Search results for: sectorial information
7221 About the Case Portfolio Management Algorithms and Their Applications
Authors: M. Chumburidze, N. Salia, T. Namchevadze
Abstract:
This work deal with case processing problems in business. The task of strategic credit requirements management of cases portfolio is discussed. The information model of credit requirements in a binary tree diagram is considered. The algorithms to solve issues of prioritizing clusters of cases in business have been investigated. An implementation of priority queues to support case management operations has been presented. The corresponding pseudo codes for the programming application have been constructed. The tools applied in this development are based on binary tree ordering algorithms, optimization theory, and business management methods.Keywords: credit network, case portfolio, binary tree, priority queue, stack
Procedia PDF Downloads 1507220 Media Planning Decisions and Preferences through a Goal Programming Model: An Application to a Media Campaign for a Mature Product in Italy
Authors: Cinzia Colapinto, Davide La Torre
Abstract:
Goal Programming (GP) and its variants were applied to marketing and specific marketing issues, such as media scheduling problems in the last decades. The concept of satisfaction functions has been widely utilized in the GP model to explicitly integrate the Decision-Maker’s preferences. These preferences can be guided by the available information regarding the decision-making situation. A GP model with satisfaction functions for media planning decisions is proposed and then illustrated through a case study related to a marketing/media campaign in the Italian market.Keywords: goal programming, satisfaction functions, media planning, tourism management
Procedia PDF Downloads 3997219 Effect of Communication Pattern on Agricultural Employees' Job Performance
Authors: B. G. Abiona, E. O. Fakoya, S. O. Adeogun, J. O. Blessed
Abstract:
This study assessed the influence of communication pattern on agricultural employees’ job performance. Data were collected from 61 randomly selected respondents using a structured questionnaire. Perceived communication pattern that influence job performance include: the attitude of the administrators (x̅ = 3.41, physical barriers to communication flow among employees (x̅ = 3.21). Major challenges to respondents’ job performance were different language among employees (x̅ = 3.12), employees perception on organizational issues (x̅ = 3.09), networking (x̅ = 2.88), and unclear definition of work (x̅ = 2.74). A significant relationship was found between employees’ perceived communication pattern (r = 0.423, p < 0.00) and job performance. Information must be well designed in such a way that would positively influence employees’ job performance as this is essential in any agricultural organizations.Keywords: communication pattern, job performance, agricultural employees, constraint, administrators, attitude
Procedia PDF Downloads 3617218 The Effect of Outliers on the Economic and Social Survey on Income and Living Conditions
Authors: Encarnación Álvarez, Rosa M. García-Fernández, Francisco J. Blanco-Encomienda, Juan F. Muñoz
Abstract:
The European Union Survey on Income and Living Conditions (EU-SILC) is a popular survey which provides information on income, poverty, social exclusion and living conditions of households and individuals in the European Union. The EUSILC contains variables which may contain outliers. The presence of outliers can have an impact on the measures and indicators used by the EU-SILC. In this paper, we used data sets from various countries to analyze the presence of outliers. In addition, we obtain some indicators after removing these outliers, and a comparison between both situations can be observed. Finally, some conclusions are obtained.Keywords: poverty line, headcount index, risk of poverty, skewness coefficient
Procedia PDF Downloads 4027217 Development of Gully Erosion Prediction Model in Sokoto State, Nigeria, using Remote Sensing and Geographical Information System Techniques
Authors: Nathaniel Bayode Eniolorunda, Murtala Abubakar Gada, Sheikh Danjuma Abubakar
Abstract:
The challenge of erosion in the study area is persistent, suggesting the need for a better understanding of the mechanisms that drive it. Thus, the study evolved a predictive erosion model (RUSLE_Sok), deploying Remote Sensing (RS) and Geographical Information System (GIS) tools. The nature and pattern of the factors of erosion were characterized, while soil losses were quantified. Factors’ impacts were also measured, and the morphometry of gullies was described. Data on the five factors of RUSLE and distances to settlements, rivers and roads (K, R, LS, P, C, DS DRd and DRv) were combined and processed following standard RS and GIS algorithms. Harmonized World Soil Data (HWSD), Shuttle Radar Topographical Mission (SRTM) image, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), Sentinel-2 image accessed and processed within the Google Earth Engine, road network and settlements were the data combined and calibrated into the factors for erosion modeling. A gully morphometric study was conducted at some purposively selected sites. Factors of soil erosion showed low, moderate, to high patterns. Soil losses ranged from 0 to 32.81 tons/ha/year, classified into low (97.6%), moderate (0.2%), severe (1.1%) and very severe (1.05%) forms. The multiple regression analysis shows that factors statistically significantly predicted soil loss, F (8, 153) = 55.663, p < .0005. Except for the C-Factor with a negative coefficient, all other factors were positive, with contributions in the order of LS>C>R>P>DRv>K>DS>DRd. Gullies are generally from less than 100m to about 3km in length. Average minimum and maximum depths at gully heads are 0.6 and 1.2m, while those at mid-stream are 1 and 1.9m, respectively. The minimum downstream depth is 1.3m, while that for the maximum is 4.7m. Deeper gullies exist in proximity to rivers. With minimum and maximum gully elevation values ranging between 229 and 338m and an average slope of about 3.2%, the study area is relatively flat. The study concluded that major erosion influencers in the study area are topography and vegetation cover and that the RUSLE_Sok well predicted soil loss more effectively than ordinary RUSLE. The adoption of conservation measures such as tree planting and contour ploughing on sloppy farmlands was recommended.Keywords: RUSLE_Sok, Sokoto, google earth engine, sentinel-2, erosion
