Search results for: task evoked pupillary response
3735 An End-to-end Piping and Instrumentation Diagram Information Recognition System
Authors: Taekyong Lee, Joon-Young Kim, Jae-Min Cha
Abstract:
Piping and instrumentation diagram (P&ID) is an essential design drawing describing the interconnection of process equipment and the instrumentation installed to control the process. P&IDs are modified and managed throughout a whole life cycle of a process plant. For the ease of data transfer, P&IDs are generally handed over from a design company to an engineering company as portable document format (PDF) which is hard to be modified. Therefore, engineering companies have to deploy a great deal of time and human resources only for manually converting P&ID images into a computer aided design (CAD) file format. To reduce the inefficiency of the P&ID conversion, various symbols and texts in P&ID images should be automatically recognized. However, recognizing information in P&ID images is not an easy task. A P&ID image usually contains hundreds of symbol and text objects. Most objects are pretty small compared to the size of a whole image and are densely packed together. Traditional recognition methods based on geometrical features are not capable enough to recognize every elements of a P&ID image. To overcome these difficulties, state-of-the-art deep learning models, RetinaNet and connectionist text proposal network (CTPN) were used to build a system for recognizing symbols and texts in a P&ID image. Using the RetinaNet and the CTPN model carefully modified and tuned for P&ID image dataset, the developed system recognizes texts, equipment symbols, piping symbols and instrumentation symbols from an input P&ID image and save the recognition results as the pre-defined extensible markup language format. In the test using a commercial P&ID image, the P&ID information recognition system correctly recognized 97% of the symbols and 81.4% of the texts.Keywords: object recognition system, P&ID, symbol recognition, text recognition
Procedia PDF Downloads 1563734 Students' Perceptions of Assessment and Feedback in Higher Education
Authors: Jonathan Glazzard
Abstract:
National student satisfaction data in England demonstrate that undergraduate students are less satisfied overall with assessment and feedback than other aspects of their higher education courses. Given that research findings suggest that high-quality feedback is a critical factor associated with academic achievement, it is important that feedback enables students to demonstrate improved academic achievement in their subsequent assessments. Given the growing importance of staff-student partnerships in higher education, this research examined students’ perceptions of assessment and feedback in one UK university. Students’ perceptions were elicited through the use of a university-wide survey which was completed by undergraduate students. In addition, three focus groups were used to provide qualitative student perception data across the three university Facilities. The data indicate that whilst students valued detailed feedback on their work, less detailed feedback could be compensated for by the development of pre-assessment literacy skills which are front-loaded into courses. Assessment literacy skills valued by students included the use of clear assessment criteria and assignment briefings which enabled students to fully understand the assessment task. Additionally, students valued assessment literacy pre-assessment tasks which enabled them to understand the standards which they were expected to achieve. Students valued opportunities for self and peer assessment prior to the final assessment and formative assessment feedback which matched the summative assessment feedback. Students also valued dialogic face-to-face feedback after receiving written feedback Above all, students valued feedback which was particular to their work and which gave recognition for the effort they had put into completing specific assessments. The data indicate that there is a need for higher education lecturers to receive systematic training in assessment and feedback which provides a comprehensive grounding in pre-assessment literacy skills.Keywords: formative assessment, summative assessment, feedback, marking
Procedia PDF Downloads 3253733 Optimization of Leaching Properties of a Low-Grade Copper Ore Using Central Composite Design (CCD)
Authors: Lawrence Koech, Hilary Rutto, Olga Mothibedi
Abstract:
Worldwide demand for copper has led to intensive search for methods of extraction and recovery of copper from different sources. The study investigates the leaching properties of a low-grade copper ore by optimizing the leaching variables using response surface methodology. The effects of key parameters, i.e., temperature, solid to liquid ratio, stirring speed and pH, on the leaching rate constant was investigated using a pH stat apparatus. A Central Composite Design (CCD) of experiments was used to develop a quadratic model which specifically correlates the leaching variables and the rate constant. The results indicated that the model is in good agreement with the experimental data with a correlation coefficient (R2) of 0.93. The temperature and solid to liquid ratio were found to have the most substantial influence on the leaching rate constant. The optimum operating conditions for copper leaching from the ore were identified as temperature at 65C, solid to liquid ratio at 1.625 and stirring speed of 325 rpm which yielded an average leaching efficiency of 93.16%.Keywords: copper, leaching, CCD, rate constant
Procedia PDF Downloads 2453732 Theoretical Study on the Nonlinear Optical Responses of Peptide Bonds Created between Alanine and Some Unnatural Amino Acids
Authors: S. N. Derrar, M. Sekkal-Rahal
Abstract:
The Nonlinear optics (NLO) technique is widely used in the field of biological imaging. In fact, grafting biological entities with a high NLO response on tissues and cells enhances the NLO responses of these latter, and ameliorates, consequently, their biological imaging quality. In this optics, we carried out a theoretical study, in the aim of analyzing the peptide bonds created between alanine amino acid and both unnatural amino acids: L-Dopa and Azatryptophan, respectively. Ramachandran plots have been performed for these systems, and their structural parameters have been analyzed. The NLO responses of these peptides have been reported by calculating the first hyperpolarizability values of all the minima found on the plots. The use of such unnatural amino acids as endogenous probing molecules has been investigated through this study. The Density Functional Theory (DFT) has been used for structural properties, while the Second-order Møller-Plesset Perturbation Theory (MP2) has been employed for the NLO calculations.Keywords: biological imaging, hyperpolarizability, nonlinear optics, probing molecule
Procedia PDF Downloads 3803731 Complex Management of Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy
Authors: Fahad Almehmadi, Abdullah Alrajhi, Bader K. Alaslab, Abdullah A. Al Qurashi, Hattan A. Hassani
Abstract:
Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy (ARVD/C) is an uncommon, inheritable cardiac disorder characterized by the progressive substitution of cardiac myocytes by fibro-fatty tissues. This pathologic substitution predisposes patients to ventricular arrhythmias and right ventricular failure. The underlying genetic defect predominantly involves genes encoding for desmosome proteins, particularly plakophilin-2 (PKP2). These aberrations lead to impaired cell adhesion, heightening the susceptibility to fibrofatty scarring under conditions of mechanical stress. Primarily, ARVD/C affects the right ventricle, but it can also compromise the left ventricle, potentially leading to biventricular heart failure. Clinical presentations can vary, spanning from asymptomatic individuals to those experiencing palpitations, syncopal episodes, and, in severe instances, sudden cardiac death. The establishment of a diagnostic criterion specifically tailored for ARVD/C significantly aids in its accurate diagnosis. Nevertheless, the task of early diagnosis is complicated by the disease's frequently asymptomatic initial stages, and the overall rarity of ARVD/C cases reported globally. In some cases, as exemplified by the adult female patient in this report, the disease may advance to terminal stages, rendering therapies like Ventricular Tachycardia (VT) ablation ineffective. This case underlines the necessity for increased awareness and understanding of ARVD/C to aid in its early detection and management. Through such efforts, we aim to decrease morbidity and mortality associated with this challenging cardiac disorder.Keywords: ARVD/C, cardiology, interventional cardiology, cardiac electrophysiology
Procedia PDF Downloads 683730 The Counselling Practice of School Social Workers in Swedish Elementary Schools - A Focus Group Study
Authors: Kjellgren Maria, Lilliehorn Sara, Markström Urban
Abstract:
This article describes the counselling practice of school social workers (SSWs) with individual children. SSWs work in the school system’s pupil health team, whose primary task is health promotion and prevention. The work of SSWs is about helping children and adolescents who, for various reasons, suffer from mental ill-health, school absenteeism, or stress that make them unable to achieve their intended goals. SSWs preferably meet these children in individual counselling sessions. The aim of this article is to describe and analyse SSWs’ experience of counselling with children and to examine the characteristics of counselling practice. The data collection was conducted through four semi-structured focus group interviews with a total of 22 SSWs in four different regions in Sweden. SSWs provide counselling to children in order to bring about improved feelings or behavioural changes. It can be noted that SSWs put emphasis on both the counselling process and the alliance with the child. The interviews showed a common practice among SSWs regarding the structure of the counselling sessions, with certain steps and approaches being employed. However, the specific interventions differed and were characterised by an eclectic standpoint in which SSWs utilise a broad repertoire of therapeutic schools and techniques. Furthermore, a relational perspective emerged as a most prominent focus for the SSWs by re-emerging throughout the material. We believe that SSWs could benefit from theoretical perspectives on ‘contextual model’ and ‘attachment theory’ as ‘models of the mind’. Being emotionally close to the child and being able to follow their development requires a lot from SSWs, as both professional caregivers and as “safe havens”.Keywords: school social conselling, school social workers, contextual model, attachment thory
Procedia PDF Downloads 1363729 Hybrid Diagrid System for High-Rise Buildings
Authors: Seyed Saeid Tabaee, Mohammad Afshari, Bahador Ziaeemehr, Omid Bahar
Abstract:
Nowadays, using modern structural systems with specific capabilities, like Diagrid, is emerging around the world. In this paper, a new resisting system, a combination of both Diagrid axial behavior and proper seismic performance of regular moment frames in tall buildings, named 'Hybrid Diagrid' is presented. The scaled specimen of the suggested hybrid system was built and tested using IIEES shaking table. The natural frequency and structural response of the analytical model were updated with the real experimental results. In order to compare its performance with the traditional Diagrid and moment frame systems, time history analysis was carried out. Extensive analysis shows the efficient seismic responses and economical behavior of Hybrid Diagrid structure with respect to the other two systems.Keywords: hybrid diagrid system, moment frame, shaking table, tall buildings, time history analysis
Procedia PDF Downloads 2173728 How Information Sharing Can Improve Organizational Performance?
