Search results for: re-sequencing applications
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6413

Search results for: re-sequencing applications

2813 Multivariate Output-Associative RVM for Multi-Dimensional Affect Predictions

Authors: Achut Manandhar, Kenneth D. Morton, Peter A. Torrione, Leslie M. Collins

Abstract:

The current trends in affect recognition research are to consider continuous observations from spontaneous natural interactions in people using multiple feature modalities, and to represent affect in terms of continuous dimensions, incorporate spatio-temporal correlation among affect dimensions, and provide fast affect predictions. These research efforts have been propelled by a growing effort to develop affect recognition system that can be implemented to enable seamless real-time human-computer interaction in a wide variety of applications. Motivated by these desired attributes of an affect recognition system, in this work a multi-dimensional affect prediction approach is proposed by integrating multivariate Relevance Vector Machine (MVRVM) with a recently developed Output-associative Relevance Vector Machine (OARVM) approach. The resulting approach can provide fast continuous affect predictions by jointly modeling the multiple affect dimensions and their correlations. Experiments on the RECOLA database show that the proposed approach performs competitively with the OARVM while providing faster predictions during testing.

Keywords: dimensional affect prediction, output-associative RVM, multivariate regression, fast testing

Procedia PDF Downloads 286
2812 Preparation of Zno/Ag Nanocomposite and Coating on Polymers for Anti-Infection Biomaterial Application

Authors: Babak Sadeghi, Parisa Ghayomipour

Abstract:

ZnO/Ag nanocomposites coated with polyvinyl chloride (PVC) were prepared by chemical reduction method, for anti-infection biomaterial application. There is a growing interest in attempts in using biomolecular as the templates to grow inorganic nanocomposites in controlled morphology and structure. By optimizing the experiment conditions, we successfully fabricated high yield of ZnO/Ag nanocomposite with full coverage of high-density polyvinyl chloride (PVC) coating. More importantly, ZnO/Ag nanocomposites were shown to significantly inhibit the growth of S. aureus in solution. It was further shown that ZnO/Ag nanocomposites induced thiol depletion that caused death of S. aureus. The coatings were fully characterized using techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Most importantly, compared to uncoated metals, the coatings on PVC promoted healthy antibacterial activity. Importantly, compared to ZnO-Ag -uncoated PVC, the ZnO/Ag nanocomposites coated was approximately triplet more effective in preventing bacteria attachment. The result of Thermal Gravimetric Analysis (TGA) indicates that, the ZnO/Ag nanocomposites are chemically stable in the temperature range from 50 to 900 ºC. This result, for the first time, demonstrates the potential of using ZnO/Ag nanocomposites as a coating material for numerous anti-bacterial applications.

Keywords: nanocomposites, antibacterial activity, scanning electron microscopy (SEM), x-ray diffraction (XRD)

Procedia PDF Downloads 473
2811 The Internet of Healthcare Things: A European Perspective and a Review of Ethical Concerns

Authors: M. Emmanouilidou

Abstract:

The Internet of Things (IoT) is a disruptive technological paradigm that is at the center of the digital evolution by integrating physical and virtual worlds leading to the creation of extended interconnected ecosystems that are characterized as smart environments. The concept of the IoT has a broad range of applications in different industries including the healthcare sector. The Internet of Healthcare Things (IoHT), a branch of the IoT, is expected to bring promising benefits to all involved stakeholders and accelerate the revolution of the healthcare sector through a transition towards preventive and personalized medicine. The socio-economic challenges that the healthcare sector is facing further emphasize the need for a radical transformation of healthcare systems in both developed and developing countries with the role of pervasive technological innovations, such as IoHT, recognized as key to counteract the relevant challenges. Besides the number of potential opportunities that IoHT presents, there are fundamental ethical concerns that need to be considered and addressed in relation to the application of IoHT. This paper contributes to the discussion of the emerging topic of IoHT by providing an overview of the role and potential of IoHT, highlighting the characteristics of the current and future healthcare landscape, reporting on the up-to-date status of IoHT in Europe and reflecting upon existing research in the ethics of IoHT by incorporating additional ethical dimensions that have been ignored which can provide pathways for future research in the field.

Keywords: ethics, Europe, healthcare, Internet of Things

Procedia PDF Downloads 134
2810 Optimizing Pediatric Pneumonia Diagnosis with Lightweight MobileNetV2 and VAE-GAN Techniques in Chest X-Ray Analysis

Authors: Shriya Shukla, Lachin Fernando

Abstract:

Pneumonia, a leading cause of mortality in young children globally, presents significant diagnostic challenges, particularly in resource-limited settings. This study presents an approach to diagnosing pediatric pneumonia using Chest X-Ray (CXR) images, employing a lightweight MobileNetV2 model enhanced with synthetic data augmentation. Addressing the challenge of dataset scarcity and imbalance, the study used a Variational Autoencoder-Generative Adversarial Network (VAE-GAN) to generate synthetic CXR images, improving the representation of normal cases in the pediatric dataset. This approach not only addresses the issues of data imbalance and scarcity prevalent in medical imaging but also provides a more accessible and reliable diagnostic tool for early pneumonia detection. The augmented data improved the model’s accuracy and generalization, achieving an overall accuracy of 95% in pneumonia detection. These findings highlight the efficacy of the MobileNetV2 model, offering a computationally efficient yet robust solution well-suited for resource-constrained environments such as mobile health applications. This study demonstrates the potential of synthetic data augmentation in enhancing medical image analysis for critical conditions like pediatric pneumonia.