Procedia PDF Downloads 757216 A Framework of Virtualized Software Controller for Smart Manufacturing
Authors: Pin Xiu Chen, Shang Liang Chen
Abstract:
A virtualized software controller is developed in this research to replace traditional hardware control units. This virtualized software controller transfers motion interpolation calculations from the motion control units of end devices to edge computing platforms, thereby reducing the end devices' computational load and hardware requirements and making maintenance and updates easier. The study also applies the concept of microservices, dividing the control system into several small functional modules and then deploy into a cloud data server. This reduces the interdependency among modules and enhances the overall system's flexibility and scalability. Finally, with containerization technology, the system can be deployed and started in a matter of seconds, which is more efficient than traditional virtual machine deployment methods. Furthermore, this virtualized software controller communicates with end control devices via wireless networks, making the placement of production equipment or the redesign of processes more flexible and no longer limited by physical wiring. To handle the large data flow and maintain low-latency transmission, this study integrates 5G technology, fully utilizing its high speed, wide bandwidth, and low latency features to achieve rapid and stable remote machine control. An experimental setup is designed to verify the feasibility and test the performance of this framework. This study designs a smart manufacturing site with a 5G communication architecture, serving as a field for experimental data collection and performance testing. The smart manufacturing site includes one robotic arm, three Computer Numerical Control machine tools, several Input/Output ports, and an edge computing architecture. All machinery information is uploaded to edge computing servers and cloud servers via 5G communication and the Internet of Things framework. After analysis and computation, this information is converted into motion control commands, which are transmitted back to the relevant machinery for motion control through 5G communication. The communication time intervals at each stage are calculated using the C++ chrono library to measure the time difference for each command transmission. The relevant test results will be organized and displayed in the full-text.Keywords: 5G, MEC, microservices, virtualized software controller, smart manufacturing
Procedia PDF Downloads 827215 Parameters Estimation of Power Function Distribution Based on Selective Order Statistics
Authors: Moh'd Alodat
Abstract:
In this paper, we discuss the power function distribution and derive the maximum likelihood estimator of its parameter as well as the reliability parameter. We derive the large sample properties of the estimators based on the selective order statistic scheme. We conduct simulation studies to investigate the significance of the selective order statistic scheme in our setup and to compare the efficiency of the new proposed estimators.Keywords: fisher information, maximum likelihood estimator, power function distribution, ranked set sampling, selective order statistics sampling
Procedia PDF Downloads 4647214 Case Report: A Case of Confusion with Review of Sedative-Hypnotic Alprazolam Use
Authors: Agnes Simone
Abstract:
A 52-year-old male with unknown psychiatric and medical history was brought to the Psychiatric Emergency Room by ambulance directly from jail. He had been detained for three weeks for possession of a firearm while intoxicated. On initial evaluation, the patient was unable to provide a reliable history. He presented with odd jerking movements of his extremities and catatonic features, including mutism and stupor. His vital signs were stable. Patient was transferred to the medical emergency department for work-up of altered mental status. Due to suspicion for opioid overdose, the patient was given naloxone (Narcan) with no improvement. Laboratory work-up included complete blood count, comprehensive metabolic panel, thyroid stimulating hormone, vitamin B12, folate, magnesium, rapid plasma reagin, HIV, blood alcohol level, aspirin, and Tylenol blood levels, urine drug screen, and urinalysis, which were all negative. CT head and chest X-Ray were also negative. With this negative work-up, the medical team concluded there was no organic etiology and requested inpatient psychiatric admission. Upon re-evaluation by psychiatry, it was evident that the patient continued to have an altered mental status. Of note, the medical team did not include substance withdrawal in the differential diagnosis due to stable vital signs and a negative urine drug screen. The psychiatry team decided to check California's prescription drug monitoring program (CURES) and discovered that the patient was prescribed benzodiazepine alprazolam (Xanax) 2mg BID, a sedative-hypnotic, and hydrocodone/acetaminophen 10mg/325mg (Norco) QID, an opioid. After a thorough chart review, his daughter's contact information was found, and she confirmed his benzodiazepine and opioid use, with recent escalation and misuse. It was determined that the patient was experiencing alprazolam withdrawal, given this collateral information, his current symptoms, negative urine drug screen, and recent abrupt discontinuation of medications while incarcerated. After admission to the medical unit and two doses of alprazolam 2mg, the patient's mental status, alertness, and orientation improved, but he had no memory of the events that led to his hospitalization. He was discharged with a limited supply of alprazolam and a close follow-up to arrange a taper. Accompanying this case report, a qualitative review of presentations with alprazolam withdrawal was completed. This case and the review highlights: (1) Alprazolam withdrawal can occur at low doses and within just one week of use. (2) Alprazolam withdrawal can present without any vital sign instability. (3) Alprazolam withdrawal does not respond to short-acting benzodiazepines but does respond to certain long-acting benzodiazepines due to its unique chemical structure. (4) Alprazolam withdrawal is distinct from and more severe than other benzodiazepine withdrawals. This case highlights (1) the importance of physician utilization of drug-monitoring programs. This case, in particular, relied on California's drug monitoring program. (2) The importance of obtaining collateral information, especially in cases in which the patient is unable to provide a reliable history. (3) The importance of including substance intoxication and withdrawal in the differential diagnosis even when there is a negative urine drug screen. Toxidrome of withdrawal can be delayed. (4) The importance of discussing addiction and withdrawal risks of medications with patients.Keywords: addiction risk of benzodiazepines, alprazolam withdrawal, altered mental status, benzodiazepines, drug monitoring programs, sedative-hypnotics, substance use disorder