Authors: Syed Abdul Rehman Khan
Abstract:
In today’s world, information sharing plays a vital role in successful operations of supply chain; and boost to the profitability of the organizations (end-to-end supply chains). Many researches have been completed over the role of information sharing in supply chain. In this research article, we will investigate the ‘how information sharing can boost profitability & productivity of the organization; for this purpose, we have developed one conceptual model and check to that model through collected data from companies. We sent questionnaire to 369 companies; and will filled form received from 172 firms and the response rate was almost 47%. For the data analysis, we have used Regression in (SPSS software) In the research findings, our all hypothesis has been accepted significantly and due to the information sharing between suppliers and manufacturers ‘quality of material and timely delivery’ increase and also ‘collaboration & trust’ will become more stronger and these all factors will lead to the company’s profitability directly and in-directly. But unfortunately, companies could not avail the all fruitful benefits of information sharing due to the fear of ‘compromise confidentiality or leakage of information’.Keywords: collaboration, information sharing, risk factor, timely delivery
Procedia PDF Downloads 4193727 Object-Based Image Analysis for Gully-Affected Area Detection in the Hilly Loess Plateau Region of China Using Unmanned Aerial Vehicle
Authors: Hu Ding, Kai Liu, Guoan Tang
Abstract:
The Chinese Loess Plateau suffers from serious gully erosion induced by natural and human causes. Gully features detection including gully-affected area and its two dimension parameters (length, width, area et al.), is a significant task not only for researchers but also for policy-makers. This study aims at gully-affected area detection in three catchments of Chinese Loess Plateau, which were selected in Changwu, Ansai, and Suide by using unmanned aerial vehicle (UAV). The methodology includes a sequence of UAV data generation, image segmentation, feature calculation and selection, and random forest classification. Two experiments were conducted to investigate the influences of segmentation strategy and feature selection. Results showed that vertical and horizontal root-mean-square errors were below 0.5 and 0.2 m, respectively, which were ideal for the Loess Plateau region. The segmentation strategy adopted in this paper, which considers the topographic information, and optimal parameter combination can improve the segmentation results. Besides, the overall extraction accuracy in Changwu, Ansai, and Suide achieved was 84.62%, 86.46%, and 93.06%, respectively, which indicated that the proposed method for detecting gully-affected area is more objective and effective than traditional methods. This study demonstrated that UAV can bridge the gap between field measurement and satellite-based remote sensing, obtaining a balance in resolution and efficiency for catchment-scale gully erosion research.Keywords: unmanned aerial vehicle (UAV), object-analysis image analysis, gully erosion, gully-affected area, Loess Plateau, random forest
Procedia PDF Downloads 2203726 Optimization and Energy Management of Hybrid Standalone Energy System
Authors: T. M. Tawfik, M. A. Badr, E. Y. El-Kady, O. E. Abdellatif
Abstract:
Electric power shortage is a serious problem in remote rural communities in Egypt. Over the past few years, electrification of remote communities including efficient on-site energy resources utilization has achieved high progress. Remote communities usually fed from diesel generator (DG) networks because they need reliable energy and cheap fresh water. The main objective of this paper is to design an optimal economic power supply from hybrid standalone energy system (HSES) as alternative energy source. It covers energy requirements for reverse osmosis desalination unit (DU) located in National Research Centre farm in Noubarya, Egypt. The proposed system consists of PV panels, Wind Turbines (WT), Batteries, and DG as a backup for supplying DU load of 105.6 KWh/day rated power with 6.6 kW peak load operating 16 hours a day. Optimization of HSES objective is selecting the suitable size of each of the system components and control strategy that provide reliable, efficient, and cost-effective system using net present cost (NPC) as a criterion. The harmonization of different energy sources, energy storage, and load requirements are a difficult and challenging task. Thus, the performance of various available configurations is investigated economically and technically using iHOGA software that is based on genetic algorithm (GA). The achieved optimum configuration is further modified through optimizing the energy extracted from renewable sources. Effective minimization of energy charging the battery ensures that most of the generated energy directly supplies the demand, increasing the utilization of the generated energy.Keywords: energy management, hybrid system, renewable energy, remote area, optimization
Procedia PDF Downloads 2003725 Fully Automated Methods for the Detection and Segmentation of Mitochondria in Microscopy Images
Authors: Blessing Ojeme, Frederick Quinn, Russell Karls, Shannon Quinn
Abstract:
The detection and segmentation of mitochondria from fluorescence microscopy are crucial for understanding the complex structure of the nervous system. However, the constant fission and fusion of mitochondria and image distortion in the background make the task of detection and segmentation challenging. In the literature, a number of open-source software tools and artificial intelligence (AI) methods have been described for analyzing mitochondrial images, achieving remarkable classification and quantitation results. However, the availability of combined expertise in the medical field and AI required to utilize these tools poses a challenge to its full adoption and use in clinical settings. Motivated by the advantages of automated methods in terms of good performance, minimum detection time, ease of implementation, and cross-platform compatibility, this study proposes a fully automated framework for the detection and segmentation of mitochondria using both image shape information and descriptive statistics. Using the low-cost, open-source python and openCV library, the algorithms are implemented in three stages: pre-processing, image binarization, and coarse-to-fine segmentation. The proposed model is validated using the mitochondrial fluorescence dataset. Ground truth labels generated using a Lab kit were also used to evaluate the performance of our detection and segmentation model. The study produces good detection and segmentation results and reports the challenges encountered during the image analysis of mitochondrial morphology from the fluorescence mitochondrial dataset. A discussion on the methods and future perspectives of fully automated frameworks conclude the paper.Keywords: 2D, binarization, CLAHE, detection, fluorescence microscopy, mitochondria, segmentation