Keywords: pneumonia, MobileNetV2, image classification, GAN, VAE, deep learning

Procedia PDF Downloads 125
2809 Arduino-Based Laser Communication

Authors: Simon Bambey, Edward Lim, Kai Corley-Jory, Pooya Taheri

Abstract:

The main goal of this paper is to propose a simple and low-cost microcontroller-based laser communication link. To demonstrate that laser communication is a viable and efficient means for transmitting data, a transceiver capable of transfer rates of approximately 0.7 kB/s is prototyped. The hardware used for the transceiver consists of Commercial Off-The-Shelf (COTS) lasers, photodiodes, and the Arduino Mega 2560 which is an open-source and easy-to-use microcontroller-based platform intended for making interactive projects. A graphic user interface utilizing the Meteor framework is developed to facilitate the communication between the user and transceiver. The developed transceiver prototype is capable of receiving and transmitting data at significant ranges with no loss of information. Furthermore, stable and secure communication is achieved through several mechanisms developed to manage simultaneous sending and receiving, in addition to detecting physical interruptions during transmission. The design setup is scalable and with further development can be transformed into a fiber-optic transmission system. Due to its nature, laser communication is very secure and can provide a safe and private communication link. Overall, this paper demonstrates how laser communication can be an economical, durable, and effective means of information transfer.

Keywords: Arduino microcontrollers, laser applications, user interfaces, wireless communication

Procedia PDF Downloads 302
2808 Structural and Magnetic Properties of Calcium Mixed Ferrites Prepared by Co-Precipitation Method

Authors: Sijo S. Thomas, S. Hridya, Manoj Mohan, Bibin Jacob, Hysen Thomas

Abstract:

Ferrites are iron based oxides with technologically significant magnetic properties and have widespread applications in medicine, technology, and industry. There has been a growing interest in the study of magnetic, electrical and structural properties of mixed ferrites. In the present work, structural and magnetic properties of Nickel and Calcium substituted Fe₃O₄ nanoparticles were investigated. NiₓCa₁₋ₓFe₂O₄ nanoparticles (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9) were synthesized by chemical co-precipitation method and the samples were subsequently sintered at 900°C. The magnetic and structural properties of NiₓCa₁₋ₓFe₂O₄ were investigated using Vibrating Sample Magnetometer and X-Ray diffraction. The XRD results revealed that the synthesized particles have nanometer size and it varies from 46-72 nm as the calcium concentration diminishes. The variation is explained based on the increase in the reaction rate with Ni concentration which favors the formation of ultrafine particles of mixed ferrites. VSM results show pure CaFe₂O₄ exhibit paramagnetic behavior with low saturation value. As the concentration of Ca decreases, a transition occurs from paramagnetic state to ferromagnetic state. When the concentration of Ni becomes dominant, magnetic saturation, coercivity, and retentivity become high, indicating near ferromagnetic behavior of the compound.

Keywords: co-precipitation, ferrites, magnetic behavior, structure

Procedia PDF Downloads 249
2807 PBI Based Composite Membrane for High Temperature Polymer Electrolyte Membrane Fuel Cells

Authors: Kwangwon Seo, Haksoo Han

Abstract:

Al-Si was synthesized and introduced in poly 2,2’-m-(phenylene)-5,5’-bibenzimidazole (PBI). As a result, a series of five Al-Si/PBI composite (ASPBI) membranes (0, 3, 6, 9, and 12 wt.%) were developed and characterized for application in high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). The chemical and morphological structure of ASPBI membranes were analyzed by Fourier transform infrared spectroscopy, X-ray diffractometer and scanning electron microscopy. According to the doping level test and thermogravimetric analysis, as the concentration of Al-Si increased, the doping level increased up to 475%. Moreover, the proton conductivity, current density at 0.6V, and maximum power density of ASPBI membranes increased up to 0.31 Scm-1, 0.320 Acm-2, and 0.370 Wcm-2, respectively, because the increased concentration of Al-Si allows the membranes to hold more PA. Alternatively, as the amount of Al-Si increased, the tensile strength of PA-doped and -undoped membranes decreased. This was resulted by both excess PA and aggregation, which can cause serious degradation of the membrane and induce cracks. Moreover, the PA-doped and -undoped ASPBI12 had the lowest tensile strength. The improved performances of ASPBI membranes imply that ASPBI membranes are possible candidates for HT-PEMFC applications. However, further studies searching to improve the compatibility between PBI matrix and inorganic and optimize the loading of Al-Si should be performed.

Keywords: composite membrane, high temperature polymer electrolyte membrane fuel cell, membrane electrode assembly, polybenzimidazole, polymer electrolyte membrane, proton conductivity

Procedia PDF Downloads 528
2806 The Potential of Sentiment Analysis to Categorize Social Media Comments Using German Libraries

Authors: Felix Boehnisch, Alexander Lutz

Abstract:

Based on the number of users and the amount of content posted daily, Facebook is considered the largest social network in the world. This content includes images or text posts from companies but also private persons, which are also commented on by other users. However, it can sometimes be difficult for companies to keep track of all the posts and the reactions to them, especially when there are several posts a day that contain hundreds to thousands of comments. To facilitate this, the following paper deals with the possible applications of sentiment analysis to social media comments in order to be able to support the work in social media marketing. In a first step, post comments were divided into positive and negative by a subjective rating, then the same comments were checked for their polarity value by the two german python libraries TextBlobDE and SentiWS and also grouped into positive, negative, or even neutral. As a control, the subjective classifications were compared with the machine-generated ones by a confusion matrix, and relevant quality criteria were determined. The accuracy of both libraries was not really meaningful, with 60% to 66%. However, many words or sentences were not evaluated at all, so there seems to be room for optimization to possibly get more accurate results. In future studies, the use of these specific German libraries can be optimized to gain better insights by either applying them to stricter cleaned data or by adding a sentiment value to emojis, which have been removed from the comments in advance, as they are not contained in the libraries.