Procedia PDF Downloads 1387213 An Overview of Adaptive Channel Equalization Techniques and Algorithms
Authors: Navdeep Singh Randhawa
Abstract:
Wireless communication system has been proved as the best for any communication. However, there are some undesirable threats of a wireless communication channel on the information transmitted through it, such as attenuation, distortions, delays and phase shifts of the signals arriving at the receiver end which are caused by its band limited and dispersive nature. One of the threat is ISI (Inter Symbol Interference), which has been found as a great obstacle in high speed communication. Thus, there is a need to provide perfect and accurate technique to remove this effect to have an error free communication. Thus, different equalization techniques have been proposed in literature. This paper presents the equalization techniques followed by the concept of adaptive filter equalizer, its algorithms (LMS and RLS) and applications of adaptive equalization technique.Keywords: channel equalization, adaptive equalizer, least mean square, recursive least square
Procedia PDF Downloads 4507212 Understand and Redefine Lean Product Development
Authors: Alemu Moges Belay, Torgeir Welo, Jan Ola Strandhagen
Abstract:
Lean has long been linked with manufacturing, but its application claimed also by other functions such as product development and services. However, there is a challenge on understanding and defining lean in each function context. This paper aims to investigate the literature that focus mainly on PD process improvement, obtain better understanding and redefine LPD in systematic way. In addition to that, the paper attempts to summarize various proposed transformation strategies, definitions, identifying features of manufacturing and product development that would help to redefining lean in product development context. Finally we redefine LPD in organized way that encompasses different steps such as stage gate, communication and information, events, learning, innovation, knowledge and value creation.Keywords: lean, lean manufacturing, lean product development, transformation, strategies
Procedia PDF Downloads 4737211 Regional Adjustment to the Analytical Attenuation Coefficient in the GMPM BSSA 14 for the Region of Spain
Authors: Gonzalez Carlos, Martinez Fransisco
Abstract:
There are various types of analysis that allow us to involve seismic phenomena that cause strong requirements for structures that are designed by society; one of them is a probabilistic analysis which works from prediction equations that have been created based on metadata seismic compiled in different regions. These equations form models that are used to describe the 5% damped pseudo spectra response for the various zones considering some easily known input parameters. The biggest problem for the creation of these models requires data with great robust statistics that support the results, and there are several places where this type of information is not available, for which the use of alternative methodologies helps to achieve adjustments to different models of seismic prediction.Keywords: GMPM, 5% damped pseudo-response spectra, models of seismic prediction, PSHA
Procedia PDF Downloads 767210 Detonating Culture, Statistics and Development in Imo State of Nigeria
Authors: Ugiri Ejikeme
Abstract:
In an executive summary, UNESCO describes Framework for Cultural Statistics as a tool for organizing cultural statistics both nationally and internationally. This is based on conceptual foundation and a common understanding of culture that will enable the measurement of a wide range of cultural expressions. This means therefore that cultural expression in whatever guise has the potentiality of contributing reasonably to the development of a given society. The paper looked into the various tangible and intangible cultures in Imo State of Nigeria. Due to government’s insensitivity, there is need to remind ourselves of the need to pay adequate attention to the cultural heritage bequeathed to us by our forefathers for the sake of posterity. Documenting this information in written form therefore becomes imperative. The study concludes that culture if developed, could reasonably contribute to economic and social growth of the society.Keywords: detonating culture, statistics and development, Imo State, Nigeria
Procedia PDF Downloads 4877209 System Detecting Border Gateway Protocol Anomalies Using Local and Remote Data
Authors: Alicja Starczewska, Aleksander Nawrat, Krzysztof Daniec, Jarosław Homa, Kacper Hołda
Abstract:
Border Gateway Protocol is the main routing protocol that enables routing establishment between all autonomous systems, which are the basic administrative units of the internet. Due to the poor protection of BGP, it is important to use additional BGP security systems. Many solutions to this problem have been proposed over the years, but none of them have been implemented on a global scale. This article describes a system capable of building images of real-time BGP network topology in order to detect BGP anomalies. Our proposal performs a detailed analysis of BGP messages that come into local network cards supplemented by information collected by remote collectors in different localizations.Keywords: BGP, BGP hijacking, cybersecurity, detection
Procedia PDF Downloads 787208 Residual Life Estimation of K-out-of-N Cold Standby System
Authors: Qian Zhao, Shi-Qi Liu, Bo Guo, Zhi-Jun Cheng, Xiao-Yue Wu
Abstract:
Cold standby redundancy is considered to be an effective mechanism for improving system reliability and is widely used in industrial engineering. However, because of the complexity of the reliability structure, there is little literature studying on the residual life of cold standby system consisting of complex components. In this paper, a simulation method is presented to predict the residual life of k-out-of-n cold standby system. In practical cases, failure information of a system is either unknown, partly unknown or completely known. Our proposed method is designed to deal with the three scenarios, respectively. Differences between the procedures are analyzed. Finally, numerical examples are used to validate the proposed simulation method.Keywords: cold standby system, k-out-of-n, residual life, simulation sampling
