Search results for: mitigation techniques
3986 Automated Process Quality Monitoring and Diagnostics for Large-Scale Measurement Data
Authors: Hyun-Woo Cho
Abstract:
Continuous monitoring of industrial plants is one of necessary tasks when it comes to ensuring high-quality final products. In terms of monitoring and diagnosis, it is quite critical and important to detect some incipient abnormal events of manufacturing processes in order to improve safety and reliability of operations involved and to reduce related losses. In this work a new multivariate statistical online diagnostic method is presented using a case study. For building some reference models an empirical discriminant model is constructed based on various past operation runs. When a fault is detected on-line, an on-line diagnostic module is initiated. Finally, the status of the current operating conditions is compared with the reference model to make a diagnostic decision. The performance of the presented framework is evaluated using a dataset from complex industrial processes. It has been shown that the proposed diagnostic method outperforms other techniques especially in terms of incipient detection of any faults occurred.Keywords: data mining, empirical model, on-line diagnostics, process fault, process monitoring
Procedia PDF Downloads 4043985 Hotel Guests’ Service Fulfillment: Bangkok, Thailand
Authors: Numtana Ladplee, Cherif Haberih
Abstract:
The value of service evaluation depends critically on guests’ understanding of the evaluation objectives and their roles. The present research presents a three-phase investigation of the impact of evaluating participants’ theories about their roles: (a) identifying the theories, (b) testing the process consequences of participants’ role theories, and (c) gaining insights into the impact of participants’ role theories by testing key moderator/s. The findings of this study will hopefully indicate that (a) when forewarned of an upcoming evaluation task, consumers tend to believe that the evaluation objective is to identify aspects that need improvement, (b) this expectation produces a conscious attempt to identify negative aspects, although the encoding of attribute information is not affected, and (c) cognitive load during the evaluation experience greatly decreases the negativity of expected evaluations. The present study can be applied to other market research techniques and thereby improve our understanding of consumer inputs derived from market research. Such insights can help diminish biases produced by participants’ correct or incorrect theories regarding their roles.Keywords: fulfillment, hotel guests, service, Thailand
Procedia PDF Downloads 2813984 Groundwater Quality Assessment Using Water Quality Index and Geographical Information System Techniques: A Case Study of Busan City, South Korea
Authors: S. Venkatramanan, S. Y. Chung, S. Selvam, E. E. Hussam, G. Gnanachandrasamy
Abstract:
The quality of groundwater was evaluated by major ions concentration around Busan city, South Korea. The groundwater samples were collected from 40 wells. The order of abundance of major cations concentration in groundwater is Na > Ca > Mg > K, in case of anions are Cl > HCO₃ > SO₄ > NO₃ > F. Based on Piper’s diagram Ca (HCO₃)₂, CaCl₂, and NaCl are the leading groundwater types. While Gibbs diagram suggested that most of groundwater samples belong to rock-weathering zone. Hydrogeochemical condition of groundwater in this city is influenced by evaporation, ion exchange and dissolution of minerals. Water Quality Index (WQI) revealed that 86 % of the samples belong to excellent, 2 % good, 4 % poor to very poor and 8 % unsuitable categories. The results of sodium absorption ratio (SAR), Permeability Index (PI), Residual Sodium Carbonate (RSC) and Magnesium Hazard (MH) exhibit that most of the groundwater samples are suitable for domestic and irrigation purposes.Keywords: WQI (Water Quality Index), saturation index, groundwater types, ion exchange
Procedia PDF Downloads 2693983 Subband Coding and Glottal Closure Instant (GCI) Using SEDREAMS Algorithm
Authors: Harisudha Kuresan, Dhanalakshmi Samiappan, T. Rama Rao
Abstract:
In modern telecommunication applications, Glottal Closure Instants location finding is important and is directly evaluated from the speech waveform. Here, we study the GCI using Speech Event Detection using Residual Excitation and the Mean Based Signal (SEDREAMS) algorithm. Speech coding uses parameter estimation using audio signal processing techniques to model the speech signal combined with generic data compression algorithms to represent the resulting modeled in a compact bit stream. This paper proposes a sub-band coder SBC, which is a type of transform coding and its performance for GCI detection using SEDREAMS are evaluated. In SBCs code in the speech signal is divided into two or more frequency bands and each of these sub-band signal is coded individually. The sub-bands after being processed are recombined to form the output signal, whose bandwidth covers the whole frequency spectrum. Then the signal is decomposed into low and high-frequency components and decimation and interpolation in frequency domain are performed. The proposed structure significantly reduces error, and precise locations of Glottal Closure Instants (GCIs) are found using SEDREAMS algorithm.Keywords: SEDREAMS, GCI, SBC, GOI