Keywords: Facebook, German libraries, polarity, sentiment analysis, social media comments

Procedia PDF Downloads 182
2805 Process Optimization of Electrospun Fish Sarcoplasmic Protein Based Nanofibers

Authors: Sena Su, Burak Ozbek, Yesim M. Sahin, Sevil Yucel, Dilek Kazan, Faik N. Oktar, Nazmi Ekren, Oguzhan Gunduz

Abstract:

In recent years, protein, lipid or polysaccharide-based polymers have been used in order to develop biodegradable materials and their chemical nature determines the physical properties of the resulting films. Among these polymers, proteins from different sources have been extensively employed because of their relative abundance, film forming ability, and nutritional qualities. In this study, the biodegradable composite nanofiber films based on fish sarcoplasmic protein (FSP) were prepared via electrospinning technique. Biodegradable polycaprolactone (PCL) was blended with the FSP to obtain hybrid FSP/PCL nanofiber mats with desirable physical properties. Mixture solutions of FSP and PCL were produced at different concentrations and their density, viscosity, electrical conductivity and surface tension were measured. Mechanical properties of electrospun nanofibers were evaluated. Morphology of composite nanofibers was observed using scanning electron microscopy (SEM). Moreover, Fourier transform infrared spectrometer (FTIR) studies were used for analysis chemical composition of composite nanofibers. This study revealed that the FSP based nanofibers have the potential to be used for different applications such as biodegradable packaging, drug delivery, and wound dressing, etc.

Keywords: edible film, electrospinning, fish sarcoplasmic protein, nanofiber

Procedia PDF Downloads 297
2804 Implementation of Real-Time Multiple Sound Source Localization and Separation

Authors: Jeng-Shin Sheu, Qi-Xun Zheng

Abstract:

This paper mainly discusses a method of separating speech when using a microphone array without knowing the number and direction of sound sources. In recent years, there have been many studies on the method of separating signals by using masking, but most of the separation methods must be operated under the condition of a known number of sound sources. Such methods cannot be used for real-time applications. In our method, this paper uses Circular-Integrated-Cross-Spectrum to estimate the statistical histogram distribution of the direction of arrival (DOA) to obtain the number of sound sources and sound in the mixed-signal Source direction. In calculating the relevant parameters of the ring integrated cross-spectrum, the phase (Phase of the Cross-Power Spectrum) and phase rotation factors (Phase Rotation Factors) calculated by the cross power spectrum of each microphone pair are used. In the part of separating speech, it uses the DOA weighting and shielding separation method to calculate the sound source direction (DOA) according to each T-F unit (time-frequency point). The weight corresponding to each T-F unit can be used to strengthen the intensity of each sound source from the T-F unit and reduce the influence of the remaining sound sources, thereby achieving voice separation.

Keywords: real-time, spectrum analysis, sound source localization, sound source separation

Procedia PDF Downloads 155
2803 Experimental Proof of Concept for Piezoelectric Flow Harvesting for In-Pipe Metering Systems

Authors: Sherif Keddis, Rafik Mitry, Norbert Schwesinger

Abstract:

Intelligent networking of devices has rapidly been gaining importance over the past years and with recent advances in the fields of microcontrollers, integrated circuits and wireless communication, low power applications have emerged, enabling this trend even more. Connected devices provide a much larger database thus enabling highly intelligent and accurate systems. Ensuring safe drinking water is one of the fields that require constant monitoring and can benefit from an increased accuracy. Monitoring is mainly achieved either through complex measures, such as collecting samples from the points of use, or through metering systems typically distant to the points of use which deliver less accurate assessments of the quality of water. Constant metering near the points of use is complicated due to their inaccessibility; e.g. buried water pipes, locked spaces, which makes system maintenance extremely difficult and often unviable. The research presented here attempts to overcome this challenge by providing these systems with enough energy through a flow harvester inside the pipe thus eliminating the maintenance requirements in terms of battery replacements or containment of leakage resulting from wiring such systems. The proposed flow harvester exploits the piezoelectric properties of polyvinylidene difluoride (PVDF) films to convert turbulence induced oscillations into electrical energy. It is intended to be used in standard water pipes with diameters between 0.5 and 1 inch. The working principle of the harvester uses a ring shaped bluff body inside the pipe to induce pressure fluctuations. Additionally the bluff body houses electronic components such as storage, circuitry and RF-unit. Placing the piezoelectric films downstream of that bluff body causes their oscillation which generates electrical charge. The PVDF-film is placed as a multilayered wrap fixed to the pipe wall leaving the top part to oscillate freely inside the flow. The warp, which allows for a larger active, consists of two layers of 30µm thick and 12mm wide PVDF layered alternately with two centered 6µm thick and 8mm wide aluminum foil electrodes. The length of the layers depends on the number of windings and is part of the investigation. Sealing the harvester against liquid penetration is achieved by wrapping it in a ring-shaped LDPE-film and welding the open ends. The fabrication of the PVDF-wraps is done by hand. After validating the working principle using a wind tunnel, experiments have been conducted in water, placing the harvester inside a 1 inch pipe at water velocities of 0.74m/s. To find a suitable placement of the wrap inside the pipe, two forms of fixation were compared regarding their power output. Further investigations regarding the number of windings required for efficient transduction were made. Best results were achieved using a wrap with 3 windings of the active layers which delivers a constant power output of 0.53µW at a 2.3MΩ load and an effective voltage of 1.1V. Considering the extremely low power requirements of sensor applications, these initial results are promising. For further investigations and optimization, machine designs are currently being developed to automate the fabrication and decrease tolerance of the prototypes.

