Search results for: shore protective structures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5067

Search results for: shore protective structures

1467 Laser Shock Peening of Additively Manufactured Nickel-Based Superalloys

Authors: Michael Munther, Keivan Davami

Abstract:

One significant roadblock for additively manufactured (AM) parts is the buildup of residual tensile stresses during the fabrication process. These residual stresses are formed due to the intense localized thermal gradients and high cooling rates that cause non-uniform material expansion/contraction and mismatched strain profiles during powder-bed fusion techniques, such as direct metal laser sintering (DMLS). The residual stresses adversely affect the fatigue life of the AM parts. Moreover, if the residual stresses become higher than the material’s yield strength, they will lead to acute geometric distortion. These are limiting the applications and acceptance of AM components for safety-critical applications. Herein, we discuss laser shock peening method as an advanced technique for the manipulation of the residual stresses in AM parts. An X-ray diffraction technique is used for the measurements of the residual stresses before and after the laser shock peening process. Also, the hardness of the structures is measured using a nanoindentation technique. Maps of nanohardness and modulus are obtained from the nanoindentation, and a correlation is made between the residual stresses and the mechanical properties. The results indicate that laser shock peening is able to induce compressive residual stresses in the structure that mitigate the tensile residual stresses and increase the hardness of AM IN718, a superalloy, almost 20%. No significant changes were observed in the modulus after laser shock peening. The results strongly suggest that laser shock peening can be used as an advanced post-processing technique to optimize the service lives of critical components for various applications.

Keywords: additive manufacturing, Inconel 718, laser shock peening, residual stresses

Procedia PDF Downloads 120
1466 Bridge Health Monitoring: A Review

Authors: Mohammad Bakhshandeh

Abstract:

Structural Health Monitoring (SHM) is a crucial and necessary practice that plays a vital role in ensuring the safety and integrity of critical structures, and in particular, bridges. The continuous monitoring of bridges for signs of damage or degradation through Bridge Health Monitoring (BHM) enables early detection of potential problems, allowing for prompt corrective action to be taken before significant damage occurs. Although all monitoring techniques aim to provide accurate and decisive information regarding the remaining useful life, safety, integrity, and serviceability of bridges, understanding the development and propagation of damage is vital for maintaining uninterrupted bridge operation. Over the years, extensive research has been conducted on BHM methods, and experts in the field have increasingly adopted new methodologies. In this article, we provide a comprehensive exploration of the various BHM approaches, including sensor-based, non-destructive testing (NDT), model-based, and artificial intelligence (AI)-based methods. We also discuss the challenges associated with BHM, including sensor placement and data acquisition, data analysis and interpretation, cost and complexity, and environmental effects, through an extensive review of relevant literature and research studies. Additionally, we examine potential solutions to these challenges and propose future research ideas to address critical gaps in BHM.

Keywords: structural health monitoring (SHM), bridge health monitoring (BHM), sensor-based methods, machine-learning algorithms, and model-based techniques, sensor placement, data acquisition, data analysis

Procedia PDF Downloads 84
1465 Assessing P0.1 and Occlusion Pressures in Brain-Injured Patients on Pressure Support Ventilation: A Study Protocol

Authors: S. B. R. Slagmulder

Abstract:

Monitoring inspiratory effort and dynamic lung stress in patients on pressure support ventilation in the ICU is important for protecting against self inflicted lung injury (P-SILI) and diaphragm dysfunction. Strategies to address the detrimental effects of respiratory drive and effort can lead to improved patient outcomes. Two non-invasive estimation methods, occlusion pressure (Pocc) and P0.1, have been proposed for achieving lung and diaphragm protective ventilation. However, their relationship and interpretation in neuro ICU patients is not well understood. P0.1 is the airway pressure measured during a 100-millisecond occlusion of the inspiratory port. It reflects the neural drive from the respiratory centers to the diaphragm and respiratory muscles, indicating the patient's respiratory drive during the initiation of each breath. Occlusion pressure, measured during a brief inspiratory pause against a closed airway, provides information about the inspiratory muscles' strength and the system's total resistance and compliance. Research Objective: Understanding the relationship between Pocc and P0.1 in brain-injured patients can provide insights into the interpretation of these values in pressure support ventilation. This knowledge can contribute to determining extubation readiness and optimizing ventilation strategies to improve patient outcomes. The central goal is to asses a study protocol for determining the relationship between Pocc and P0.1 in brain-injured patients on pressure support ventilation and their ability to predict successful extubation. Additionally, comparing these values between brain-damaged and non-brain-damaged patients may provide valuable insights. Key Areas of Inquiry: 1. How do Pocc and P0.1 values correlate within brain injury patients undergoing pressure support ventilation? 2. To what extent can Pocc and P0.1 values serve as predictive indicators for successful extubation in patients with brain injuries? 3. What differentiates the Pocc and P0.1 values between patients with brain injuries and those without? Methodology: P0.1 and occlusion pressures are standard measurements for pressure support ventilation patients, taken by attending doctors as per protocol. We utilize electronic patient records for existing data. Unpaired T-test will be conducted to compare P0.1 and Pocc values between both study groups. Associations between P0.1 and Pocc and other study variables, such as extubation, will be explored with simple regression and correlation analysis. Depending on how the data evolve, subgroup analysis will be performed for patients with and without extubation failure. Results: While it is anticipated that neuro patients may exhibit high respiratory drive, the linkage between such elevation, quantified by P0.1, and successful extubation remains unknown The analysis will focus on determining the ability of these values to predict successful extubation and their potential impact on ventilation strategies. Conclusion: Further research is pending to fully understand the potential of these indices and their impact on mechanical ventilation in different patient populations and clinical scenarios. Understanding these relationships can aid in determining extubation readiness and tailoring ventilation strategies to improve patient outcomes in this specific patient population. Additionally, it is vital to account for the influence of sedatives, neurological scores, and BMI on respiratory drive and occlusion pressures to ensure a comprehensive analysis.