Procedia PDF Downloads 3603982 Application of Refractometric Methodology for Simultaneous Determination of Alcohol and Residual Sugar Concentrations during Alcoholic Fermentation Bioprocess of Date Juice
Authors: Boukhiar Aissa, Halladj Fatima, Iguergaziz Nadia, Lamrani yasmina, Benamara Salem
Abstract:
Determining the alcohol content in alcoholic fermentation bioprocess is of great importance. In fact, it is a key indicator for monitoring this bioprocess. Several methodologies (chemical, spectrophotometric, chromatographic) are used to the determination of this parameter. However, these techniques are very long and they require: rigorous preparations, sometimes dangerous chemical reagents and/or expensive equipment. In the present study, the date juice is used as the substrate of alcoholic fermentation. The extracted juice undergoes an alcoholic fermentation by Saccharomyces cerevisiae. The study of the possible use of refractometry as a sole means for the in situ control of alcoholic fermentation revealed a good correlation (R2=0.98) between initial and final °Brix: °Brixf=0.377×°Brixi. In addition, the relationship between Δ°Brix and alcoholic content of the final product (A,%) has been determined: Δ°Brix/A=1.1. The obtained results allowed us to establish iso-responses abacus, which can be used for the determination of alcohol and residual sugar content, with a mean relative error (MRE) of 5.35%.Keywords: alcoholic fermentation, date juice, refractometry, residual sugar
Procedia PDF Downloads 3473981 Deflection Effect on Mirror for Space Applications
Authors: Maamar Fatouma
Abstract:
Mirror optical performance can experience varying levels of stress and tolerances, which can have a notable impact on optical parametric systems. to ensure proper optical figure and position of mirror mounting within design tolerances, it is crucial to have a robust support structure in place for optical systems. The optical figure tolerance determines the allowable deviation from the ideal form of the mirror and the position tolerance determines the location and orientations of the optical axis of the optical systems. A variety of factors influence the optical figure of the mirror. Included are self-weight (Deflection), excitation from temperature change, temperature gradients and dimensional instability. This study employs an analytical approach and finite element method to examine the effects of stress resulting from mirror mounting on the wavefront passing through the mirror. The combined effect of tolerance and deflection on mirror performance is represented by an error budget. Numerical mirror mounting is presented to illustrate the space application of performance techniques.Keywords: opto-mechanical, bonded optic, tolerance, self-weight distortion, Rayleigh criteria
Procedia PDF Downloads 923980 Artificial Neural Networks Face to Sudden Load Change for Shunt Active Power Filter
Authors: Dehini Rachid, Ferdi Brahim
Abstract:
The shunt active power filter (SAPF) is not destined only to improve the power factor, but also to compensate the unwanted harmonic currents produced by nonlinear loads. This paper presents a SAPF with identification and control method based on artificial neural network (ANN). To identify harmonics, many techniques are used, among them the conventional p-q theory and the relatively recent one the artificial neural network method. It is difficult to get satisfied identification and control characteristics by using a normal (ANN) due to the nonlinearity of the system (SAPF + fast nonlinear load variations). This work is an attempt to undertake a systematic study of the problem to equip the (SAPF) with the harmonics identification and DC link voltage control method based on (ANN). The latter has been applied to the (SAPF) with fast nonlinear load variations. The results of computer simulations and experiments are given, which can confirm the feasibility of the proposed active power filter.Keywords: artificial neural networks (ANN), p-q theory, harmonics, total harmonic distortion
Procedia PDF Downloads 3903979 Sparsity-Based Unsupervised Unmixing of Hyperspectral Imaging Data Using Basis Pursuit
Authors: Ahmed Elrewainy
Abstract:
Mixing in the hyperspectral imaging occurs due to the low spatial resolutions of the used cameras. The existing pure materials “endmembers” in the scene share the spectra pixels with different amounts called “abundances”. Unmixing of the data cube is an important task to know the present endmembers in the cube for the analysis of these images. Unsupervised unmixing is done with no information about the given data cube. Sparsity is one of the recent approaches used in the source recovery or unmixing techniques. The l1-norm optimization problem “basis pursuit” could be used as a sparsity-based approach to solve this unmixing problem where the endmembers is assumed to be sparse in an appropriate domain known as dictionary. This optimization problem is solved using proximal method “iterative thresholding”. The l1-norm basis pursuit optimization problem as a sparsity-based unmixing technique was used to unmix real and synthetic hyperspectral data cubes.Keywords: basis pursuit, blind source separation, hyperspectral imaging, spectral unmixing, wavelets
Procedia PDF Downloads 1983978 Intelligent Process Data Mining for Monitoring for Fault-Free Operation of Industrial Processes
Authors: Hyun-Woo Cho
Abstract:
The real-time fault monitoring and diagnosis of large scale production processes is helpful and necessary in order to operate industrial process safely and efficiently producing good final product quality. Unusual and abnormal events of the process may have a serious impact on the process such as malfunctions or breakdowns. This work try to utilize process measurement data obtained in an on-line basis for the safe and some fault-free operation of industrial processes. To this end, this work evaluated the proposed intelligent process data monitoring framework based on a simulation process. The monitoring scheme extracts the fault pattern in the reduced space for the reliable data representation. Moreover, this work shows the results of using linear and nonlinear techniques for the monitoring purpose. It has shown that the nonlinear technique produced more reliable monitoring results and outperforms linear methods. The adoption of the qualitative monitoring model helps to reduce the sensitivity of the fault pattern to noise.Keywords: process data, data mining, process operation, real-time monitoring
Procedia PDF Downloads 6453977 Dynamic Background Updating for Lightweight Moving Object Detection
Authors: Kelemewerk Destalem, Joongjae Cho, Jaeseong Lee, Ju H. Park, Joonhyuk Yoo
Abstract:
Background subtraction and temporal difference are often used for moving object detection in video. Both approaches are computationally simple and easy to be deployed in real-time image processing. However, while the background subtraction is highly sensitive to dynamic background and illumination changes, the temporal difference approach is poor at extracting relevant pixels of the moving object and at detecting the stopped or slowly moving objects in the scene. In this paper, we propose a moving object detection scheme based on adaptive background subtraction and temporal difference exploiting dynamic background updates. The proposed technique consists of a histogram equalization, a linear combination of background and temporal difference, followed by the novel frame-based and pixel-based background updating techniques. Finally, morphological operations are applied to the output images. Experimental results show that the proposed algorithm can solve the drawbacks of both background subtraction and temporal difference methods and can provide better performance than that of each method.Keywords: background subtraction, background updating, real time, light weight algorithm, temporal difference
Procedia PDF Downloads 3473976 Application of Association Rule Using Apriori Algorithm for Analysis of Industrial Accidents in 2013-2014 in Indonesia
Authors: Triano Nurhikmat
Abstract:
Along with the progress of science and technology, the development of the industrialized world in Indonesia took place very rapidly. This leads to a process of industrialization of society Indonesia faster with the establishment of the company and the workplace are diverse. Development of the industry relates to the activity of the worker. Where in these work activities do not cover the possibility of an impending crash on either the workers or on a construction project. The cause of the occurrence of industrial accidents was the fault of electrical damage, work procedures, and error technique. The method of an association rule is one of the main techniques in data mining and is the most common form used in finding the patterns of data collection. In this research would like to know how relations of the association between the incidence of any industrial accidents. Therefore, by using methods of analysis association rule patterns associated with combination obtained two iterations item set (2 large item set) when every factor of industrial accidents with a West Jakarta so industrial accidents caused by the occurrence of an electrical value damage = 0.2 support and confidence value = 1, and the reverse pattern with value = 0.2 support and confidence = 0.75.Keywords: association rule, data mining, industrial accidents, rules
