmetric PCR where end product was analyzed with electrophoresis and purified for further stages. The purified oligonucleotide pool was incubated in SELEX buffer, and further partition was performed in the next stage to obtain target specific aptamers. The isolated oligonucleotides are characterized and quantified after each round of partition, and significant results were obtained. After the repetitive partition and amplification steps of target-specific oligonucleotides, final stage included sequencing of end product. We can confirm the specific sequence for anti-psychoactive drugs, which will be further used in diagnostic application in clinical and forensic set-up.

Keywords: anti-psychotic drugs, aptamer, biosensor, ssDNA, SELEX

Procedia PDF Downloads 125