Keywords: brain damage, diaphragm dysfunction, occlusion pressure, p0.1, respiratory drive

Procedia PDF Downloads 64
1464 Suitability Number of Coarse-Grained Soils and Relationships among Fineness Modulus, Density and Strength Parameters

Authors: Khandaker Fariha Ahmed, Md. Noman Munshi, Tarin Sultana, Md. Zoynul Abedin

Abstract:

Suitability number (SN) is perhaps one of the most important parameters of coarse-grained soil in assessing its appropriateness to use as a backfill in retaining structures, sand compaction pile, Vibro compaction, and other similar foundation and ground improvement works. Though determined in an empirical manner, it is imperative to study SN to understand its relation with other aggregate properties like fineness modulus (FM), and strength and density properties of sandy soil. The present paper reports the findings of the study on the examination of the properties of sandy soil, as mentioned. Random numbers were generated to obtain the percent fineness on various sieve sizes, and fineness modulus and suitability numbers were predicted. Sand samples were collected from the field, and test samples were prepared to determine maximum density, minimum density and shear strength parameter φ against particular fineness modulus and corresponding suitability number Five samples of SN value of excellent (0-10) and three samples of SN value fair (20-30) were taken and relevant tests were done. The data obtained from the laboratory tests were statistically analyzed. Results show that with the increase of SN, the value of FM decreases. Within the SN value rated as excellent (0-10), there is a decreasing trend of φ for a higher value of SN. It is found that SN is dependent on various combinations of grain size properties like D10, D30, and D20, D50. Strong linear relationships were obtained between SN and FM (R²=.0.93) and between SN value and φ (R²=.94). Correlation equations are proposed to define relationships among SN, φ, and FM.

Keywords: density, fineness modulus, shear strength parameter, suitability number

Procedia PDF Downloads 100
1463 Periodontal Disease or Cement Disease: New Frontier in the Treatment of Periodontal Disease in Dogs

Authors: C. Gallottini, W. Di Mari, A. Amaddeo, K. Barbaro, A. Dolci, G. Dolci, L. Gallottini, G. Barraco, S. Eramo

Abstract:

A group of 10 dogs (group A) with Periodontal Disease in the third stage, were subjected to regenerative therapy of periodontal tissues, by use of nano hydroxy apatite (NHA). These animals induced by general anesthesia, where treated by ultrasonic scaling, root planning, and at the end by a mucogingival flap in which it was applied NHA. The flap was closed and sutured with simple steps. Another group of 10 dogs (group B), control group, was treated only by scaling and root planning. No patient was subjected to antibiotic therapy. After three months, a check was made by inspection of the oral cavity, radiography and bone biopsy at the alveolar level. Group A showed a total restitutio ad integrum of the periodontal structures, and in group B still mild gingivitis in 70% of cases and 30% of the state remains unchanged. Numerous experimental studies both in animals and humans have documented that the grafts of porous hydroxyapatite are rapidly invaded by fibrovascular tissue which is subsequently converted into mature lamellar bone tissue by activating osteoblast. Since we acted on the removal of necrotic cementum and rehabilitating the root tissue by polishing without intervention in the ligament but only on anatomical functional interface of cement-blasts, we can connect the positive evolution of the clinical-only component of the cement that could represent this perspective, the only reason that Periodontal Disease become a Cement Disease, while all other clinical elements as nothing more than a clinical pathological accompanying.

Keywords: nanoidroxiaphatite, parodontal disease, cement disease, regenerative therapy

Procedia PDF Downloads 443
1462 Assessment of Potential Chemical Exposure to Betamethasone Valerate and Clobetasol Propionate in Pharmaceutical Manufacturing Laboratories

Authors: Nadeen Felemban, Hamsa Banjer, Rabaah Jaafari

Abstract:

One of the most common hazards in the pharmaceutical industry is the chemical hazard, which can cause harm or develop occupational health diseases/illnesses due to chronic exposures to hazardous substances. Therefore, a chemical agent management system is required, including hazard identification, risk assessment, controls for specific hazards and inspections, to keep your workplace healthy and safe. However, routine management monitoring is also required to verify the effectiveness of the control measures. Moreover, Betamethasone Valerate and Clobetasol Propionate are some of the APIs (Active Pharmaceutical Ingredients) with highly hazardous classification-Occupational Hazard Category (OHC 4), which requires a full containment (ECA-D) during handling to avoid chemical exposure. According to Safety Data Sheet, those chemicals are reproductive toxicants (reprotoxicant H360D), which may affect female workers’ health and cause fatal damage to an unborn child, or impair fertility. In this study, qualitative (chemical Risk assessment-qCRA) was conducted to assess the chemical exposure during handling of Betamethasone Valerate and Clobetasol Propionate in pharmaceutical laboratories. The outcomes of qCRA identified that there is a risk of potential chemical exposure (risk rating 8 Amber risk). Therefore, immediate actions were taken to ensure interim controls (according to the Hierarchy of controls) are in place and in use to minimize the risk of chemical exposure. No open handlings should be done out of the Steroid Glove Box Isolator (SGB) with the required Personal Protective Equipment (PPEs). The PPEs include coverall, nitrile hand gloves, safety shoes and powered air-purifying respirators (PAPR). Furthermore, a quantitative assessment (personal air sampling) was conducted to verify the effectiveness of the engineering controls (SGB Isolator) and to confirm if there is chemical exposure, as indicated earlier by qCRA. Three personal air samples were collected using an air sampling pump and filter (IOM2 filters, 25mm glass fiber media). The collected samples were analyzed by HPLC in the BV lab, and the measured concentrations were reported in (ug/m3) with reference to Occupation Exposure Limits, 8hr OELs (8hr TWA) for each analytic. The analytical results are needed in 8hr TWA (8hr Time-weighted Average) to be analyzed using Bayesian statistics (IHDataAnalyst). The results of the Bayesian Likelihood Graph indicate (category 0), which means Exposures are de "minimus," trivial, or non-existent Employees have little to no exposure. Also, these results indicate that the 3 samplings are representative samplings with very low variations (SD=0.0014). In conclusion, the engineering controls were effective in protecting the operators from such exposure. However, routine chemical monitoring is required every 3 years unless there is a change in the processor type of chemicals. Also, frequent management monitoring (daily, weekly, and monthly) is required to ensure the control measures are in place and in use. Furthermore, a Similar Exposure Group (SEG) was identified in this activity and included in the annual health surveillance for health monitoring.