Procedia PDF Downloads 3043975 The Interfaith Dialogue by William Milne by the First Chinese Study Bible
Authors: Liu Yuan-Jian, Chou Fu-Chu
Abstract:
The study Bible was published in 1825 after Milne’s death, containing large amounts of paraphrasing, exhortations, notes, and commentaries to facilitate readers' scripture engagement. The methodologies employed include text analysis and discourse analysis. This study shows that to enable Chinese readers, uninitiated in the Gospel and deeply influenced by Confucian ethics and paganism, to understand the Bible and apply it to their daily living, Milne not only paraphrased the verses but also used metaphors and rhetorical techniques for explaining the background information of the Bible, teaching biblical doctrine, combating paganism, and exhorting readers to believe in the Gospel. Moreover, Milne also tries to clarify the scripture in the context of Chinese culture, giving the readers a clear way to put the scripture into practice in their daily living. His exposition had successfully made a breakthrough from the British and Foreign Bible Society's “Without Note or Comment” principle and showed a useful instrument for promoting interfaith dialogue.Keywords: interfaith dialogue, William Milne, Chinese study Bible, exposition, “Without Note or Comment” principle
Procedia PDF Downloads 863974 Selenium Content in Agricultural Soils and Wheat from the Balkan Peninsula
Authors: S. Krustev, V. Angelova, P. Zaprjanova
Abstract:
Selenium (Se) is an essential micro-nutrient for human and animals but it is highly toxic. Its organic compounds play an important role in biochemistry and nutrition of the cells. Concentration levels of this element in the different regions of the world vary considerably. This study aimed to compare the availability and levels of the Se in some rural areas of the Balkan Peninsula and relationship with the concentrations of other trace elements. For this purpose soil samples and wheat grains from different regions of Bulgaria, Serbia, Nord Macedonia, Romania, and Greece situated far from large industrial centers have been analyzed. The main methods for their determination were the atomic spectral techniques – atomic absorption and plasma atomic emission. As a result of this study, data on microelements levels from the main grain-producing regions of the Balkan Peninsula were determined and systematized. The presented results confirm the low levels of Se in this region: 0.222– 0.962 mg.kg-1 in soils and 0.001 - 0.005 mg.kg-1 in wheat grains and require measures to offset the effect of this deficiency.Keywords: agricultural soils, balkan peninsula, rural areas, selenium
Procedia PDF Downloads 1363973 Novel Self-Healing Eco-Friendly Coatings with Antifouling and Anticorrosion Properties for Maritime Applications
Authors: K. N. Kipreou, E. Efthmiadou, G. Kordas
Abstract:
Biofouling represents one of the most crucial problems in the present maritime industries when its control still challenges the researchers all over the world. The present work is referred to the synthesis and characterization CeMo and Cu2O nanocontainers by using a wide range of techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA) for marine applications. The above nanosystems will be loaded with active monomers and corrosion rendering healing ability to marine paints. The objective of this project is their ability for self-healing, self-polishing and finally for anti-corrosion activity. One of the driving forces for the exploration of CeMo, is the unique anticorrosive behavior, which will be confirmed by the electrochemistry methodology. It has be highlighted that the nanocontainers of Cu2O with the appropriate antibacterial inhibitor will improve the hydrophobicity and the morphology of the coating surfaces reducing the water friction. In summary, both novel nanoc will increase the lifetime of the paints releasing the antifouling agent in a control manner.Keywords: marinepaints, nanocontainer, antifouling, anticorrosion, copper, electrochemistry, coating, biofouling, inhibitors, copper oxide, coating, SEM
Procedia PDF Downloads 3423972 Reactive and Concurrency-Based Image Resource Management Module for iOS Applications
Authors: Shubham V. Kamdi
Abstract:
This paper aims to serve as an introduction to image resource caching techniques for iOS mobile applications. It will explain how developers can break down multiple image-downloading tasks concurrently using state-of-the-art iOS frameworks, namely Swift Concurrency and Combine. The paper will explain how developers can leverage SwiftUI to develop reactive view components and use declarative coding patterns. Developers will learn to bypass built-in image caching systems by curating the procedure to implement a swift-based LRU cache system. The paper will provide a full architectural overview of a system, helping readers understand how mobile applications are designed professionally. It will cover technical discussion, helping readers understand the low-level details of threads and how they can switch between them, as well as the significance of the main and background threads for requesting HTTP services via mobile applications.Keywords: main thread, background thread, reactive view components, declarative coding