Keywords: maintenance-free sensors, measurements at point of use, piezoelectric flow harvesting, universal micro generator, wireless metering systems

Procedia PDF Downloads 193
2802 Degradation of Chlorpyrifos Pesticide in Aqueous Solution and Chemical Oxygen Demand from Real Effluent with Hydrodynamic Cavitation Approach

Authors: Shrikant Randhavane, Anjali Khambete

Abstract:

Use of Pesticides is vital in attaining food security and protection from harmful pests and insects in living environment. Chlorpyrifos, an organophosphate pesticide is widely used worldwide for various purposes. Due to its wide use and applications, its residues are found in environmental matrices and persist in nature for long duration of time. This has an adverse effect on human, aquatic and living bodies. Use of different methodologies is need of an hour to treat such type of recalcitrant compound. The paper focuses on Hydrodynamic Cavitation (HC), a hybrid Advanced Oxidation Potential (AOP) method to degrade Chlorpyrifos in aqueous water. Obtained results show that optimum inlet pressure of 5 bars gave maximum degradation of 99.25% for lower concentration and 87.14% for higher concentration Chlorpyrifos solution in 1 hour treatment time. Also, with known initial concentrations, comparing treatment time with optimum pressure of 5 bars, degradation efficiency increases with Hydrodynamic Cavitation. The potential application of HC in removal of Chemical Oxygen Demand (COD) from real effluent with venturi as cavitating device reveals around 40% COD removal with 1 hour of treatment time.

Keywords: advanced oxidation potential, cavitation, chlorpyrifos, COD

Procedia PDF Downloads 219
2801 Using Indigenous Games to Demystify Probability Theorem in Ghanaian Classrooms: Mathematical Analysis of Ampe

Authors: Peter Akayuure, Michael Johnson Nabie

Abstract:

Similar to many colonized nations in the world, one indelible mark left by colonial masters after Ghana’s independence in 1957 has been the fact that many contexts used to teach statistics and probability concepts are often alien and do not resonate with the social domain of our indigenous Ghanaian child. This has seriously limited the understanding, discoveries, and applications of mathematics for national developments. With the recent curriculum demands of making the Ghanaian child mathematically literate, this qualitative study involved video recordings and mathematical analysis of play sessions of an indigenous girl game called Ampe with the aim to demystify the concepts in probability theorem, which is applied in mathematics related fields of study. The mathematical analysis shows that the game of Ampe, which is widely played by school girls in Ghana, is suitable for learning concepts of the probability theorems. It was also revealed that as a girl game, the use of Ampe provides good lessons to educators, textbook writers, and teachers to rethink about the selection of mathematics tasks and learning contexts that are sensitive to gender. As we undertake to transform teacher education and student learning, the use of indigenous games should be critically revisited.

Keywords: Ampe, mathematical analysis, probability theorem, Ghanaian girl game

Procedia PDF Downloads 370
2800 Non-Targeted Adversarial Image Classification Attack-Region Modification Methods

Authors: Bandar Alahmadi, Lethia Jackson

Abstract:

Machine Learning model is used today in many real-life applications. The safety and security of such model is important, so the results of the model are as accurate as possible. One challenge of machine learning model security is the adversarial examples attack. Adversarial examples are designed by the attacker to cause the machine learning model to misclassify the input. We propose a method to generate adversarial examples to attack image classifiers. We are modifying the successfully classified images, so a classifier misclassifies them after the modification. In our method, we do not update the whole image, but instead we detect the important region, modify it, place it back to the original image, and then run it through a classifier. The algorithm modifies the detected region using two methods. First, it will add abstract image matrix on back of the detected image matrix. Then, it will perform a rotation attack to rotate the detected region around its axes, and embed the trace of image in image background. Finally, the attacked region is placed in its original position, from where it was removed, and a smoothing filter is applied to smooth the background with foreground. We test our method in cascade classifier, and the algorithm is efficient, the classifier confident has dropped to almost zero. We also try it in CNN (Convolutional neural network) with higher setting and the algorithm was successfully worked.

Keywords: adversarial examples, attack, computer vision, image processing

Procedia PDF Downloads 339
2799 PEG-b-poly(4-vinylbenzyl phosphonate) Coated Magnetic Iron Oxide Nanoparticles as Drug Carrier System: Biological and Physicochemical Characterization

Authors: Magdalena Hałupka-Bryl, Magdalena Bednarowicz, Ryszard Krzyminiewski, Yukio Nagasaki

Abstract:

Due to their unique physical properties, superparamagnetic iron oxide nanoparticles are increasingly used in medical applications. They are very useful carriers for delivering antitumor drugs in targeted cancer treatment. Magnetic nanoparticles (PEG-PIONs/DOX) with chemotherapeutic were synthesized by coprecipitation method followed by coating with biocompatible polymer PEG-derivative (poly(ethylene glycol)-block-poly(4-vinylbenzylphosphonate). Complete physicochemical characterization was carried out (ESR, HRTEM, X-ray diffraction, SQUID analysis) to evaluate the magnetic properties of obtained PEG-PIONs/DOX. Nanoparticles were investigated also in terms of their stability, drug loading efficiency, drug release and antiproliferative effect on cancer cells. PEG-PIONs/DOX have been successfully used for the efficient delivery of an anticancer drug into the tumor region. Fluorescent imaging showed the internalization of PEG-PIONs/DOX in the cytoplasm. Biodistribution studies demonstrated that PEG-PIONs/DOX preferentially accumulate in tumor region via the enhanced permeability and retention effect. The present findings show that synthesized nanosystem is promising tool for potential magnetic drug delivery.