Keywords: occupational health and safety, risk assessment, chemical exposure, hierarchy of control, reproductive

Procedia PDF Downloads 165
1461 Binding Studies and Structure Determination of the Recombinantly Produced Type-II 3-Dehydroquinate Dehydratase from Acinetobacter Baumannii

Authors: Naseer Iqbal, Mukesh Kumar, Pradeep Sharma, Satya Prakash Yadav, Punit Kaur, Sujata Sharma, T. P. Singh

Abstract:

Dehydroquinase (3-dehydroquinate dehydratase, DHQD, EC 4.2.1.10) is involved in shikimate pathway and catalyzes the conversion of dehydroquinate to dehydroshikimate. Shikimate pathway is important drug target as this pathway is absent in mammals. DHQD from Acinetobacter baumannii (AbDHQD) was cloned, expressed and purified to homogeneity. The binding studies showed that compounds quinic acid and citrazinic acid bound to AbDHQD at micromolar concentrations. AbDHQD was crystallized using 30% PEG-3350, 50mM tris-HCl, and 1.0M MgSO4 at PH 8.0. Crystals of AbDHQD were stabilized by transferring them into reservoir solution to which 25% glycerol was added for data collection at 100K. The X-ray intensity data were collected to 2.0Å resolution. The crystals belong to monoclinic space group P21 with cell dimensions, a = 82.3, b = 95.3, c = 132.3Å and β = 95.7°. The structure was solved with molecular replacement method and refined to Rcryst/Rfree factors of 0.200/0.232. The structures of 12 crystallographically independent molecules in the asymmetry unit were identical with r.m.s shifts for the C atoms ranging from 0.3 Å to 0.8 Å. They formed a dodecamer with four trimers arranged in a tetrahedral manner. The classical lid adopted an open conformation although a sulfate ion was observed in the substrate binding site. As a result of which, the compounds quinic acid and citrazinic acid did not bind to AbDHQD.

Keywords: acinetobacter Bauman Nii, dehydroquinate dehydratase, dodecamer, open conformation

Procedia PDF Downloads 357
1460 Coarse-Grained Computational Fluid Dynamics-Discrete Element Method Modelling of the Multiphase Flow in Hydrocyclones

Authors: Li Ji, Kaiwei Chu, Shibo Kuang, Aibing Yu

Abstract:

Hydrocyclones are widely used to classify particles by size in industries such as mineral processing and chemical processing. The particles to be handled usually have a broad range of size distributions and sometimes density distributions, which has to be properly considered, causing challenges in the modelling of hydrocyclone. The combined approach of Computational Fluid Dynamics (CFD) and Discrete Element Method (DEM) offers convenience to model particle size/density distribution. However, its direct application to hydrocyclones is computationally prohibitive because there are billions of particles involved. In this work, a CFD-DEM model with the concept of the coarse-grained (CG) model is developed to model the solid-fluid flow in a hydrocyclone. The DEM is used to model the motion of discrete particles by applying Newton’s laws of motion. Here, a particle assembly containing a certain number of particles with same properties is treated as one CG particle. The CFD is used to model the liquid flow by numerically solving the local-averaged Navier-Stokes equations facilitated with the Volume of Fluid (VOF) model to capture air-core. The results are analyzed in terms of fluid and solid flow structures, and particle-fluid, particle-particle and particle-wall interaction forces. Furthermore, the calculated separation performance is compared with the measurements. The results obtained from the present study indicate that this approach can offer an alternative way to examine the flow and performance of hydrocyclones

Keywords: computational fluid dynamics, discrete element method, hydrocyclone, multiphase flow

Procedia PDF Downloads 400
1459 Building Deep: Mystery And Sensuality In The Underground World

Authors: Rene Davids

Abstract:

Urban undergrounds spaces such as parking garages or metro stations are perceived as interludes before reaching desired destinations, as commodities devoid of aesthetic value. Within the encoded space of the city, commercial underground spaces are the closest expression to pure to structures of consumption and commodity. Even in the house, the cellar is associated with castoffs and waste or, as scholar Mircea Eliade has pointed out at best, with a place to store abandoned household and childhood objects, which lie forgotten and on rediscovery evoke a nostalgic and uncanny sense of the past. Despite a growing body of evidence presented by an increasing number of buildings situated entirely below or semi underground that feature exemplary spatial and sensuous qualities, critics and scholars see them largely as efforts to produce efforts in producing low consumption non-renewable energy. Buildings that also free space above ground. This critical approach neglects to mention and highlight other project drivers such as the notion that the ground and sky can be considered a building’s fundamental context, that underground spaces are conducive to the exploration of pure space, namely an architecture that doesn’t have to deal with facades and or external volumes and that digging into geology can inspire the textural and spatial richness. This paper will argue that while the assessment about the reduced energy consumption of underground construction is important, it does not do justice to the qualities underground buildings can contribute to a city’s expanded urban and or landscape experiences.

Keywords: low non-renewable energy consumption, pure space, underground buildings, urban and landscape experience

Procedia PDF Downloads 174
1458 Simplified Analysis Procedure for Seismic Evaluation of Tall Building at Structure and Component Level

Authors: Tahir Mehmood, Pennung Warnitchai

Abstract:

Simplified static analysis procedures such Nonlinear Static Procedure (NSP) are gaining popularity for the seismic evaluation of buildings. However, these simplified procedures accounts only for the seismic responses of the fundamental vibration mode of the structure. Some other procedures which can take into account the higher modes of vibration, lack in accuracy to determine the component responses. Hence, such procedures are not suitable for evaluating the structures where many vibration modes may participate significantly or where component responses are needed to be evaluated. Moreover, these procedures were found to either computationally expensive or tedious to obtain individual component responses. In this paper, a simplified but accurate procedure is studied. It is called the Uncoupled Modal Response History Analysis (UMRHA) procedure. In this procedure, the nonlinear response of each vibration mode is first computed, and they are later on combined into the total response of the structure. The responses of four tall buildings are computed by this simplified UMRHA procedure and compared with those obtained from the NLRHA procedure. The comparison shows that the UMRHA procedure is able to accurately compute the global responses, i.e., story shears and story overturning moments, floor accelerations and inter-story drifts as well as the component level responses of these tall buildings with heights varying from 20 to 44 stories. The required computational effort is also extremely low compared to that of the Nonlinear Response History Analysis (NLRHA) procedure.

Keywords: higher mode effects, seismic evaluation procedure, tall buildings, component responses

Procedia PDF Downloads 341
1457 Insults, Injuries, and Resistance: Challenging Environmental Classism and Embracing Working-Class Environmentalism

Authors: Karen Bell

Abstract:

It is vital to integrate a working-class perspective into the just transition to an inclusive and sustainable society because of the particular expertise and interests that working-class people bring to the debates and actions. In class societies, those who are not well represented in the current structures of power can find it easier to see when the system is not working. They are also more likely to be impacted by the environmental crises because wealthier people can change their dwelling places, jobs and other aspects of their lives in the face of risks. Therefore, challenging the ‘post-material values thesis’, this paper argues that, if enabled to do so, working-class people are more likely to identify what needs to be addressed and changed in transition and can be more motivated to make the changes necessary than other social groups. However, they are often excluded from environmental decision-making and environmental social movements. The paper is based on a mixed methodology; drawing on secondary data, interview material, participant observation and documentary analysis. It is based on years of research and activism on environmental issues in working-class communities. The analysis and conclusion discusses the seven kinds of change required to address this problem: 1) organizational change - participatory practice (2) legislative change - make class an equalities and human rights issue (3) policy change - reduce inequality (4) social movement change - radicalize the environmental movement and support the environmental working-class (5) political change - create an eco-social state based on sharing (6) cultural change - integrate social and environmental justice, and (7) revolutionary change - dismantle capitalism.