Procedia PDF Downloads 333971 Cardiovascular Disease Data Analysis Using Machine Learning Models
Authors: Ranveet Saggu, Saad Bin Ahmed
Abstract:
Cardiovascular Disease (CVD) is the leading cause of death worldwide. One of its main manifestations, myocardial infarction (commonly known as a heart attack), occurs about 750,000 times a year, caused by insufficient blood flow to a portion of the heart muscle. A quick and accurate diagnosis of a heart attack or heart failure is crucial in the treatment of the patient. The aim of this research project is to improve the prediction of cardiovascular diseases by automating risk assessment using binary classifiers. The methodology includes Exploratory Data Analysis (EDA), which helps to obtain information about the dataset with the help of visualizations and metrics. Additionally, Feature Engineering techniques is employed to address missing values, outliers, feature extraction, and normalizing the dataset. Subsequently, various classification machine learning algorithms are trained, and their accuracy along with other metrics are evaluated to identify the most efficient model in terms of processing time and predictive performance.Keywords: cardiovascular disease, machine learning, deci- sion trees, logistic regression, k-nearest neighbor, xgboost, random forest, gradient boosting
Procedia PDF Downloads 143970 'Low Electronic Noise' Detector Technology in Computed Tomography
Authors: A. Ikhlef
Abstract:
Image noise in computed tomography, is mainly caused by the statistical noise, system noise reconstruction algorithm filters. Since last few years, low dose x-ray imaging became more and more desired and looked as a technical differentiating technology among CT manufacturers. In order to achieve this goal, several technologies and techniques are being investigated, including both hardware (integrated electronics and photon counting) and software (artificial intelligence and machine learning) based solutions. From a hardware point of view, electronic noise could indeed be a potential driver for low and ultra-low dose imaging. We demonstrated that the reduction or elimination of this term could lead to a reduction of dose without affecting image quality. Also, in this study, we will show that we can achieve this goal using conventional electronics (low cost and affordable technology), designed carefully and optimized for maximum detective quantum efficiency. We have conducted the tests using large imaging objects such as 30 cm water and 43 cm polyethylene phantoms. We compared the image quality with conventional imaging protocols with radiation as low as 10 mAs (<< 1 mGy). Clinical validation of such results has been performed as well.Keywords: computed tomography, electronic noise, scintillation detector, x-ray detector
Procedia PDF Downloads 1303969 Challenges in Employment and Adjustment of Academic Expatriates Based in Higher Education Institutions in the KwaZulu-Natal Province, South Africa
Authors: Thulile Ndou
Abstract:
The purpose of this study was to examine the challenges encountered in the mediation of attracting and recruiting academic expatriates who in turn encounter their own obstacles in adjusting into and settling in their host country, host academic institutions and host communities. The none-existence of literature on attraction, placement and management of academic expatriates in the South African context has been acknowledged. Moreover, Higher Education Institutions in South Africa have voiced concerns relating to delayed and prolonged recruitment and selection processes experienced in the employment process of academic expatriates. Once employed, academic expatriates should be supported and acquainted with the surroundings, the local communities as well as be assisted to establish working relations with colleagues in order to facilitate their adjustment and integration process. Hence, an employer should play a critical role in facilitating the adjustment of academic expatriates. This mixed methods study was located in four Higher Education Institutions based in the KwaZulu-Natal province, in South Africa. The explanatory sequential design approach was deployed in the study. The merits of this approach were chiefly that it employed both the quantitative and qualitative techniques of inquiry. Therefore, the study examined and interrogated its subject from a multiplicity of quantitative and qualitative vantage points, yielding a much more enriched and enriching illumination. Mixing the strengths