Procedia PDF Downloads 4017207 The Economic Burden of Mental Disorders: A Systematic Review
Authors: Maria Klitgaard Christensen, Carmen Lim, Sukanta Saha, Danielle Cannon, Finley Prentis, Oleguer Plana-Ripoll, Natalie Momen, Kim Moesgaard Iburg, John J. McGrath
Abstract:
Introduction: About a third of the world’s population will develop a mental disorder over their lifetime. Having a mental disorder is a huge burden in health loss and cost for the individual, but also for society because of treatment cost, production loss and caregivers’ cost. The objective of this study is to synthesize the international published literature on the economic burden of mental disorders. Methods: Systematic literature searches were conducted in the databases PubMed, Embase, Web of Science, EconLit, NHS York Database and PsychInfo using key terms for cost and mental disorders. Searches were restricted to 1980 until May 2019. The inclusion criteria were: (1) cost-of-illness studies or cost-analyses, (2) diagnosis of at least one mental disorder, (3) samples based on the general population, and (4) outcome in monetary units. 13,640 publications were screened by their title/abstract and 439 articles were full-text screened by at least two independent reviewers. 112 articles were included from the systematic searches and 31 articles from snowball searching, giving a total of 143 included articles. Results: Information about diagnosis, diagnostic criteria, sample size, age, sex, data sources, study perspective, study period, costing approach, cost categories, discount rate and production loss method and cost unit was extracted. The vast majority of the included studies were from Western countries and only a few from Africa and South America. The disorder group most often investigated was mood disorders, followed by schizophrenia and neurotic disorders. The disorder group least examined was intellectual disabilities, followed by eating disorders. The preliminary results show a substantial variety in the used perspective, methodology, costs components and outcomes in the included studies. An online tool is under development enabling the reader to explore the published information on costs by type of mental disorder, subgroups, country, methodology, and study quality. Discussion: This is the first systematic review synthesizing the economic cost of mental disorders worldwide. The paper will provide an important and comprehensive overview over the economic burden of mental disorders, and the output from this review will inform policymaking.Keywords: cost-of-illness, health economics, mental disorders, systematic review
Procedia PDF Downloads 1317206 Dynamics of Understanding Earthquake Precursors-A Review
Authors: Sarada Nivedita Bhuyan
Abstract:
Earthquake is the sudden, rapid movement of the earth’s crust and is the natural means of releasing stress. Tectonic plates play a major role for earthquakes as tectonic plates are the crust of the planet. The boundary lines of tectonic plates are usually known as fault lines. To understand an earthquake before its occurrence, different types of earthquake precursors are studied by different researchers. Surface temperature, strange cloud cover, earth’s electric field, geomagnetic phenomena, ground water level, active faults, ionospheric anomalies, tectonic movements are taken as parameters for earthquake study by different researchers. In this paper we tried to gather complete and helpful information of earthquake precursors which have been studied until now.Keywords: earthquake precursors, earthquake, tectonic plates, fault
Procedia PDF Downloads 3807205 Local Binary Patterns-Based Statistical Data Analysis for Accurate Soccer Match Prediction
Authors: Mohammad Ghahramani, Fahimeh Saei Manesh
Abstract:
Winning a soccer game is based on thorough and deep analysis of the ongoing match. On the other hand, giant gambling companies are in vital need of such analysis to reduce their loss against their customers. In this research work, we perform deep, real-time analysis on every soccer match around the world that distinguishes our work from others by focusing on particular seasons, teams and partial analytics. Our contributions are presented in the platform called “Analyst Masters.” First, we introduce various sources of information available for soccer analysis for teams around the world that helped us record live statistical data and information from more than 50,000 soccer matches a year. Our second and main contribution is to introduce our proposed in-play performance evaluation. The third contribution is developing new features from stable soccer matches. The statistics of soccer matches and their odds before and in-play are considered in the image format versus time including the halftime. Local Binary patterns, (LBP) is then employed to extract features from the image. Our analyses reveal incredibly interesting features and rules if a soccer match has reached enough stability. For example, our “8-minute rule” implies if 'Team A' scores a goal and can maintain the result for at least 8 minutes then the match would end in their favor in a stable match. We could also make accurate predictions before the match of scoring less/more than 2.5 goals. We benefit from the Gradient Boosting Trees, GBT, to extract highly related features. Once the features are selected from this pool of data, the Decision trees decide if the match is stable. A stable match is then passed to a post-processing stage to check its properties such as betters’ and punters’ behavior and its statistical data to issue the prediction. The proposed method was trained using 140,000 soccer matches and tested on more than 100,000 samples achieving 98% accuracy to select stable matches. Our database from 240,000 matches shows that one can get over 20% betting profit per month using Analyst Masters. Such consistent profit outperforms human experts and shows the inefficiency of the betting market. Top soccer tipsters achieve 50% accuracy and 8% monthly profit in average only on regional matches. Both our collected database of more than 240,000 soccer matches from 2012 and our algorithm would greatly benefit coaches and punters to get accurate analysis.Keywords: soccer, analytics, machine learning, database