Keywords: environmentalism, just transition, sustainability, working class

Procedia PDF Downloads 146
1456 Anisotropic Behavior of Sand Stabilized with Colloidal Silica

Authors: Eleni Maria Pavlopoulou, Vasiliki N. Georgiannou, Filippos C. Chortis

Abstract:

The response of M31 sand stabilized with colloidal silica (CS) aqueous gel is investigated in the laboratory. CS is introduced in the water regime, forming a hydrosol. The low viscosity hydrosol thickens in a controllable manner to form a stable, non-toxic gel; the gel fills the pore space, retains the pore water, and supports the grain structure. The role of colloidal silica on subsequent sand behavior is examined with the aid of direct shear, triaxial, and normal compression tests. Under the examined loading modes, while the strength of the treated sand is enhanced, its stiffness may reduce, and its compressibility increase. However, in most geotechnical problems, the loading conditions are complex, involving changes in both stress magnitude and direction. Rotation of principal stresses (σ1, σ2, σ3) in varying amounts expressed as angle α, (from α=0° to 90°) in concurrence with increasing shear stress loading is commonly encountered in soil structures such as foundations, embankments, underwater slopes. To assess the influence of anisotropy on the response of sands before and after their stabilization, hollow cylinder tests were performed. The behavior of stabilized sand is compared with the characteristic sand behavior, i.e., a reduction in peak stress ratio associated with a softer stress-strain response with the increasing angle a. The influence of the magnitude of the intermediate principal stress (σ2) on the mechanical response of treated and untreated sand is also examined.

Keywords: anisotropy, colloidal silica, laboratory tests, sands, soil stabilization

Procedia PDF Downloads 131
1455 Thiazolo[5,4-D]Thiazole-Core Organic Chromophore with Furan Spacer for Organic Solar Cells

Authors: M. Nazim, S. Ameen, H. K. Seo, H. S. Shin

Abstract:

Energy is the basis of life and strong attention has been growing for the cost-effective energy production. Recently, solution-processed small molecule organic solar cells (SMOSCs) have grown much attention due to the wages such as well-defined molecular structures, definite molecular weight, easy synthesis and easy purification techniques. In particular, the size of donor (D) and acceptor (A) unit is a crucial factor for the exciton-diffusion towards D-A interface and then charge-separation for the effective charge-transport to the electrodes. Furan-bridged materials are more electron-rich, high fluorescence, with better molecular-packing, and greater rigidity and greater solubility than their thiophene-counterparts In this work, a furan-bridged thiazolo[5,4-d]thiazole based organic small molecule (RFTzR) was formulated and applied for BHJ organic solar cells (OSCs). The introduction of furan spacer with two terminal alkyl units improved its absorption and solubility in the common organic solvents, significantly. RFTzR exhibited a HOMO and LUMO energy levels of -5.36 eV and -3.14 eV, respectively. The fabricated solar cell devices of RFTzR (donor) with PC60BM (acceptor) as photoactive materials showed high performance of 2.72% (RFTzR:PC60BM, 2:1, w/w) ratio with open-circuit voltage of 0.756 V and high photocurrent density of 10.13 mA/cm².

Keywords: chromophore, organic solar cells, photoactive materials, small molecule

Procedia PDF Downloads 158
1454 Rheology and Structural Arrest of Dense Dairy Suspensions: A Soft Matter Approach

Authors: Marjan Javanmard

Abstract:

The rheological properties of dairy products critically depend on the underlying organisation of proteins at multiple length scales. When heated and acidified, milk proteins form particle gel that is viscoelastic, solvent rich, ‘soft’ material. In this work recent developments on the rheology of soft particles suspensions were used to interpret and potentially define the properties of dairy gel structures. It is discovered that at volume fractions below random close packing (RCP), the Maron-Pierce-Quemada (MPQ) model accurately predicts the viscosity of the dairy gel suspensions without fitting parameters; the MPQ model has been shown previously to provide reasonable predictions of the viscosity of hard sphere suspensions from the volume fraction, solvent viscosity and RCP. This surprising finding demonstrates that up to RCP, the dairy gel system behaves as a hard sphere suspension and that the structural aggregates behave as discrete particulates akin to what is observed for microgel suspensions. At effective phase volumes well above RCP, the system is a soft solid. In this region, it is discovered that the storage modulus of the sheared AMG scales with the storage modulus of the set gel. The storage modulus in this regime is reasonably well described as a function of effective phase volume by the Evans and Lips model. Findings of this work has potential to aid in rational design and control of dairy food structure-properties.

Keywords: dairy suspensions, rheology-structure, Maron-Pierce-Quemada Model, Evans and Lips Model

Procedia PDF Downloads 215
1453 South Africa’s Post-Apartheid Film Narratives of HIV/AIDS: A Case of ‘Yesterday’

Authors: Moyahabo Molefe

Abstract:

The persistence of HIV/AIDS infection rates in SA has not only been a subject of academic debate but a mediated narrative that has dominated SA’s post-apartheid film space over the last two decades. SA’s colonial geo-spatial architecture still influences migrant labour patterns, which the Oscar-nominated (2003) SA film ‘Yesterday’ has erstwhile reflected upon, yet continues to account for the spread of HIV/AIDS in SA society. Accordingly, men who had left their homes in the rural areas to work in the mines in the cities become infected with HIV/AIDS, only to return home to infect their wives or partners in the rural areas. This paper analyses, through Social Semiotic theory, how SA geo-spatial arrangement had raptured family structures with both men and women taking new residences in the urban areas where they work away from their homes. By using Social semiotic theory, this paper seeks to understand how images and discourses have been deployed in the film ‘Yesterday’ to demonstrate how HIV/AIDS is embedded in the socio-cultural, economic and political architect of SA society. The study uses qualitative approach and content/text/visual semiotic analysis to decipher meanings from array of imagery and discourses/dialogues that are used to mythologise the relationship between the spread of HIV/AIDS and SA migrant labour patterns. The findings of the study are significant to propose a conceptual framework that can be used to mitigate the spread of HIV/AIDS among SA populace, against the backdrop of changing migrant labour patterns and other related factors