Procedia PDF Downloads 3603724 Efficient Prediction of Surface Roughness Using Box Behnken Design
Authors: Ajay Kumar Sarathe, Abhinay Kumar
Abstract:
Production of quality products required for specific engineering applications is an important issue. The roughness of the surface plays an important role in the quality of the product by using appropriate machining parameters to eliminate wastage due to over machining. To increase the quality of the surface, the optimum machining parameter setting is crucial during the machining operation. The effect of key machining parameters- spindle speed, feed rate, and depth of cut on surface roughness has been evaluated. Experimental work was carried out using High Speed Steel tool and AlSI 1018 as workpiece material. In this study, the predictive model has been developed using Box-Behnken Design. An experimental investigation has been carried out for this work using BBD for three factors and observed that the predictive model of Ra value is closed to predictive value with a marginal error of 2.8648 %. Developed model establishes a correlation between selected key machining parameters that influence the surface roughness in a AISI 1018. FKeywords: ANOVA, BBD, optimisation, response surface methodology
Procedia PDF Downloads 1603723 [Keynote Talk]: Mathematical and Numerical Modelling of the Cardiovascular System: Macroscale, Mesoscale and Microscale Applications
Authors: Aymen Laadhari
Abstract:
The cardiovascular system is centered on the heart and is characterized by a very complex structure with different physical scales in space (e.g. micrometers for erythrocytes and centimeters for organs) and time (e.g. milliseconds for human brain activity and several years for development of some pathologies). The development and numerical implementation of mathematical models of the cardiovascular system is a tremendously challenging topic at the theoretical and computational levels, inducing consequently a growing interest over the past decade. The accurate computational investigations in both healthy and pathological cases of processes related to the functioning of the human cardiovascular system can be of great potential in tackling several problems of clinical relevance and in improving the diagnosis of specific diseases. In this talk, we focus on the specific task of simulating three particular phenomena related to the cardiovascular system on the macroscopic, mesoscopic and microscopic scales, respectively. Namely, we develop numerical methodologies tailored for the simulation of (i) the haemodynamics (i.e., fluid mechanics of blood) in the aorta and sinus of Valsalva interacting with highly deformable thin leaflets, (ii) the hyperelastic anisotropic behaviour of cardiomyocytes and the influence of calcium concentrations on the contraction of single cells, and (iii) the dynamics of red blood cells in microvasculature. For each problem, we present an appropriate fully Eulerian finite element methodology. We report several numerical examples to address in detail the relevance of the mathematical models in terms of physiological meaning and to illustrate the accuracy and efficiency of the numerical methods.Keywords: finite element method, cardiovascular system, Eulerian framework, haemodynamics, heart valve, cardiomyocyte, red blood cell
Procedia PDF Downloads 2543722 Immobilization of Lipase Enzyme by Low Cost Material: A Statistical Approach
Authors: Md. Z. Alam, Devi R. Asih, Md. N. Salleh
Abstract:
Immobilization of lipase enzyme produced from palm oil mill effluent (POME) by the activated carbon (AC) among the low cost support materials was optimized. The results indicated that immobilization of 94% was achieved by AC as the most suitable support material. A sequential optimization strategy based on a statistical experimental design, including one-factor-at-a-time (OFAT) method was used to determine the equilibrium time. Three components influencing lipase immobilization were optimized by the response surface methodology (RSM) based on the face-centered central composite design (FCCCD). On the statistical analysis of the results, the optimum enzyme concentration loading, agitation rate and carbon active dosage were found to be 30 U/ml, 300 rpm and 8 g/L respectively, with a maximum immobilization activity of 3732.9 U/g-AC after 2 hrs of immobilization. Analysis of variance (ANOVA) showed a high regression coefficient (R2) of 0.999, which indicated a satisfactory fit of the model with the experimental data. The parameters were statistically significant at p<0.05.Keywords: activated carbon, POME based lipase, immobilization, adsorption
Procedia PDF Downloads 2483721 Semi Empirical Equations for Peak Shear Strength of Rectangular Reinforced Concrete Walls
Authors: Ali Kezmane, Said Boukais, Mohand Hamizi
Abstract:
This paper presents an analytical study on the behavior of reinforced concrete walls with rectangular cross section. Several experiments on such walls have been selected to be studied. Database from various experiments were collected and nominal shear wall strengths have been calculated using formulas, such as those of the ACI (American), NZS (New Zealand), Mexican (NTCC), and Wood and Barda equations. Subsequently, nominal shear wall strengths from the formulas were compared with the ultimate shear wall strengths from the database. These formulas vary substantially in functional form and do not account for all variables that affect the response of walls. There is substantial scatter in the predicted values of ultimate shear strength. Two new semi empirical equations are developed using data from tests of 57 walls for transitions walls and 27 for slender walls with the objective of improving the prediction of peak strength of walls with the most possible accurate.Keywords: shear strength, reinforced concrete walls, rectangular walls, shear walls, models