Procedia PDF Downloads 2387204 Rangeland Monitoring by Computerized Technologies
Abstract:
Every piece of rangeland has a different set of physical and biological characteristics. This requires the manager to synthesis various information for regular monitoring to define changes trend to get wright decision for sustainable management. So range managers need to use computerized technologies to monitor rangeland, and select. The best management practices. There are four examples of computerized technologies that can benefit sustainable management: (1) Photographic method for cover measurement: The method was tested in different vegetation communities in semi humid and arid regions. Interpretation of pictures of quadrats was done using Arc View software. Data analysis was done by SPSS software using paired t test. Based on the results, generally, photographic method can be used to measure ground cover in most vegetation communities. (2) GPS application for corresponding ground samples and satellite pixels: In two provinces of Tehran and Markazi, six reference points were selected and in each point, eight GPS models were tested. Significant relation among GPS model, time and location with accuracy of estimated coordinates was found. After selection of suitable method, in Markazi province coordinates of plots along four transects in each 6 sites of rangelands was recorded. The best time of GPS application was in the morning hours, Etrex Vista had less error than other models, and a significant relation among GPS model, time and location with accuracy of estimated coordinates was found. (3) Application of satellite data for rangeland monitoring: Focusing on the long term variation of vegetation parameters such as vegetation cover and production is essential. Our study in grass and shrub lands showed that there were significant correlations between quantitative vegetation characteristics and satellite data. So it is possible to monitor rangeland vegetation using digital data for sustainable utilization. (4) Rangeland suitability classification with GIS: Range suitability assessment can facilitate sustainable management planning. Three sub-models of sensitivity to erosion, water suitability and forage production out puts were entered to final range suitability classification model. GIS was facilitate classification of range suitability and produced suitability maps for sheep grazing. Generally digital computers assist range managers to interpret, modify, calibrate or integrating information for correct management.Keywords: computer, GPS, GIS, remote sensing, photographic method, monitoring, rangeland ecosystem, management, suitability, sheep grazing
Procedia PDF Downloads 3677203 Assessing Online Learning Paths in an Learning Management Systems Using a Data Mining and Machine Learning Approach
Authors: Alvaro Figueira, Bruno Cabral
Abstract:
Nowadays, students are used to be assessed through an online platform. Educators have stepped up from a period in which they endured the transition from paper to digital. The use of a diversified set of question types that range from quizzes to open questions is currently common in most university courses. In many courses, today, the evaluation methodology also fosters the students’ online participation in forums, the download, and upload of modified files, or even the participation in group activities. At the same time, new pedagogy theories that promote the active participation of students in the learning process, and the systematic use of problem-based learning, are being adopted using an eLearning system for that purpose. However, although there can be a lot of feedback from these activities to student’s, usually it is restricted to the assessments of online well-defined tasks. In this article, we propose an automatic system that informs students of abnormal deviations of a 'correct' learning path in the course. Our approach is based on the fact that by obtaining this information earlier in the semester, may provide students and educators an opportunity to resolve an eventual problem regarding the student’s current online actions towards the course. Our goal is to prevent situations that have a significant probability to lead to a poor grade and, eventually, to failing. In the major learning management systems (LMS) currently available, the interaction between the students and the system itself is registered in log files in the form of registers that mark beginning of actions performed by the user. Our proposed system uses that logged information to derive new one: the time each student spends on each activity, the time and order of the resources used by the student and, finally, the online resource usage pattern. Then, using the grades assigned to the students in previous years, we built a learning dataset that is used to feed a machine learning meta classifier. The produced classification model is then used to predict the grades a learning path is heading to, in the current year. Not only this approach serves the teacher, but also the student to receive automatic feedback on her current situation, having past years as a perspective. Our system can be applied to online courses that integrate the use of an online platform that stores user actions in a log file, and that has access to other student’s evaluations. The system is based on a data mining process on the log files and on a self-feedback machine learning algorithm that works paired with the Moodle LMS.Keywords: data mining, e-learning, grade prediction, machine learning, student learning path
Procedia PDF Downloads 1227202 Epidemiological and Clinical Characteristics of Five Rare Pathological Subtypes of Hepatocellular Carcinoma
Authors: Xiaoyuan Chen
Abstract:
Background: This study aimed to characterize the epidemiological and clinical features of five rare subtypes of hepatocellular carcinoma (HCC) and to create a competing risk nomogram for predicting cancer-specific survival. Methods: This study used the Surveillance, Epidemiology, and End Results database to analyze the clinicopathological data of 50,218 patients with classic HCC and five rare subtypes (ICD-O-3 Histology Code=8170/3-8175/3) between 2004 and 2018. The annual percent change (APC) was calculated using Joinpoint regression, and a nomogram was developed based on multivariable competing risk survival analyses. The prognostic performance of the nomogram was evaluated using the Akaike information criterion, Bayesian information criterion, C-index, calibration curve, and area under the receiver operating characteristic curve. Decision curve analysis was used to assess the clinical value of the models. Results: The incidence of scirrhous carcinoma showed a decreasing trend (APC=-6.8%, P=0.025), while the morbidity of other rare subtypes remained stable from 2004 to 2018. The incidence-based mortality plateau in all subtypes during the period. Clear cell carcinoma was the most common subtype (n=551, 1.1%), followed by fibrolamellar (n=241, 0.5%), scirrhous (n=82, 0.2%), spindle cell (n=61, 0.1%), and pleomorphic (n=17, ~0%) carcinomas. Patients with fibrolamellar carcinoma were younger and more likely to have non-cirrhotic liver and better prognoses. Scirrhous carcinoma shared almost the same macro clinical characteristics and outcomes as classic HCC. Clear cell carcinoma tended to occur in the Asia-Pacific elderly male population, and more than half of them were large HCC (Size>5cm). Sarcomatoid (including spindle cell and pleomorphic) carcinoma was associated with larger tumor size, poorer differentiation, and more dismal prognoses. The pathological subtype, T stage, M stage, surgery, alpha-fetoprotein, and cancer history were identified as independent predictors in patients with rare subtypes. The nomogram showed good calibration, discrimination, and net benefits in clinical practice. Conclusion: The rare subtypes of HCC had distinct clinicopathological features and biological behaviors compared with classic HCC. Our findings could provide a valuable reference for clinicians. The constructed nomogram could accurately predict prognoses, which is beneficial for individualized management.Keywords: hepatocellular carcinoma, pathological subtype, fibrolamellar carcinoma, scirrhous carcinoma, clear cell carcinoma, spindle cell carcinoma, pleomorphic carcinoma
Procedia PDF Downloads 767201 The Extent of Virgin Olive-Oil Prices' Distribution Revealing the Behavior of Market Speculators
Authors: Fathi Abid, Bilel Kaffel
Abstract:
The olive tree, the olive harvest during winter season and the production of olive oil better known by professionals under the name of the crushing operation have interested institutional traders such as olive-oil offices and private companies such as food industry refining and extracting pomace olive oil as well as export-import public and private companies specializing in olive oil. The major problem facing producers of olive oil each winter campaign, contrary to what is expected, it is not whether the harvest will be good or not but whether the sale price will allow them to cover production costs and achieve a reasonable margin of profit or not. These questions are entirely legitimate if we judge by the importance of the issue and the heavy complexity of the uncertainty and competition made tougher by a high level of indebtedness and the experience and expertise of speculators and producers whose objectives are sometimes conflicting. The aim of this paper is to study the formation mechanism of olive oil prices in order to learn about speculators’ behavior and expectations in the market, how they contribute by their industry knowledge and their financial alliances and the size the financial challenge that may be involved for them to build private information hoses globally to take advantage. The methodology used in this paper is based on two stages, in the first stage we study econometrically the formation mechanisms of olive oil price in order to understand the market participant behavior by implementing ARMA, SARMA, GARCH and stochastic diffusion processes models, the second stage is devoted to prediction purposes, we use a combined wavelet- ANN approach. Our main findings indicate that olive oil market participants interact with each other in a way that they promote stylized facts formation. The unstable participant’s behaviors create the volatility clustering, non-linearity dependent and cyclicity phenomena. By imitating each other in some periods of the campaign, different participants contribute to the fat tails observed in the olive oil price distribution. The best prediction model for the olive oil price is based on a back propagation artificial neural network approach with input information based on wavelet decomposition and recent past history.Keywords: olive oil price, stylized facts, ARMA model, SARMA model, GARCH model, combined wavelet-artificial neural network, continuous-time stochastic volatility mode
Procedia PDF Downloads 3397200 Neuromarketing in the Context of Food Marketing
Authors: Francesco Pinci
Abstract:
This research investigates the significance of product packaging as an effective marketing tool. By using commercially available pasta as an example, the study specifically examines the visual components of packaging, including color, shape, packaging material, and logo. The insights gained from studies like this are particularly valuable to food and beverage companies as they provide marketers with a deeper understanding of the factors influencing consumer purchasing decisions. The research analyzes data collected through surveys conducted via Google Forms and visual data obtained using iMotions eye-tracker software. The results affirm the importance of packaging design elements, such as color and product information, in shaping consumer buying behavior.Keywords: consumer behaviour, eyetracker, food marketing, neuromarketing
Procedia PDF Downloads 1177199 Fabrication of Miniature Gear of Hastelloy X by WEDM Process
Authors: Bhupinder Singh, Joy Prakash Misra
Abstract:
This article provides the information regarding machining of hastelloy-X on wire electro spark machining (WEDM). Experimental investigation has been carried out by varying pulse-on time (TON), pulse-off time (TOFF), peak current (IP) and spark gap voltage (SV). Effect of these parameters is studied on material removal rate (MRR). Experiments are designed as per box-behnken design (BBD) technique of response surface methodology (RSM). Analysis of variance (ANOVA) results indicates that TON, TOFF, IP, SV, TON x IP are significant parameters that influenced the MRR, and it is depicted that value of MRR is more at high discharge energy (HDE) and less at low discharge energy (LDE). Furthermore, miniature impeller and miniature gear (OD≤10MM) is fabricated by WEDM at optimized condition.Keywords: advanced manufacturing, WEDM, super alloy, gear