Keywords: colonialism, decoloniality, HIV/AIDS, labour migration patterns, social semiotics

Procedia PDF Downloads 65
1452 Physicochemical Characterization of MFI–Ceramic Hollow Fibres Membranes for CO2 Separation with Alkali Metal Cation

Authors: A. Alshebani, Y. Swesi, S. Mrayed, F. Altaher

Abstract:

This paper present some preliminary work on the preparation and physicochemical caracterization of nanocomposite MFI-alumina structures based on alumina hollow fibres. The fibers are manufactured by a wet spinning process. α-alumina particles were dispersed in a solution of polysulfone in NMP. The resulting slurry is pressed through the annular gap of a spinneret into a precipitation bath. The resulting green fibres are sintered. The mechanical strength of the alumina hollow fibres is determined by a three-point-bending test while the pore size is characterized by bubble-point testing. The bending strength is in the range of 110 MPa while the average pore size is 450 nm for an internal diameter of 1 mm and external diameter of 1.7 mm. To characterize the MFI membranes various techniques were used for physicochemical characterization of MFI–ceramic hollow fibres membranes: The nitrogen adsorption, X-ray diffractometry, scanning electron microscopy combined with X emission microanalysis. Scanning Electron Microscopy (SEM) and Energy Dispersive Microanalysis by the X-ray were used to observe the morphology of the hollow fibre membranes (thickness, infiltration into the carrier, defects, homogeneity). No surface film, has been obtained, as observed by SEM and EDX analysis and confirmed by high temperature variation of N2 and CO2 gas permeances before cation exchange. Local analysis and characterise (SEM and EDX) and overall (by ICP elemental analysis) were conducted on two samples exchanged to determine the quantity and distribution of the cation of cesium on the cross section fibre of the zeolite between the cavities.

Keywords: physicochemical characterization of MFI, ceramic hollow fibre, CO2, ion-exchange

Procedia PDF Downloads 344
1451 Enhanced Magnetoelastic Response near Morphotropic Phase Boundary in Ferromagnetic Materials: Experimental and Theoretical Analysis

Authors: Murtaza Adil, Sen Yang, Zhou Chao, Song Xiaoping

Abstract:

The morphotropic phase boundary (MPB) recently has attracted constant interest in ferromagnetic systems for obtaining enhanced large magnetoelastic response. In the present study, structural and magnetoelastic properties of MPB involved ferromagnetic Tb1-xGdxFe2 (0≤x≤1) system has been investigated. The change of easy magnetic direction from <111> to <100> with increasing x up MPB composition of x=0.9 is detected by step-scanned [440] synchrotron X-ray diffraction reflections. The Gd substitution for Tb changes the composition for the anisotropy compensation near MPB composition of x=0.9, which was confirmed by the analysis of detailed scanned XRD, magnetization curves and the calculation of the first anisotropy constant K1. The spin configuration diagram accompanied with different crystal structures for Tb1-xGdxFe2 was designed. The calculated first anisotropy constant K1 shows a minimum value at MPB composition of x=0.9. In addition, the large ratio between magnetostriction, and the absolute values of the first anisotropy constant │λS∕K1│ appears at MPB composition, which makes it a potential material for magnetostrictive application. Based on experimental results, a theoretically approach was also proposed to signify that the facilitated magnetization rotation and enhanced magnetoelastic effect near MPB composition are a consequence of the anisotropic flattening of free energy of ferromagnetic crystal. Our work specifies the universal existence of MPB in ferromagnetic materials which is important for substantial improvement of magnetic and magnetostrictive properties and may provide a new route to develop advanced functional materials.

Keywords: free energy, magnetic anisotropy, magnetostriction, morphotropic phase boundary (MPB)

Procedia PDF Downloads 271
1450 Structural Behavior of Non-Prismatic Mono-Symmetric Beam

Authors: Nandini B. Nagaraju, Punya D. Gowda, S. Aishwarya, Benjamin Rohit

Abstract:

This paper attempts to understand the structural behavior of non-prismatic channel beams subjected to bending through finite element (FE) analysis. The present study aims at shedding some light on how tapered channel beams behave by studying the effect of taper ratio on structural behavior. As a weight reduction is always desired in aerospace structures beams are tapered in order to obtain highest structural efficiency. FE analysis has been performed to study the effect of taper ratio on linear deflection, lateral torsional buckling, non-linear parameters, stresses and dynamic parameters. Taper ratio tends to affect the mechanics of tapered beams innocuously and adversely. Consequently, it becomes important to understand and document the mechanics of channel tapered beams. Channel beams generally have low torsional rigidity due to the off-shear loading. The effect of loading type and location of applied load have been studied for flange taper, web taper and symmetric taper for different conditions. Among these, as the taper ratio is increased, the torsional angular deflection increases but begins to decrease when the beam is web tapered and symmetrically tapered for a mid web loaded beam. But when loaded through the shear center, an increase in the torsional angular deflection can be observed with increase in taper ratio. It should be considered which parameter is tapered to obtain the highest efficiency.

Keywords: channel beams, tapered beams, lateral torsional bucking, shear centre

Procedia PDF Downloads 435
1449 Cantilever Secant Pile Constructed in Sand: Numerical Comparative Study and Design Aids – Part II

Authors: Khaled R. Khater

Abstract:

All civil engineering projects include excavation work and therefore need some retaining structures. Cantilever secant pile walls are an economical supporting system up to 5.0-m depths. The parameters controlling wall tip displacement are the focus of this paper. So, two analysis techniques have been investigated and arbitrated. They are the conventional method and finite element analysis. Accordingly, two computer programs have been used, Excel sheet and Plaxis-2D. Two soil models have been used throughout this study. They are Mohr-Coulomb soil model and Isotropic Hardening soil models. During this study, two soil densities have been considered, i.e. loose and dense sand. Ten wall rigidities have been analyzed covering ranges of perfectly flexible to completely rigid walls. Three excavation depths, i.e. 3.0-m, 4.0-m and 5.0-m were tested to cover the practical range of secant piles. This work submits beneficial hints about secant piles to assist designers and specification committees. Also, finite element analysis, isotropic hardening, is recommended to be the fair judge when two designs conflict. A rational procedure using empirical equations has been suggested to upgrade the conventional method to predict wall tip displacement ‘δ’. Also, a reasonable limitation of ‘δ’ as a function of excavation depth, ‘h’ has been suggested. Also, it has been found that, after a certain penetration depth any further increase of it does not positively affect the wall tip displacement, i.e. over design and uneconomic.