Procedia PDF Downloads 3463720 Forced Swim Stress Does Not Induce Structural Chromosomal Aberrations in Rat Bone Marrow
Authors: Mohammad Y. Alfaifi
Abstract:
Anything that poses a challenge or a threat to our well-being is a stress. Understanding the genetic material and cellular response of rats threatened with Repeated swimming stress provides insights that can influence human health. The aim of the present study was to assess the genetical damage and cytological changes caused by exposure of the test organism (Rattus rattus) to forced swimming stress. For this purpose, animals have been submerged in water path 15 minutes daily for 2 weeks. Following that, we performed a micronuclei (MN) test using MNNCE (Micronucleated normocromatic erythrocytes) and MNPCE (Micronucleated polychromatic erythrocytes), NDI (Nuclear division index) and cytological parameters using NDCI (nuclear division cytotoxicity index), necrotic and apoptotic cells in rat's bone marrow samples. Results showed that there was a slightly but not significant increase in the frequency of micronucleated as well as in cytological parameters in bone marrow cells.Keywords: submergence stress, micronucleus, NDI, NDCI, toxicity, chromosomal aberrations
Procedia PDF Downloads 3973719 Reliable Line-of-Sight and Non-Line-of-Sight Propagation Channel Identification in Ultra-Wideband Wireless Networks
Authors: Mohamed Adnan Landolsi, Ali F. Almutairi
Abstract:
The paper addresses the problem of line-of-sight (LOS) vs. non-line-of-sight (NLOS) propagation link identification in ultra-wideband (UWB) wireless networks, which is necessary for improving the accuracy of radiolocation and positioning applications. A LOS/NLOS likelihood hypothesis testing approach is applied based on exploiting distinctive statistical features of the channel impulse response (CIR) using parameters related to the “skewness” of the CIR and its root mean square (RMS) delay spread. A log-normal fit is presented for the probability densities of the CIR parameters. Simulation results show that different environments (residential, office, outdoor, etc.) have measurable differences in their CIR parameters’ statistics, which is then exploited in determining the nature of the propagation channels. Correct LOS/NLOS channel identification rates exceeding 90% are shown to be achievable for most types of environments. Additional improvement is also obtained by combining both CIR skewness and RMS delay statistics.Keywords: UWB, propagation, LOS, NLOS, identification
Procedia PDF Downloads 2543718 Application of New Sprouted Wheat Brine for Delicatessen Products From Horse Meat, Beef and Pork
Authors: Gulmira Kenenbay, Urishbay Chomanov, Aruzhan Shoman, Rabiga Kassimbek
Abstract:
The main task of the meat-processing industry is the production of meat products as the main source of animal protein, ensuring the vital activity of the human body, in the required volumes, high quality, diverse assortment. Providing the population with high-quality food products what are biologically full, balanced in composition of basic nutrients and enriched by targeted physiologically active components, is one of the highest priority scientific and technical problems to be solved. In this regard, the formulation of a new brine from sprouted wheat for meat delicacies from horse meat, beef and pork has been developed. The new brine contains flavored aromatic ingredients, juice of the germinated wheat and vegetable juice. The viscosity of meat of horse meat, beef and pork were studied during massaging. Thermodynamic indices, water activity and binding energy of horse meat, beef and pork with application of new brine are investigated. A recipe for meat products with vegetable additives has been developed. Organoleptic evaluation of meat products was carried out. Physicochemical parameters of meat products with vegetable additives are carried out. Analysis of the obtained data shows that the values of the index aw (water activity) and the binding energy of moisture in the experimental samples of meat products are higher than in the control samples. It has been established by investigations that with increasing water activity and the binding energy of moisture, the tenderness of ready meat delicacies increases with the use of a new brine.Keywords: compounding, functional products, delicatessen products, brine, vegetable additives
Procedia PDF Downloads 1803717 Evidence Theory Based Emergency Multi-Attribute Group Decision-Making: Application in Facility Location Problem
Authors: Bidzina Matsaberidze
Abstract:
It is known that, in emergency situations, multi-attribute group decision-making (MAGDM) models are characterized by insufficient objective data and a lack of time to respond to the task. Evidence theory is an effective tool for describing such incomplete information in decision-making models when the expert and his knowledge are involved in the estimations of the MAGDM parameters. We consider an emergency decision-making model, where expert assessments on humanitarian aid from distribution centers (HADC) are represented in q-rung ortho-pair fuzzy numbers, and the data structure is described within the data body theory. Based on focal probability construction and experts’ evaluations, an objective function-distribution centers’ selection ranking index is constructed. Our approach for solving the constructed bicriteria partitioning problem consists of two phases. In the first phase, based on the covering’s matrix, we generate a matrix, the columns of which allow us to find all possible partitionings of the HADCs with the service centers. Some constraints are also taken into consideration while generating the matrix. In the second phase, based on the matrix and using our exact algorithm, we find the partitionings -allocations of the HADCs to the centers- which correspond to the Pareto-optimal solutions. For an illustration of the obtained results, a numerical example is given for the facility location-selection problem.Keywords: emergency MAGDM, q-rung orthopair fuzzy sets, evidence theory, HADC, facility location problem, multi-objective combinatorial optimization problem, Pareto-optimal solutions
Procedia PDF Downloads 953716 The Utility and the Consequences of Counter Terrorism Financing
Authors: Fatemah Alzubairi
Abstract:
Terrorism financing is a theme that dramatically evolved post-9/11. Supra-national bodies, above all UN Security Council and the Financial Action Task Form (FATF), have established an executive-like mechanism, which allows blacklisting individuals and groups, freezing their funds, and restricting their travel, all of which have become part of states’ anti-terrorism frameworks. A number of problems arise from building counter-terrorism measures on the foundation of a vague definition of terrorism. This paper examines the utility and consequences of counter-terrorism financing with considering the lack of an international definition of terrorism. The main problem with national and international anti-terrorism legislation is the lack of a clear objective definition of terrorism. Most, if not all, national laws are broad and vague. Determining what terrorism remains the crucial underpinning of any successful discussion of counter-terrorism, and of the future success of counter-terrorist measures. This paper focuses on the legal and political consequences of equalizing the treatment of violent terrorist crimes, such as bombing, with non-violent terrorism-related crimes, such as funding terrorist groups. While both sorts of acts requires criminalization, treating them equally risks wrongfully or unfairly condemning innocent people who have associated with “terrorists” but are not involved in terrorist activities. This paper examines whether global obligations to counter terrorism financing focus on controlling terrorist groups more than terrorist activities. It also examines the utility of the obligations adopted by the UN Security Council and FATF, and whether they serve global security; or whether the utility is largely restricted to Western security, with little attention paid to the unique needs and demands of other regions.Keywords: counter-terrorism, definition of terrorism, FATF, security, terrorism financing, UN Security Council
Procedia PDF Downloads 3273715 Exploring Paper Mill Sludge and Sugarcane Bagasse as Carrier Matrix in Solid State Fermentation for Carotenoid Pigment Production by Planococcus sp. TRC1
Authors: Subhasree Majumdar, Sovan Dey, Sayari Mukherjee, Sourav Dutta, Dalia Dasgupta Mandal
Abstract:
Bacterial isolates from Planococcus genus are known for the production of yellowish orange pigment that belongs to the carotenoid family. These pigments are of immense pharmacological importance as antioxidant, anticancer, eye and liver protective agent, etc. The production of this pigment in a cost effective manner is a challenging task. The present study explored paper mill sludge (PMS), a solid lignocellulosic waste generated in large quantities from pulp and paper mill industry as a substrate for carotenoid pigment production by Planococcus sp. TRC1. PMS was compared in terms of efficacy with sugarcane bagasse, which is a highly explored substrate for valuable product generation via solid state fermentation. The results showed that both the biomasses yielded the highest carotenoid during 48 hours of incubation, 31.6 mg/gm and 42.1 mg/gm for PMS and bagasse respectively. Compositional alterations of both the biomasses showed reduction in lignin, hemicellulose and cellulose content by 41%, 15%, 1% for PMS and 38%, 25% and 6% for sugarcane bagasse after 72 hours of incubation. Structural changes in the biomasses were examined by FT-IR, FESEM, and XRD which further confirmed modification of solid biomasses by bacterial isolate. This study revealed the potential of PMS to act as cheap substrate for carotenoid pigment production by Planococcus sp. TRC1, as it showed a significant production in comparison to sugarcane bagasse which gave only 1.3 fold higher production than PMS. Delignification of PMS by TRC1 during pigment production is another important finding for the reuse of this waste from the paper industry.Keywords: carotenoid, lignocellulosic, paper mill sludge, Planococcus sp. TRC1, solid state fermentation, sugarcane bagasse
Procedia PDF Downloads 2363714 The Nature and Impact of Trojan Horses in Cybersecurity
Authors: Mehrab Faraghti
Abstract:
Trojan horses, a form of malware masquerading as legitimate software, pose significant cybersecurity threats. These malicious programs exploit user trust, infiltrate systems, and can lead to data breaches, financial loss, and compromised privacy. This paper explores the mechanisms through which Trojan horses operate, including delivery methods such as phishing and software vulnerabilities. It categorizes various types of Trojan horses and their specific impacts on individuals and organizations. Additionally, the research highlights the evolution of Trojan threats and the importance of user awareness and proactive security measures. By analyzing case studies of notable Trojan attacks, this study identifies common vulnerabilities that can be exploited and offers insights into effective countermeasures, including behavioral analysis, anomaly detection, and robust incident response strategies. The findings emphasize the need for comprehensive cybersecurity education and the implementation of advanced security protocols to mitigate the risks associated with Trojan horses.Keywords: Trojan horses, cybersecurity, malware, data breach
Procedia PDF Downloads 163713 Protein Isolates from Chickpea (Cicer arietinum L.) and Its Application in Cake
Authors: Mohamed Abdullah Ahmed
Abstract:
In a study of chickpea protein isolate (CPI) preparation, the wet alkaline extraction was carried out. The objectives were to determine the optimal extracting conditions of CPI and apply CPI into a sponge cake recipe to replace egg and make acceptable product. The design used in extraction was a central composite design. The response surface methodology was preferred to graphically express the relationship between extraction time and pH with the output variables of percent yield and protein content of CPI. It was noted that optimal extracting conditions were 60 min and pH 10.5 resulting in 90.07% protein content and 89.15% yield of CPI. The protein isolate (CPI) could be incorporated in cake to 20% without adversely affecting the cake physical properties such as cake hardness and sensory attributes. The higher protein content in cake was corresponding to the amount of CPI added. Therefore, adding CPI can significantly (p<0.05) increase protein content in cake. However, sensory evaluation showed that adding more than 20% of CPI decreased the overall acceptability. The results of this investigation could be used as a basic knowledge of CPI utilization in other food products.Keywords: chick bean protein isolate, sponge cake, utilization, sponge