Keywords: targeted drug delivery, magnetic properties, iron oxide nanoparticles, biodistribution

Procedia PDF Downloads 463
2798 Exploring Manufacturing Competency and Strategic Success: A Review

Authors: Chandan Deep Singh, Jaimal Singh Khamba, Harleen Kaur

Abstract:

Eminence, charge, deliverance, modernism, and awareness underlie most manufacturing strategic plan today. Firms have traditionally pursued the above tasks through the implementation of advanced technologies and manufacturing practices, such as Reverse Engineering, Value Engineering, worker empowerment, etc. Recent developments in industry suggest the materialization of another route to manufacturing brilliance, that is, there is an increasing focus by industry regulators and professional bodies on the need to stimulate innovation in a broad range of manufacturing competencies. By ‘competencies’ we mean the methods, equipment and expertise that can be developed as a leading capability in one market sector or application and have real potential to be applied successfully across other sectors or applications as well. Further, competencies are the ability to apply or use a set of related knowledge, skills, and abilities to perform 'critical work functions' or tasks in a defined work setting. Competencies often serve as the basis for skill standards that specify the level of knowledge, skills, and abilities required for success in the workplace as well as potential measurement criteria for assessing competency attainment. The present research is so designed to come up to the level of the expectations of the industrialists, policy makers, designers of the competencies, specially, the manufacturing competencies upon which the whole strategic success of the industry depends.

Keywords: manufacturing competency, strategic success, manufacturing excellence, competitive strategy

Procedia PDF Downloads 570
2797 Early Detection of Instability in Emulsions via Diffusing Wave Spectroscopy

Authors: Coline Bretz, Andrea Vaccaro, Dario Leumann

Abstract:

The food, personal care, and cosmetic industries are seeing increased consumer demand for more sustainable and innovative ingredients. When developing new formulations incorporating such ingredients, stability is one of the first criteria that must be assessed, and it is thus of great importance to have a method that can detect instabilities early and quickly. Diffusing Wave Spectroscopy (DWS) is a light scattering technique that probes the motion,i.e., the mean square displacement (MSD), of colloids, such as nanoparticles in a suspension or droplets in emulsions. From the MSD, the rheological properties of the surrounding medium can be determined via the so-called microrheology approach. In the case of purely viscous media, it is also possible to obtain information about particle size. DWS can thus be used to monitor the size evolution of particles, droplets, or bubbles in aging dispersions, emulsions, or foams. In the context of early instability detection in emulsions, DWS offers considerable advantages, as the samples are measured in a contact-free manner, using only small quantities of samples loaded in a sealable cuvette. The sensitivity and rapidity of the technique are key to detecting and following the ageing of emulsions reliably. We present applications of DWS focused on the characterization of emulsions. In particular, we demonstrate the ability to record very subtle changes in the structural properties early on. We also discuss the various mechanisms at play in the destabilization of emulsions, such as coalescence or Ostwald ripening, and how to identify them through this technique.

Keywords: instrumentation, emulsions, stability, DWS

Procedia PDF Downloads 65
2796 Using Mobile Phones for M-Learning in Higher Education: A Comparative Study

Authors: Islam Elsayed Hussein Ali, Stefan M. Wagner

Abstract:

Smartphone and tablet computers, as well as other ultra portable devices, have already gained enough critical mass to be considered mainstream devices, being present in the daily lives of millions of higher education students. Many universities throughout the world have already adopted or are planning to adopt mobile technologies in many of their courses as a better way to connect students with the subjects they are studying. These new mobile platforms allow students to access content anywhere/anytime to immerse himself/herself into that content (alone or interacting with teachers or colleagues via web communication forms) and to interact with that content in ways that were not previously possible. This paper plans to provide a thorough overview of the possibilities and consequences of m-learning in higher education environments as a gateway to ubiquitous learning – perhaps the ultimate form of learner engagement, since it allows the student to learn, access and interact with important content in any way or at any time or place he might want so the objective of the study is to examine how the usage of mobile phones for m-learning differs between heavy and light mobile phone users at TU Braunschweig. Heavy mobile phone users are hypothesized to have access to/subscribe to one type of mobile content than light mobile phone users, to have less frequent access to, subscribe to or purchase mobile content within the last year than light mobile phone users, and to pay less money for mobile learning, its content and mobile games than light mobile phone users.

Keywords: mobile learning, technologies, applications, higher education

Procedia PDF Downloads 415
2795 Human Digital Twin for Personal Conversation Automation Using Supervised Machine Learning Approaches

Authors: Aya Salama

Abstract:

Digital Twin is an emerging research topic that attracted researchers in the last decade. It is used in many fields, such as smart manufacturing and smart healthcare because it saves time and money. It is usually related to other technologies such as Data Mining, Artificial Intelligence, and Machine Learning. However, Human digital twin (HDT), in specific, is still a novel idea that still needs to prove its feasibility. HDT expands the idea of Digital Twin to human beings, which are living beings and different from the inanimate physical entities. The goal of this research was to create a Human digital twin that is responsible for real-time human replies automation by simulating human behavior. For this reason, clustering, supervised classification, topic extraction, and sentiment analysis were studied in this paper. The feasibility of the HDT for personal replies generation on social messaging applications was proved in this work. The overall accuracy of the proposed approach in this paper was 63% which is a very promising result that can open the way for researchers to expand the idea of HDT. This was achieved by using Random Forest for clustering the question data base and matching new questions. K-nearest neighbor was also applied for sentiment analysis.