Keywords: design aids, numerical analysis, secant pile, Wall tip displacement

Procedia PDF Downloads 184
1448 Excitation of Guided Waves in Finite Width Plates Using a Numerical Approach

Authors: Wenbo Duan, Hossein Habibi, Vassilios Kappatos, Cem Selcuk, Tat-Hean Gan

Abstract:

Ultrasonic guided waves are often used to remove ice or fouling in different structures, such as ship hulls, wind turbine blades and so on. To achieve maximum sound power output, it is important that multiple transducers are arranged in a particular way so that a desired mode can be excited. The objective of this paper is thus to provide a theoretical basis for generating a particular mode in a finite width rectangular plate which can be used for removing potential ice or fouling on the plate. The number of transducers and their locations with respect to a particular mode will be investigated, and the link between dispersion curves and practical applications will be explored. To achieve this, a semi-analytical finite element (SAFE) method is used to study the dispersion characteristics of all the modes in the ultrasonic frequency range. The detailed modal shapes will be revealed, and from the modal analysis, the particular mode with the strongest yet continuous transverse and axial displacements on the surfaces of the plate will be chosen for the purpose of removing potential ice or fouling on the plate. The modal analysis is followed by providing information on the number, location and amplitude of transducers needed to excite this particular mode. Modal excitation is then implemented in a standard finite element commercial package, namely COMSOL Multiphysics. Wave motion is visualized in COMSOL, and the mode shapes generated in SAFE is found to be consistent with the mode shapes generated in COMSOL.

Keywords: dispersion analysis, finite width plate, guided wave, modal excitation

Procedia PDF Downloads 467
1447 Using Risk Management Indicators in Decision Tree Analysis

Authors: Adel Ali Elshaibani

Abstract:

Risk management indicators augment the reporting infrastructure, particularly for the board and senior management, to identify, monitor, and manage risks. This enhancement facilitates improved decision-making throughout the banking organization. Decision tree analysis is a tool that visually outlines potential outcomes, costs, and consequences of complex decisions. It is particularly beneficial for analyzing quantitative data and making decisions based on numerical values. By calculating the expected value of each outcome, decision tree analysis can help assess the best course of action. In the context of banking, decision tree analysis can assist lenders in evaluating a customer’s creditworthiness, thereby preventing losses. However, applying these tools in developing countries may face several limitations, such as data availability, lack of technological infrastructure and resources, lack of skilled professionals, cultural factors, and cost. Moreover, decision trees can create overly complex models that do not generalize well to new data, known as overfitting. They can also be sensitive to small changes in the data, which can result in different tree structures and can become computationally expensive when dealing with large datasets. In conclusion, while risk management indicators and decision tree analysis are beneficial for decision-making in banks, their effectiveness is contingent upon how they are implemented and utilized by the board of directors, especially in the context of developing countries. It’s important to consider these limitations when planning to implement these tools in developing countries.

Keywords: risk management indicators, decision tree analysis, developing countries, board of directors, bank performance, risk management strategy, banking institutions

Procedia PDF Downloads 53
1446 A Data Driven Methodological Approach to Economic Pre-Evaluation of Reuse Projects of Ancient Urban Centers

Authors: Pietro D'Ambrosio, Roberta D'Ambrosio

Abstract:

The upgrading of the architectural and urban heritage of the urban historic centers almost always involves the planning for the reuse and refunctionalization of the structures. Such interventions have complexities linked to the need to take into account the urban and social context in which the structure and its intrinsic characteristics such as historical and artistic value are inserted. To these, of course, we have to add the need to make a preliminary estimate of recovery costs and more generally to assess the economic and financial sustainability of the whole project of re-socialization. Particular difficulties are encountered during the pre-assessment of costs since it is often impossible to perform analytical surveys and structural tests for both structural conditions and obvious cost and time constraints. The methodology proposed in this work, based on a multidisciplinary and data-driven approach, is aimed at obtaining, at very low cost, reasonably priced economic evaluations of the interventions to be carried out. In addition, the specific features of the approach used, derived from the predictive analysis techniques typically applied in complex IT domains (big data analytics), allow to obtain as a result indirectly the evaluation process of a shared database that can be used on a generalized basis to estimate such other projects. This makes the methodology particularly indicated in those cases where it is expected to intervene massively across entire areas of historical city centers. The methodology has been partially tested during a study aimed at assessing the feasibility of a project for the reuse of the monumental complex of San Massimo, located in the historic center of Salerno, and is being further investigated.

Keywords: evaluation, methodology, restoration, reuse

Procedia PDF Downloads 177
1445 Lead Removal by Using the Synthesized Zeolites from Sugarcane Bagasse Ash

Authors: Sirirat Jangkorn, Pornsawai Praipipat

Abstract:

Sugarcane bagasse ash of sugar factories is solid wastes that the richest source of silica. The alkali fusion method, quartz particles in material can be dissolved and they can be used as the silicon source for synthesizing silica-based materials such as zeolites. Zeolites have many advantages such as catalyst to improve the chemical reactions and they can also remove heavy metals in the water including lead. Therefore, this study attempts to synthesize zeolites from the sugarcane bagasse ash, investigate their structure characterizations and chemical components to confirm the happening of zeolites, and examine their lead removal efficiency through the batch test studies. In this study, the sugarcane bagasse ash was chosen as the silicon source to synthesize zeolites, X-ray diffraction (XRD) and X-ray fluorescence spectrometry (XRF) were used to verify the zeolite pattern structures and element compositions, respectively. The batch test studies in dose (0.05, 0.1, 0.15 g.), contact time (1, 2, 3), and pH (3, 5, 7) were used to investigate the lead removal efficiency by the synthesized zeolite. XRD analysis result showed the crystalline phase of zeolite pattern, and XRF result showed the main element compositions of the synthesized zeolite that were SiO₂ (50%) and Al₂O₃ (30%). The batch test results showed the best optimum conditions of the synthesized zeolite for lead removal were 0.1 g, 2 hrs., and 5 of dose, contact time, and pH, respectively. As a result, this study can conclude that the zeolites can synthesize from the sugarcane bagasse ash and they can remove lead in the water.