Procedia PDF Downloads 3683712 Omni-Modeler: Dynamic Learning for Pedestrian Redetection
Authors: Michael Karnes, Alper Yilmaz
Abstract:
This paper presents the application of the omni-modeler towards pedestrian redetection. The pedestrian redetection task creates several challenges when applying deep neural networks (DNN) due to the variety of pedestrian appearance with camera position, the variety of environmental conditions, and the specificity required to recognize one pedestrian from another. DNNs require significant training sets and are not easily adapted for changes in class appearances or changes in the set of classes held in its knowledge domain. Pedestrian redetection requires an algorithm that can actively manage its knowledge domain as individuals move in and out of the scene, as well as learn individual appearances from a few frames of a video. The Omni-Modeler is a dynamically learning few-shot visual recognition algorithm developed for tasks with limited training data availability. The Omni-Modeler adapts the knowledge domain of pre-trained deep neural networks to novel concepts with a calculated localized language encoder. The Omni-Modeler knowledge domain is generated by creating a dynamic dictionary of concept definitions, which are directly updatable as new information becomes available. Query images are identified through nearest neighbor comparison to the learned object definitions. The study presented in this paper evaluates its performance in re-identifying individuals as they move through a scene in both single-camera and multi-camera tracking applications. The results demonstrate that the Omni-Modeler shows potential for across-camera view pedestrian redetection and is highly effective for single-camera redetection with a 93% accuracy across 30 individuals using 64 example images for each individual.Keywords: dynamic learning, few-shot learning, pedestrian redetection, visual recognition
Procedia PDF Downloads 793711 Ultimate Strength Prediction of Shear Walls with an Aspect Ratio between One and Two
Authors: Said Boukais, Ali Kezmane, Kahil Amar, Mohand Hamizi, Hannachi Neceur Eddine
Abstract:
This paper presents an analytical study on the behavior of rectangular reinforced concrete walls with an aspect ratio between one and tow. Several experiments on such walls have been selected to be studied. Database from various experiments were collected and nominal wall strengths have been calculated using formulas, such as those of the ACI (American), NZS (New Zealand), Mexican (NTCC), and Wood equation for shear and strain compatibility analysis for flexure. Subsequently, nominal ultimate wall strengths from the formulas were compared with the ultimate wall strengths from the database. These formulas vary substantially in functional form and do not account for all variables that affect the response of walls. There is substantial scatter in the predicted values of ultimate strength. New semi empirical equation are developed using data from tests of 46 walls with the objective of improving the prediction of ultimate strength of walls with the most possible accuracy and for all failure modes.Keywords: prediction, ultimate strength, reinforced concrete walls, walls, rectangular walls
Procedia PDF Downloads 3383710 The Relationship between Impared Fasting Glucose and Serum Fibroblast Growth Factor 21 Level
Authors: Nanhee Cho, Eugene Han, Hanbyul Kim, Hochan Cho
Abstract:
Pre-diabetes includes impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) and there is a strong probability that pre-diabetes will lead to diabetes mellitus (DM). Serum fibroblast growth factor 21 (FGF-21) is known to be increased as a compensatory response to metabolic imbalance under conditions such as obesity, metabolic syndrome, and DM. This study aims to identify the relationship of serum FGF-21 with pre-diabetes, and with biomarkers of related metabolic diseases. Fifty five Korea adult patients participated in a cohort study from June 2012 to December 2015. The analysis revealed that BMI, FBS levels, and serum FGF-21 levels were significantly higher in the IFG group compared to those in the normal group. A multiple regression analysis was conduted on the correlations of serum FGF-21 levels with BMI, and FBS levels, and the result did not show statistical significance. In conclusion, our results revealed that serum FGF-21 level serve as a marker to predict IFG.Keywords: cytokine, fibroblast growth factor 21, impaired fasting glucose, prediabetes
Procedia PDF Downloads 3293709 Predicting Shortage of Hospital Beds during COVID-19 Pandemic in United States
Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi
Abstract:
World-wide spread of coronavirus grows the concern about planning for the excess demand of hospital services in response to COVID-19 pandemic. The surge in the hospital services demand beyond the current capacity leads to shortage of ICU beds and ventilators in some parts of US. In this study, we forecast the required number of hospital beds and possible shortage of beds in US during COVID-19 pandemic to be used in the planning and hospitalization of new cases. In this paper, we used a data on COVID-19 deaths and patients’ hospitalization besides the data on hospital capacities and utilization in US from publicly available sources and national government websites. we used a novel ensemble modelling of deep learning networks, based on stacking different linear and non-linear layers to predict the shortage in hospital beds. The results showed that our proposed approach can predict the excess hospital beds demand very well and this can be helpful in developing strategies and plans to mitigate this gap.Keywords: COVID-19, deep learning, ensembled models, hospital capacity planning
Procedia PDF Downloads 1593708 Phase II Monitoring of First-Order Autocorrelated General Linear Profiles
Authors: Yihua Wang, Yunru Lai
Abstract:
Statistical process control has been successfully applied in a variety of industries. In some applications, the quality of a process or product is better characterized and summarized by a functional relationship between a response variable and one or more explanatory variables. A collection of this type of data is called a profile. Profile monitoring is used to understand and check the stability of this relationship or curve over time. The independent assumption for the error term is commonly used in the existing profile monitoring studies. However, in many applications, the profile data show correlations over time. Therefore, we focus on a general linear regression model with a first-order autocorrelation between profiles in this study. We propose an exponentially weighted moving average charting scheme to monitor this type of profile. The simulation study shows that our proposed methods outperform the existing schemes based on the average run length criterion.Keywords: autocorrelation, EWMA control chart, general linear regression model, profile monitoring
Procedia PDF Downloads 4613707 Integrating Knowledge Distillation of Multiple Strategies
Authors: Min Jindong, Wang Mingxia
Abstract:
With the widespread use of artificial intelligence in life, computer vision, especially deep convolutional neural network models, has developed rapidly. With the increase of the complexity of the real visual target detection task and the improvement of the recognition accuracy, the target detection network model is also very large. The huge deep neural network model is not conducive to deployment on edge devices with limited resources, and the timeliness of network model inference is poor. In this paper, knowledge distillation is used to compress the huge and complex deep neural network model, and the knowledge contained in the complex network model is comprehensively transferred to another lightweight network model. Different from traditional knowledge distillation methods, we propose a novel knowledge distillation that incorporates multi-faceted features, called M-KD. In this paper, when training and optimizing the deep neural network model for target detection, the knowledge of the soft target output of the teacher network in knowledge distillation, the relationship between the layers of the teacher network and the feature attention map of the hidden layer of the teacher network are transferred to the student network as all knowledge. in the model. At the same time, we also introduce an intermediate transition layer, that is, an intermediate guidance layer, between the teacher network and the student network to make up for the huge difference between the teacher network and the student network. Finally, this paper adds an exploration module to the traditional knowledge distillation teacher-student network model. The student network model not only inherits the knowledge of the teacher network but also explores some new knowledge and characteristics. Comprehensive experiments in this paper using different distillation parameter configurations across multiple datasets and convolutional neural network models demonstrate that our proposed new network model achieves substantial improvements in speed and accuracy performance.Keywords: object detection, knowledge distillation, convolutional network, model compression
Procedia PDF Downloads 2803706 Floating Building Potential for Adaptation to Rising Sea Levels: Development of a Performance Based Building Design Framework
Authors: Livia Calcagni
Abstract:
Most of the largest cities in the world are located in areas that are vulnerable to coastal erosion and flooding, both linked to climate change and rising sea levels (RSL). Nevertheless, more and more people are moving to these vulnerable areas as cities keep growing. Architects, engineers and policy makers are called to rethink the way we live and to provide timely and adequate responses not only by investigating measures to improve the urban fabric, but also by developing strategies capable of planning change, exploring unusual and resilient frontiers of living, such as floating architecture. Since the beginning of the 21st century we have seen a dynamic growth of water-based architecture. At the same time, the shortage of land available for urban development also led to reclaim the seabed or to build floating structures. In light of these considerations, time is ripe to consider floating architecture not only as a full-fledged building typology but especially as a full-fledged adaptation solution for RSL. Currently, there is no global international legal framework for urban development on water and there is no structured performance based building design (PBBD) approach for floating architecture in most countries, let alone national regulatory systems. Thus, the research intends to identify the technological, morphological, functional, economic, managerial requirements that must be considered in a the development of the PBBD framework conceived as a meta-design tool. As it is expected that floating urban development is mostly likely to take place as extension of coastal areas, the needs and design criteria are definitely more similar to those of the urban environment than of the offshore industry. Therefor, the identification and categorization of parameters takes the urban-architectural guidelines and regulations as the starting point, taking the missing aspects, such as hydrodynamics, from the offshore and shipping regulatory frameworks. This study is carried out through an evidence-based assessment of performance guidelines and regulatory systems that are effective in different countries around the world addressing on-land and on-water architecture as well as offshore and shipping industries. It involves evidence-based research and logical argumentation methods. Overall, this paper highlights how inhabiting water is not only a viable response to the problem of RSL, thus a resilient frontier for urban development, but also a response to energy insecurity, clean water and food shortages, environmental concerns and urbanization, in line with Blue Economy principles and the Agenda 2030. Moreover, the discipline of architecture is presented as a fertile field for investigating solutions to cope with climate change and its effects on life safety and quality. Future research involves the development of a decision support system as an information tool to guide the user through the decision-making process, emphasizing the logical interaction between the different potential choices, based on the PBBD.Keywords: adaptation measures, floating architecture, performance based building design, resilient architecture, rising sea levels
Procedia PDF Downloads 87