Keywords: human digital twin, sentiment analysis, topic extraction, supervised machine learning, unsupervised machine learning, classification, clustering

Procedia PDF Downloads 87
2794 Indoor Real-Time Positioning and Mapping Based on Manhattan Hypothesis Optimization

Authors: Linhang Zhu, Hongyu Zhu, Jiahe Liu

Abstract:

This paper investigated a method of indoor real-time positioning and mapping based on the Manhattan world assumption. In indoor environments, relying solely on feature matching techniques or other geometric algorithms for sensor pose estimation inevitably resulted in cumulative errors, posing a significant challenge to indoor positioning. To address this issue, we adopt the Manhattan world hypothesis to optimize the camera pose algorithm based on feature matching, which improves the accuracy of camera pose estimation. A special processing method was applied to image data frames that conformed to the Manhattan world assumption. When similar data frames appeared subsequently, this could be used to eliminate drift in sensor pose estimation, thereby reducing cumulative errors in estimation and optimizing mapping and positioning. Through experimental verification, it is found that our method achieves high-precision real-time positioning in indoor environments and successfully generates maps of indoor environments. This provides effective technical support for applications such as indoor navigation and robot control.

Keywords: Manhattan world hypothesis, real-time positioning and mapping, feature matching, loopback detection

Procedia PDF Downloads 61
2793 Future of Nanotechnology in Digital MacDraw

Authors: Pejman Hosseinioun, Abolghasem Ghasempour, Elham Gholami, Hamed Sarbazi

Abstract:

Considering the development in global semiconductor technology, it is anticipated that gadgets such as diodes and resonant transistor tunnels (RTD/RTT), Single electron transistors (SET) and quantum cellular automata (QCA) will substitute CMOS (Complementary Metallic Oxide Semiconductor) gadgets in many applications. Unfortunately, these new technologies cannot disembark the common Boolean logic efficiently and are only appropriate for liminal logic. Therefor there is no doubt that with the development of these new gadgets it is necessary to find new MacDraw technologies which are compatible with them. Resonant transistor tunnels (RTD/RTT) and circuit MacDraw with enhanced computing abilities are candida for accumulating Nano criterion in the future. Quantum cellular automata (QCA) are also advent Nano technological gadgets for electrical circuits. Advantages of these gadgets such as higher speed, smaller dimensions, and lower consumption loss are of great consideration. QCA are basic gadgets in manufacturing gates, fuses and memories. Regarding the complex Nano criterion physical entity, circuit designers can focus on logical and constructional design to decrease complication in MacDraw. Moreover Single electron technology (SET) is another noteworthy gadget considered in Nano technology. This article is a survey in future of Nano technology in digital MacDraw.

Keywords: nano technology, resonant transistor tunnels, quantum cellular automata, semiconductor

Procedia PDF Downloads 265
2792 Transformative Digital Trends in Supply Chain Management: The Role of Artificial Intelligence

Authors: Srinivas Vangari

Abstract:

With the technological advancements around the globe, artificial intelligence (AI) has boosted supply chain management (SCM) by improving efficiency, sensitivity, and promptness. Artificial intelligence-based SCM provides comprehensive perceptions of consumer behavior in dynamic market situations and trends, foreseeing the accurate demand. It reduces overproduction and stockouts while optimizing production planning and streamlining operations. Consequently, the AI-driven SCM produces a customer-centric supply with resilient and robust operations. Intending to delve into the transformative significance of AI in SCM, this study focuses on improving efficiency in SCM with the integration of AI, understanding the production demand, accurate forecasting, and particular production planning. The study employs a mixed-method approach and expert survey insights to explore the challenges and benefits of AI applications in SCM. Further, a case analysis is incorporated to identify the best practices and potential challenges with the critical success features in AI-driven SCM. Key findings of the study indicate the significant advantages of the AI-integrated SCM, including optimized inventory management, improved transportation and logistics management, cost optimization, and advanced decision-making, positioning AI as a pivotal force in the future of supply chain management.

Keywords: artificial intelligence, supply chain management, accurate forecast, accurate planning of production, understanding demand

Procedia PDF Downloads 22
2791 A Generalization of Planar Pascal’s Triangle to Polynomial Expansion and Connection with Sierpinski Patterns

Authors: Wajdi Mohamed Ratemi

Abstract:

The very well-known stacked sets of numbers referred to as Pascal’s triangle present the coefficients of the binomial expansion of the form (x+y)n. This paper presents an approach (the Staircase Horizontal Vertical, SHV-method) to the generalization of planar Pascal’s triangle for polynomial expansion of the form (x+y+z+w+r+⋯)n. The presented generalization of Pascal’s triangle is different from other generalizations of Pascal’s triangles given in the literature. The coefficients of the generalized Pascal’s triangles, presented in this work, are generated by inspection, using embedded Pascal’s triangles. The coefficients of I-variables expansion are generated by horizontally laying out the Pascal’s elements of (I-1) variables expansion, in a staircase manner, and multiplying them with the relevant columns of vertically laid out classical Pascal’s elements, hence avoiding factorial calculations for generating the coefficients of the polynomial expansion. Furthermore, the classical Pascal’s triangle has some pattern built into it regarding its odd and even numbers. Such pattern is known as the Sierpinski’s triangle. In this study, a presentation of Sierpinski-like patterns of the generalized Pascal’s triangles is given. Applications related to those coefficients of the binomial expansion (Pascal’s triangle), or polynomial expansion (generalized Pascal’s triangles) can be in areas of combinatorics, and probabilities.