Procedia PDF Downloads 2267198 Research on Innovation Service based on Science and Technology Resources in Beijing-Tianjin-Hebei
Authors: Runlian Miao, Wei Xie, Hong Zhang
Abstract:
In China, Beijing-Tianjin-Hebei is regarded as a strategically important region because itenjoys highest development in economic development, opening up, innovative capacity and andpopulation. Integrated development of Beijing-Tianjin-Hebei region is increasingly emphasized by the government recently years. In 2014, it has ascended to one of the national great development strategies by Chinese central government. In 2015, Coordinated Development Planning Compendium for Beijing-Tianjin-Hebei Region was approved. Such decisions signify Beijing-Tianjin-Hebei region would lead innovation-driven economic development in China. As an essential factor to achieve national innovation-driven development and significant part of regional industry chain, the optimization of science and technology resources allocation will exert great influence to regional economic transformation and upgrading and innovation-driven development. However, unbalanced distribution, poor sharing of resources and existence of information isolated islands have contributed to different interior innovation capability, vitality and efficiency, which impeded innovation and growth of the whole region. Under such a background, to integrate and vitalize regional science and technology resources and then establish high-end, fast-responding and precise innovation service system basing on regional resources, would be of great significance for integrated development of Beijing-Tianjin-Hebei region and even handling of unbalanced and insufficient development problem in China. This research uses the method of literature review and field investigation and applies related theories prevailing home and abroad, centering service path of science and technology resources for innovation. Based on the status quo and problems of regional development of Beijing-Tianjin-Hebei, theoretically, the author proposed to combine regional economics and new economic geography to explore solution to problem of low resource allocation efficiency. Further, the author puts forward to applying digital map into resource management and building a platform for information co-building and sharing. At last, the author presents the thought to establish a specific service mode of ‘science and technology plus digital map plus intelligence research plus platform service’ and suggestion on co-building and sharing mechanism of 3 (Beijing, Tianjin and Hebei ) plus 11 (important cities in Hebei Province).Keywords: Beijing-Tianjin-Hebei, science and technology resources, innovation service, digital platform
Procedia PDF Downloads 1617197 Linguistic Insights Improve Semantic Technology in Medical Research and Patient Self-Management Contexts
Authors: William Michael Short
Abstract:
Semantic Web’ technologies such as the Unified Medical Language System Metathesaurus, SNOMED-CT, and MeSH have been touted as transformational for the way users access online medical and health information, enabling both the automated analysis of natural-language data and the integration of heterogeneous healthrelated resources distributed across the Internet through the use of standardized terminologies that capture concepts and relationships between concepts that are expressed differently across datasets. However, the approaches that have so far characterized ‘semantic bioinformatics’ have not yet fulfilled the promise of the Semantic Web for medical and health information retrieval applications. This paper argues within the perspective of cognitive linguistics and cognitive anthropology that four features of human meaning-making must be taken into account before the potential of semantic technologies can be realized for this domain. First, many semantic technologies operate exclusively at the level of the word. However, texts convey meanings in ways beyond lexical semantics. For example, transitivity patterns (distributions of active or passive voice) and modality patterns (configurations of modal constituents like may, might, could, would, should) convey experiential and epistemic meanings that are not captured by single words. Language users also naturally associate stretches of text with discrete meanings, so that whole sentences can be ascribed senses similar to the senses of words (so-called ‘discourse topics’). Second, natural language processing systems tend to operate according to the principle of ‘one token, one tag’. For instance, occurrences of the word sound must be disambiguated for part of speech: in context, is sound a noun or a verb or an adjective? In syntactic analysis, deterministic annotation methods may be acceptable. But because natural language utterances are typically characterized by polyvalency and ambiguities of all kinds (including intentional ambiguities), such methods leave the meanings of texts highly impoverished. Third, ontologies tend to be disconnected from everyday language use and so struggle in cases where single concepts are captured through complex lexicalizations that involve profile shifts or other embodied representations. More problematically, concept graphs tend to capture ‘expert’ technical models rather than ‘folk’ models of knowledge and so may not match users’ common-sense intuitions about the organization of concepts in prototypical structures rather than Aristotelian categories. Fourth, and finally, most ontologies do not recognize the pervasively figurative character of human language. However, since the time of Galen the widespread use of metaphor in the linguistic usage of both medical professionals and lay persons has been recognized. In particular, metaphor is a well-documented linguistic tool for communicating experiences of pain. Because semantic medical knowledge-bases are designed to help capture variations within technical vocabularies – rather than the kinds of conventionalized figurative semantics that practitioners as well as patients actually utilize in clinical description and diagnosis – they fail to capture this dimension of linguistic usage. The failure of semantic technologies in these respects degrades the efficiency and efficacy not only of medical research, where information retrieval inefficiencies can lead to direct financial costs to organizations, but also of care provision, especially in contexts of patients’ self-management of complex medical conditions.Keywords: ambiguity, bioinformatics, language, meaning, metaphor, ontology, semantic web, semantics