of both the quantitative and the qualitative techniques delivered much more durable articulation and understanding of the subject. A 5-point Likert scale questionnaire was used to collect quantitative data relating to interaction adjustment, general adjustment and work adjustment from academic expatriates. One hundred and forty two (142) academic expatriates participated in the quantitative study. Qualitative data relating to employment process and support offered to academic expatriates was collected through a structured questionnaire and semi-structured interviews. A total of 48 respondents; including, line managers, human resources practitioners, and academic expatriates participated in the qualitative study. The Independent T-test, ANOVA and Descriptive Statistics were performed to analyse, interpret and make meaning of quantitative data and thematic analysis was used to analyse qualitative data. The qualitative results revealed that academic talent is sourced from outside the borders of the country because of the academic skills shortage in almost all academic disciplines especially in the disciplines associated with Science, Engineering and Accounting. However, delays in work permit application process made it difficult to finalise the recruitment and selection process on time. Furthermore, the quantitative results revealed that academic expatriates experience general and interaction adjustment challenges associated with the use of local language and understanding of local culture. However, female academic expatriates were found to be better adjusted in the two areas as compared to male academic expatriates. Moreover, significant mean differences were found between institutions suggesting that academic expatriates based in rural areas experienced adjustment challenges differently from the academic expatriates based in urban areas. The study gestured to the need for policy revisions in the area of immigration, human resources and academic administration.Keywords: academic expatriates, recruitment and selection, interaction and general adjustment, work adjustment
Procedia PDF Downloads 3113968 Designing and Evaluating Pedagogic Conversational Agents to Teach Children
Authors: Silvia Tamayo-Moreno, Diana Pérez-Marín
Abstract:
In this paper, the possibility of children studying by using an interactive learning technology called Pedagogic Conversational Agent is presented. The main benefit is that the agent is able to adapt the dialogue to each student and to provide automatic feedback. Moreover, according to Math teachers, in many cases students are unable to solve the problems even knowing the procedure to solve them, because they do not understand what they have to do. The hypothesis is that if students are helped to understand what they have to solve, they will be able to do it. Taken that into account, we have started the development of Dr. Roland, an agent to help students understand Math problems following a User-Centered Design methodology. The use of this methodology is proposed, for the first time, to design pedagogic agents to teach any subject from Secondary down to Pre-Primary education. The reason behind proposing a methodology is that while working on this project, we noticed the lack of literature to design and evaluate agents. To cover this gap, we describe how User-Centered Design can be applied, and which usability techniques can be applied to evaluate the agent.Keywords: pedagogic conversational agent, human-computer interaction, user-centered design, natural language interface
Procedia PDF Downloads 3273967 Generating Swarm Satellite Data Using Long Short-Term Memory and Generative Adversarial Networks for the Detection of Seismic Precursors
Authors: Yaxin Bi
Abstract:
Accurate prediction and understanding of the evolution mechanisms of earthquakes remain challenging in the fields of geology, geophysics, and seismology. This study leverages Long Short-Term Memory (LSTM) networks and Generative Adversarial Networks (GANs), a generative model tailored to time-series data, for generating synthetic time series data based on Swarm satellite data, which will be used for detecting seismic anomalies. LSTMs demonstrated commendable predictive performance in generating synthetic data across multiple countries. In contrast, the GAN models struggled to generate synthetic data, often producing non-informative values, although they were able to capture the data distribution of the time series. These findings highlight both the promise and challenges associated with applying deep learning techniques to generate synthetic data, underscoring the potential of deep learning in generating synthetic electromagnetic satellite data.Keywords: LSTM, GAN, earthquake, synthetic data, generative AI, seismic precursors
Procedia PDF Downloads 383966 A Hyperflexion Hallux Mallet Injury: A Case Report
Authors: Tan G. K. Y., Chew M. S. J., Sajeev S., Vellasamy A.