Keywords: pascal’s triangle, generalized pascal’s triangle, polynomial expansion, sierpinski’s triangle, combinatorics, probabilities

Procedia PDF Downloads 367
2790 Study of Nanocrystalline Al Doped Zns Thin Films by Chemical Bath Deposition Method

Authors: Hamid Merzouk, Djahida Touati-Talantikite, Amina Zaabar

Abstract:

New nanosized materials are in huge expansion worldwide. They play a fundamental role in various industrial applications thanks their unique and functional properties. Moreover, in recent years, a great effort has been made to the design and control fabrication of nanostructured semiconductors such zinc sulphide. In recent years, much attention has been accorded in doped and co-doped ZnS to improve the ZnS films quality. We present in this work the preparation and characterization of ZnS and Al doped ZnS thin films. Nanoparticles ZnS and Al doped ZnS films are prepared by chemical bath deposition method (CBD), for various dopant concentrations. Thin films are deposed onto commercial microscope glass slides substrates. Thiourea is used as sulfide ion source, zinc acetate as zinc ion source and manganese acetate as manganese ion source in alkaline bath at 90 °C. X-ray diffraction (XRD) analyses are carried out at room temperature on films and powders with a powder diffractometer, using CuKα radiation. The average grain size obtained from the Debye–Scherrer’s formula is around 10 nm. Films morphology is examined by scanning electron microscopy. IR spectra of representative sample are recorded with the FTIR between 400 and 4000 cm-1.The transmittance (70 %) is performed with the UV–VIS spectrometer in the wavelength range 200–800 nm. This value is enhanced by Al doping.

Keywords: ZnS, nanostructured semiconductors, thin films, chemical bath deposition

Procedia PDF Downloads 524
2789 The Artificial Intelligence (AI) Impact on Project Management: A Destructive or Transformative Agent

Authors: Kwame Amoah

Abstract:

Artificial intelligence (AI) has the prospect of transforming project management, significantly improving efficiency and accuracy. By automating specific tasks with defined guidelines, AI can assist project managers in making better decisions and allocating resources efficiently, with possible risk mitigation. This study explores how AI is already impacting project management and likely future AI's impact on the field. The AI's reaction has been a divided opinion; while others picture it as a destroyer of jobs, some welcome it as an innovation advocate. Both sides agree that AI will be disruptive and revolutionize PM's functions. If current research is to go by, AI or some form will replace one-third of all learning graduate PM jobs by as early as 2030. A recent survey indicates AI spending will reach $97.9 billion by the end of 2023. Considering such a profound impact, the project management profession will also see a paradigm shift driven by AI. The study examines what the project management profession will look like in the next 5-10 years after this technological disruption. The research methods incorporate existing literature, develop trend analysis, and conduct structured interviews with project management stakeholders from North America to gauge the trend. PM professionals can harness the power of AI, ensuring a smooth transition and positive outcomes. AI adoption will maximize benefits, minimize adverse consequences, and uphold ethical standards, leading to improved project performance.

Keywords: project management, disruptive teacnologies, project management function, AL applications, artificial intelligence

Procedia PDF Downloads 83
2788 Contrastive Learning for Unsupervised Object Segmentation in Sequential Images

Authors: Tian Zhang

Abstract:

Unsupervised object segmentation aims at segmenting objects in sequential images and obtaining the mask of each object without any manual intervention. Unsupervised segmentation remains a challenging task due to the lack of prior knowledge about these objects. Previous methods often require manually specifying the action of each object, which is often difficult to obtain. Instead, this paper does not need action information of objects and automatically learns the actions and relations among objects from the structured environment. To obtain the object segmentation of sequential images, the relationships between objects and images are extracted to infer the action and interaction of objects based on the multi-head attention mechanism. Three types of objects’ relationships in the object segmentation task are proposed: the relationship between objects in the same frame, the relationship between objects in two frames, and the relationship between objects and historical information. Based on these relationships, the proposed model (1) is effective in multiple objects segmentation tasks, (2) just needs images as input, and (3) produces better segmentation results as more relationships are considered. The experimental results on multiple datasets show that this paper’s method achieves state-of-art performance. The quantitative and qualitative analyses of the result are conducted. The proposed method could be easily extended to other similar applications.

Keywords: unsupervised object segmentation, attention mechanism, contrastive learning, structured environment

Procedia PDF Downloads 109
2787 Geomechanical Technologies for Assessing Three-Dimensional Stability of Underground Excavations Utilizing Remote-Sensing, Finite Element Analysis, and Scientific Visualization

Authors: Kwang Chun, John Kemeny

Abstract:

Light detection and ranging (LiDAR) has been a prevalent remote-sensing technology applied in the geological fields due to its high precision and ease of use. One of the major applications is to use the detailed geometrical information of underground structures as a basis for the generation of a three-dimensional numerical model that can be used in a geotechnical stability analysis such as FEM or DEM. To date, however, straightforward techniques in reconstructing the numerical model from the scanned data of the underground structures have not been well established or tested. In this paper, we propose a comprehensive approach integrating all the various processes, from LiDAR scanning to finite element numerical analysis. The study focuses on converting LiDAR 3D point clouds of geologic structures containing complex surface geometries into a finite element model. This methodology has been applied to Kartchner Caverns in Arizona, where detailed underground and surface point clouds can be used for the analysis of underground stability. Numerical simulations were performed using the finite element code Abaqus and presented by 3D computing visualization solution, ParaView. The results are useful in studying the stability of all types of underground excavations including underground mining and tunneling.