Procedia PDF Downloads 1327196 Deep Learning to Enhance Mathematics Education for Secondary Students in Sri Lanka
Authors: Selvavinayagan Babiharan
Abstract:
This research aims to develop a deep learning platform to enhance mathematics education for secondary students in Sri Lanka. The platform will be designed to incorporate interactive and user-friendly features to engage students in active learning and promote their mathematical skills. The proposed platform will be developed using TensorFlow and Keras, two widely used deep learning frameworks. The system will be trained on a large dataset of math problems, which will be collected from Sri Lankan school curricula. The results of this research will contribute to the improvement of mathematics education in Sri Lanka and provide a valuable tool for teachers to enhance the learning experience of their students.Keywords: information technology, education, machine learning, mathematics
Procedia PDF Downloads 837195 Top-K Shortest Distance as a Similarity Measure
Authors: Andrey Lebedev, Ilya Dmitrenok, JooYoung Lee, Leonard Johard
Abstract:
Top-k shortest path routing problem is an extension of finding the shortest path in a given network. Shortest path is one of the most essential measures as it reveals the relations between two nodes in a network. However, in many real world networks, whose diameters are small, top-k shortest path is more interesting as it contains more information about the network topology. Many variations to compute top-k shortest paths have been studied. In this paper, we apply an efficient top-k shortest distance routing algorithm to the link prediction problem and test its efficacy. We compare the results with other base line and state-of-the-art methods as well as with the shortest path. Then, we also propose a top-k distance based graph matching algorithm.Keywords: graph matching, link prediction, shortest path, similarity
Procedia PDF Downloads 3587194 Human Thinking Explained with Basic Drives
Authors: Peter Pfeifer, Julian Pfeifer, Niko Pfeifer
Abstract:
Information processing is the focus of brain and cognition research. This work has a different perspective; it starts with behaviors. The detailed analysis of behaviors leads to the discovery that a significant proportion of them are based on only five basic drives. These basic drives are combinable, and the combinations result in the diversity of human behavior and thinking. The key elements are drive memories. They collect memories of drive-related situations and feelings. They contain variations of basic drives in numerous areas of life and build combinations with different meanings depending on the area. Human thinking could be explained with variations on these nested combinations of basic drives.Keywords: cognition, psycholinguistics, psychology, psychophysiology of cognition
Procedia PDF Downloads 1617193 Adopting the Community Health Workers Master List Registry for Community Health Workforce in Kenya
Authors: Gikunda Aloise, Mjema Saida, Barasa Herbert, Wanyungu John, Kimani Maureen
Abstract:
Background: Community Health Workforce (CHW) is health care providers at the community level (Level 1) and serves as a bridge between the community and the formal healthcare system. This human resource has enormous potential to extend healthcare services and ensures that the vulnerable, marginalized, and hard-to-reach populations have access to quality healthcare services at the community and primary health facility levels. However, these cadres are neither recognized, remunerated, nor in most instances, registered in a master list. Management and supervision of CHWs is not easy if their individual demographics, training capacity and incentives is not well documented through a centralized registry. Description: In February 2022, Amref supported the Kenya Ministry of Health in developing a community health workforce database called Community Health Workers Master List Registry (CHWML), which is hosted in Kenya Health Information System (KHIS) tracker. CHW registration exercise was through a sensitization meeting conducted by the County Community Health Focal Person for the Sub-County Community Health Focal Person and Community Health Assistants who uploaded information on individual demographics, training undertaken and incentives received by CHVs. Care was taken to ensure compliance with Kenyan laws on the availability and use of personal data as prescribed by the Data Protection Act, 2019 (DPA). Results and lessons learnt: By June 2022, 80,825 CHWs had been registered in the system; 78,174 (96%) CHVs and 2,636 (4%) CHAs. 25,235 (31%) are male, 55,505 (68%) are female & 85 (1%) are transgender. 39,979. (49%) had secondary education and 2500 (3%) had no formal education. Only 27 641 (34%) received a monthly stipend. 68,436 CHVs (85%) had undergone basic training. However, there is a need to validate the data to align with the current situation in the counties. Conclusions/Next steps: The use of CHWML will unlock opportunities for building more resilient and sustainable health systems and inform financial planning, resource allocation, capacity development, and quality service delivery. The MOH will update the CHWML guidelines in adherence to the data protection act which will inform standard procedures for maintaining, updating the registry and integrate Community Health Workforce registry with the HRH system.Keywords: community health registry, community health volunteers (CHVs), community health workers masters list (CHWML), data protection act
Procedia PDF Downloads 1407192 Decision Making under Strict Uncertainty: Case Study in Sewer Network Planning
Authors: Zhen Wu, David Lupien St-Pierre, Georges Abdul-Nour
Abstract:
In decision making under strict uncertainty, decision makers have to choose a decision without any information about the states of nature. The classic criteria of Laplace, Wald, Savage, Hurwicz and Starr are introduced and compared in a case study of sewer network planning. Furthermore, results from different criteria are discussed and analyzed. Moreover, this paper discusses the idea that decision making under strict uncertainty (DMUSU) can be viewed as a two-player game and thus be solved by a solution concept in game theory: Nash equilibrium.Keywords: decision criteria, decision making, sewer network planning, decision making, strict uncertainty
Procedia PDF Downloads 560