Keywords: sugarcane bagasse ash, solid wastes, zeolite, lead

Procedia PDF Downloads 138
1444 Design, Synthesis and Anti-Inflammatory Activity of Some Coumarin and Flavone Derivatives Containing 1,4 Dioxane Ring System

Authors: Asif Husain, Shah Alam Khan

Abstract:

Coumarins and flavones are oxygen containing heterocyclic compounds which are present in various biologically active compounds. Both the heterocyclic rings are associated with diverse biological actions, therefore considered as an important scaffold for the design of molecules of pharmaceutical interest. Aim: To synthesize and evaluate the in vivo anti-inflammatory activity of few coumrain and flavone derivatives containing 1,4 dioxane ring system. Materials and methods: Coumarin derivatives (3a-d) were synthesized by reacting 7,8 dihydroxy coumarin (2a) and its 4-methyl derivative (2b) with epichlorohydrin/ethylene dibromide. The flavone derivatives (10a-d) were prepared by using quercetin and 3,4 dihydroxy flavones. Compounds of both the series were also evaluated for their anti-inflammatory, analgesic activity and ulcerogenicity in animal models by reported methods. Results and Discussion: The structures of all newly synthesized compounds were confirmed with the help of IR, 1H NMR, 13C NMR and Mass spectral studies. Elemental analyses data for each element analyzed (C, H, N) was found to be within acceptable range of ±0.4 %. Flavone derivatives, but in particular quercetin containing 1,4 dioxane ring system (10d) showed better anti-inflammatory and analgesic activity along with reduced gastrointestinal toxicity as compared to other synthesized compounds. The results of anti-inflammatory and analgesic activities of both the series are comparable with the positive control, diclofenac. Conclusion: Compound 10d, a quercetin derivative, emerged as a lead molecule which exhibited potent anti-inflammatory and analgesic activity with significant reduced gastric toxicity.

Keywords: analgesic, anti-inflammatory, 1, 4 dioxane, coumarin, flavone

Procedia PDF Downloads 321
1443 Python Implementation for S1000D Applicability Depended Processing Model - SALERNO

Authors: Theresia El Khoury, Georges Badr, Amir Hajjam El Hassani, Stéphane N’Guyen Van Ky

Abstract:

The widespread adoption of machine learning and artificial intelligence across different domains can be attributed to the digitization of data over several decades, resulting in vast amounts of data, types, and structures. Thus, data processing and preparation turn out to be a crucial stage. However, applying these techniques to S1000D standard-based data poses a challenge due to its complexity and the need to preserve logical information. This paper describes SALERNO, an S1000d AppLicability dEpended pRocessiNg mOdel. This python-based model analyzes and converts the XML S1000D-based files into an easier data format that can be used in machine learning techniques while preserving the different logic and relationships in files. The model parses the files in the given folder, filters them, and extracts the required information to be saved in appropriate data frames and Excel sheets. Its main idea is to group the extracted information by applicability. In addition, it extracts the full text by replacing internal and external references while maintaining the relationships between files, as well as the necessary requirements. The resulting files can then be saved in databases and used in different models. Documents in both English and French languages were tested, and special characters were decoded. Updates on the technical manuals were taken into consideration as well. The model was tested on different versions of the S1000D, and the results demonstrated its ability to effectively handle the applicability, requirements, references, and relationships across all files and on different levels.

Keywords: aeronautics, big data, data processing, machine learning, S1000D

Procedia PDF Downloads 138
1442 Advanced Numerical and Analytical Methods for Assessing Concrete Sewers and Their Remaining Service Life

Authors: Amir Alani, Mojtaba Mahmoodian, Anna Romanova, Asaad Faramarzi

Abstract:

Pipelines are extensively used engineering structures which convey fluid from one place to another. Most of the time, pipelines are placed underground and are encumbered by soil weight and traffic loads. Corrosion of pipe material is the most common form of pipeline deterioration and should be considered in both the strength and serviceability analysis of pipes. The study in this research focuses on concrete pipes in sewage systems (concrete sewers). This research firstly investigates how to involve the effect of corrosion as a time dependent process of deterioration in the structural and failure analysis of this type of pipe. Then three probabilistic time dependent reliability analysis methods including the first passage probability theory, the gamma distributed degradation model and the Monte Carlo simulation technique are discussed and developed. Sensitivity analysis indexes which can be used to identify the most important parameters that affect pipe failure are also discussed. The reliability analysis methods developed in this paper contribute as rational tools for decision makers with regard to the strengthening and rehabilitation of existing pipelines. The results can be used to obtain a cost-effective strategy for the management of the sewer system.

Keywords: reliability analysis, service life prediction, Monte Carlo simulation method, first passage probability theory, gamma distributed degradation model

Procedia PDF Downloads 451
1441 Anti-tuberculosis, Resistance Modulatory, Anti-pulmonary Fibrosis and Anti-silicosis Effects of Crinum Asiaticum Bulbs and Its Active Metabolite, Betulin

Authors: Theophilus Asante, Comfort Nyarko, Daniel Antwi

Abstract:

Drug-resistant tuberculosis, together with the associated comorbidities like pulmonary fibrosis and silicosis, has been one of the most serious global public health threats that requires immediate action to curb or mitigate it. This prolongs hospital stays, increases the cost of medication, and increases the death toll recorded annually. Crinum asiaticum bulb (CAE) and betulin (BET) are known for their biological and pharmacological effects. Pharmacological effects reported on CAE include antimicrobial, anti-inflammatory, anti-pyretic, anti-analgesic, and anti-cancer effects. Betulin has exhibited a multitude of powerful pharmacological properties ranging from antitumor, anti-inflammatory, anti-parasitic, anti-microbial, and anti-viral activities. This work sought to investigate the anti-tuberculosis and resistant modulatory effects and also assess their effects on mitigating pulmonary fibrosis and silicosis. In the anti-tuberculosis and resistant modulatory effects, both CAE and BET showed strong antimicrobial activities (31.25 ≤ MIC ≤ 500) µg/ml against the studied microorganisms and also produced significant anti-efflux pump and biofilm inhibitory effects (ρ < 0.0001) as well as exhibiting resistance modulatory and synergistic effects when combined with standard antibiotics. Crinum asiaticum bulbs extract and betulin were shown to possess anti-pulmonary fibrosis effects. There was an increased survival rate in the CAE and BET treatment groups compared to the BLM-induced group. There was a marked decrease in the levels of hydroxyproline and collagen I and III in the CAE and BET treatment groups compared to the BLM-treated group. The treatment groups of CAE and BET significantly downregulated the levels of pro-fibrotic and pro-inflammatory cytokine concentrations such as TGF-β1, MMP9, IL-6, IL-1β and TNF-alpha compared to an increase in the BLM-treated groups. The histological findings of the lungs suggested the curative effects of CAE and BET following BLM-induced pulmonary fibrosis in mice. The study showed improved lung functions with a wide focal area of viable alveolar spaces and few collagen fibers deposition on the lungs of the treatment groups. In the anti-silicosis and pulmonoprotective effects of CAE and BET, the levels of NF-κB, TNF-α, IL-1β, IL-6 and hydroxyproline, collagen types I and III were significantly reduced by CAE and BET (ρ < 0.0001). Both CAE and BET significantly (ρ < 0.0001) inhibited the levels of hydroxyproline, collagen I and III when compared with the negative control group. On BALF biomarkers such as macrophages, lymphocytes, monocytes, and neutrophils, CAE and BET were able to reduce their levels significantly (ρ < 0.0001). The CAE and BET were examined for anti-oxidant activity and shown to raise the levels of catalase (CAT) and superoxide dismutase (SOD) while lowering the level of malondialdehyde (MDA). There was an improvement in lung function when lung tissues were examined histologically. Crinum asiaticum bulbs extract and betulin were discovered to exhibit anti-tubercular and resistance-modulatory properties, as well as the capacity to minimize TB comorbidities such as pulmonary fibrosis and silicosis. In addition, CAE and BET may act as protective mechanisms, facilitating the preservation of the lung's physiological integrity. The outcomes of this study might pave the way for the development of leads for producing single medications for the management of drug-resistant tuberculosis and its accompanying comorbidities.

Keywords: fibrosis, crinum, tuberculosis, antiinflammation, drug resistant

Procedia PDF Downloads 79
1440 Synthesis and Characterization of an Aerogel Based on Graphene Oxide and Polyethylene Glycol

Authors: Javiera Poblete, Fernando Gajardo, Katherina Fernandez

Abstract:

Graphene, and its derivatives such as graphene oxide (GO), are emerging nanoscopic materials, with interesting physical and chemical properties. From them, it is possible to develop three-dimensional macrostructures, such as aerogels, which are characterized by a low density, high porosity, and large surface area, having a promising structure for the development of materials. The use of GO as a precursor of these structures provides a wide variety of materials, which can be developed as a result of the functionalization of their oxygenated groups, with specific compounds such as polyethylene glycol (PEG). The synthesis of aerogels of GO-PEG for non-covalent interactions has not yet been widely reported, being of interest due to its feasible escalation and economic viability. Thus, this work aims to develop a non-covalently functionalized GO-PEG aerogels and characterize them physicochemically. In order to get this, the GO was synthesized from the modified hummers method and it was functionalized with the PEG by polymer-assisted GO gelation (crosslinker). The gelation was obtained for GO solutions (10 mg/mL) with the incorporation of PEG in different proportions by weight. The hydrogel resulting from the reaction was subsequently lyophilized, to obtain the respective aerogel. The material obtained was chemically characterized by analysis of Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray diffraction (XRD), and its morphology by scanning electron microscopy (SEM) images; as well as water absorption tests. The results obtained showed the formation of a non-covalent aerogel (FTIR), whose structure was highly porous (SEM) and with a water absorption values greater than 50% g/g. Thus, a methodology of synthesis for GO-PEG was developed and validated.

Keywords: aerogel, graphene oxide, polyethylene glycol, synthesis

Procedia PDF Downloads 119
1439 A Study on the Reinforced Earth Walls Using Sandwich Backfills under Seismic Loads

Authors: Kavitha A.S., L.Govindaraju

Abstract:

Reinforced earth walls offer excellent solution to many problems associated with earth retaining structures especially under seismic conditions. Use of cohesive soils as backfill material reduces the cost of reinforced soil walls if proper drainage measures are taken. This paper presents a numerical study on the application of a new technique called sandwich technique in reinforced earth walls. In this technique, a thin layer of granular soil is placed above and below the reinforcement layer to initiate interface friction and the remaining portion of the backfill is filled up using the existing insitu cohesive soil. A 6 m high reinforced earth wall has been analysed as a two-dimensional plane strain finite element model. Three types of reinforcing elements such as geotextile, geogrid and metallic strips were used. The horizontal wall displacements and the tensile loads in the reinforcement were used as the criteria to evaluate the results at the end of construction and dynamic excitation phases. Also to verify the effectiveness of sandwich layer on the performance of the wall, the thickness of sand fill surrounding the reinforcement was varied. At the end of construction stage it is found that the wall with sandwich type backfill yielded lower displacements when compared to the wall with cohesive soil as backfill. Also with sandwich backfill, the reinforcement loads reduced substantially when compared to the wall with cohesive soil as backfill. Further, it is found that sandwich technique as backfill and geogrid as reinforcement is a good combination to reduce the deformations of geosynthetic reinforced walls during seismic loading.

Keywords: geogrid, geotextile, reinforced earth, sandwich technique

Procedia PDF Downloads 280
1438 Energy Consumption Statistic of Gas-Solid Fluidized Beds through Computational Fluid Dynamics-Discrete Element Method Simulations

Authors: Lei Bi, Yunpeng Jiao, Chunjiang Liu, Jianhua Chen, Wei Ge

Abstract:

Two energy paths are proposed from thermodynamic viewpoints. Energy consumption means total power input to the specific system, and it can be decomposed into energy retention and energy dissipation. Energy retention is the variation of accumulated mechanical energy in the system, and energy dissipation is the energy converted to heat by irreversible processes. Based on the Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) framework, different energy terms are quantified from the specific flow elements of fluid cells and particles as well as their interactions with the wall. Direct energy consumption statistics are carried out for both cold and hot flow in gas-solid fluidization systems. To clarify the statistic method, it is necessary to identify which system is studied: the particle-fluid system or the particle sub-system. For the cold flow, the total energy consumption of the particle sub-system can predict the onset of bubbling and turbulent fluidization, while the trends of local energy consumption can reflect the dynamic evolution of mesoscale structures. For the hot flow, different heat transfer mechanisms are analyzed, and the original solver is modified to reproduce the experimental results. The influence of the heat transfer mechanisms and heat source on energy consumption is also investigated. The proposed statistic method has proven to be energy-conservative and easy to conduct, and it is hopeful to be applied to other multiphase flow systems.

Keywords: energy consumption statistic, gas-solid fluidization, CFD-DEM, regime transition, heat transfer mechanism

Procedia PDF Downloads 62