Keywords: finite element analysis, LiDAR, remote-sensing, scientific visualization, underground stability

Procedia PDF Downloads 175
2786 Biotransformation of Glycerine Pitch as Renewable Carbon Resource into P(3HB-co-4HB) Biopolymer

Authors: Amirul Al-Ashraf Abdullah, Hema Ramachandran, Iszatty Ismail

Abstract:

Oleochemical industry in Malaysia has been diversifying significantly due to the abundant supply of both palm and kernel oils as raw materials as well as the high demand for downstream products such as fatty acids, fatty alcohols and glycerine. However, environmental awareness is growing rapidly in Malaysia because oleochemical industry is one of the palm-oil based industries that possess risk to the environment. Glycerine pitch is one of the scheduled wastes generated from the fatty acid plants in Malaysia and its discharge may cause a serious environmental problem. Therefore, it is imperative to find alternative applications for this waste glycerine. Consequently, the aim of this research is to explore the application of glycerine pitch as direct fermentation substrate in the biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer, aiming to contribute toward the sustainable production of biopolymer in the world. Utilization of glycerine pitch (10 g/l) together with 1,4-butanediol (5 g/l) had resulted in the achievement of 40 mol% 4HB monomer with the highest PHA concentration of 2.91 g/l. Synthesis of yellow pigment which exhibited antimicrobial properties occurred simultaneously with the production of P(3HB-co-4HB) through the use of glycerine pitch as renewable carbon resource. Utilization of glycerine pitch in the biosynthesis of P(3HB-co-4HB) will not only contribute to reducing society’s dependence on non-renewable resources but also will promote the development of cost efficiency microbial fermentation towards biosustainability and green technology.

Keywords: biopolymer, glycerine pitch, natural pigment, P(3HB-co-4HB)

Procedia PDF Downloads 469
2785 Nanoenergetic Materials as Effective Heat Energy Sources for Enhanced Gas Generators

Authors: Sang Beom Kim, Kyung Ju Kim, Myung Hoon Cho, Ji Hoon Kim, Soo Hyung Kim

Abstract:

In this study, we systematically investigated the effect of nanoscale energetic materials in formulations of aluminum nanoparticles (Al NPs; heat source)/copper oxide nanoparticles (CuO NPs; oxidizer) on the combustion and gas-generating properties of sodium azide microparticles (NaN3 MPs; gas-generating agent) for potential applications in gas generators. The burn rate of the NaN3 MP/CuO NP composite powder was only ~0.3 m/s. However, the addition of Al NPs to the NaN3 MP/CuO NP matrix caused the rates to reach ~5.3 m/s, respectively. In addition, the N2 gas volume flow rate generated by the ignition of the NaN3 MP/CuO NP composite powder was only ~0.6 L/s, which was significantly increased to ~3.9 L/s by adding Al NPs to the NaN3 MP/CuO NP composite powder. This suggested that the highly reactive NPs, with the assistance of CuO NPs, were effective heat-generating sources enabling the complete thermal decomposition of NaN3 MPs upon ignition. Al NPs were highly effective in the gas generators because of the increased reactivity induced by the reduced particle size. Finally, we successfully demonstrated that a homemade airbag with a specific volume of ~140 mL could be rapidly and fully inflated by the thermal activation of nanoscale energetic material-added gas-generating agents (i.e., NaN3 MP/Al NP/CuO NP composites) within the standard time of ~50 ms for airbag inflation.

Keywords: nanoenergetic materials, aluminum nanoparticles, copper oxide nanoparticles, gas generators

Procedia PDF Downloads 367
2784 Study of Coconut and Babassu Oils with High Acid Content and the Fatty Acids (C6 to C16) Obtained from These Oils

Authors: Flávio A. F. da Ponte, Jackson Q. Malveira, José A. S. Ramos Filho, Monica C. G. Albuquerque

Abstract:

The vegetable oils have many applications in industrial processes and due to this potential have constantly increased the demand for the use of low-quality oils, mainly in the production of biofuel. This work aims to the physicochemical evaluation of babassu oil (Orbinya speciosa) and coconut (Cocos nucifera) of low quality, as well the obtaining the free fatty acids 6 to 16 carbon atoms, with intention to be used as raw material for the biofuels production. The babassu oil and coconut low quality, as well the fatty acids obtained from these oils were characterized as their physicochemical properties and fatty acid composition (using gas chromatography coupled to mass). The NMR technique was used to assess the efficiency of fractional distillation under reduced pressure to obtain the intermediate carbonic chain fatty acids. The results showed that the bad quality in terms of physicochemical evaluation of babassu oils and coconut oils interfere directly in industrial application. However the fatty acids of intermediate carbonic chain (C6 to C16) may be used in cosmetic, pharmaceutical and particularly as the biokerosene fuel. The chromatographic analysis showed that the babassu oil and coconut oil have as major fatty acids are lauric acid (57.5 and 38.6%, respectively), whereas the top phase from distillation of coconut oil showed caprylic acid (39.1%) and major fatty acid.

Keywords: babassu oil (Orbinya speciosa), coconut oil (Cocos nucifera), fatty acids, biomass

Procedia PDF Downloads 321