Abstract:
Injuries of the extensor hallucis longus (EHL) tendon are a rare phenomenon, with most occurring due to lacerations or penetrating injuries. Closed traumatic ruptures of the EHL are described as “Mallet injuries of the toe”. These can be classified as bony or soft mallet injuries depending on the presence or absence of a fracture at the insertion site of the EHL tendon in the distal phalanx. We present a case of a 33-year-old woman who presented with a hyperflexion injury to the left big toe with an inability to extend the big toe. Ultrasound showed a complete rupture of the EHL tendon with retraction proximal to the hallucal interphalangeal joint of the big toe. The patient was treated through transarticular pinning and repair using the Arthrex Mini Bio-Suture Tak with a 2-0 fibre wire. Six months postoperatively, the patient had symmetrical EHL power and full range of motion of the toe. The lessons to be drawn from this case report are that isolated hallux mallet injuries are rare and can be easily missed in the absence of penetrating wounds. Patients who have such injuries should be investigated early with the appropriate imaging techniques, such as ultrasound or MRI, and treated surgically.Keywords: hallux mallet, extensor hallucis longus tendon, extensor hallucis longus
Procedia PDF Downloads 823965 Microwave Assisted Extractive Desulfurization of Gas Oil Feedstock
Authors: Hamida Y. Mostafa, Ghada E. Khedr, Dina M. Abd El-Aty
Abstract:
Sulfur compound removal from petroleum fractions is a critical component of environmental protection demands. Solvent extraction, oxidative desulfurization, or hydro-treatment techniques have traditionally been used as the removal processes. While all methods were capable of eliminating sulfur compounds at moderate rates, they had some limitations. A major problem with these routes is their high running expenses, which are caused by their prolonged operation times and high energy consumption. Therefore, new methods for removing sulfur are still necessary. In the current study, a simple assisted desulfurization system for gas oil fraction has been successfully developed using acetonitrile and methanol as a solvent under microwave irradiation. The key variables affecting sulfur removal have been studied, including microwave power, irradiation time, and solvent to gas oil volume ratio. At the conclusion of the research that is being presented, promising results have been found. The results show that a microwave-assisted extractive desulfurization method had remove sulfur with a high degree of efficiency under the suitable conditions.Keywords: extractive desulfurization, microwave assisted extraction, petroleum fractions, acetonitrile and methanol
Procedia PDF Downloads 1103964 Regional Hydrological Extremes Frequency Analysis Based on Statistical and Hydrological Models
Authors: Hadush Kidane Meresa
Abstract:
The hydrological extremes frequency analysis is the foundation for the hydraulic engineering design, flood protection, drought management and water resources management and planning to utilize the available water resource to meet the desired objectives of different organizations and sectors in a country. This spatial variation of the statistical characteristics of the extreme flood and drought events are key practice for regional flood and drought analysis and mitigation management. For different hydro-climate of the regions, where the data set is short, scarcity, poor quality and insufficient, the regionalization methods are applied to transfer at-site data to a region. This study aims in regional high and low flow frequency analysis for Poland River Basins. Due to high frequent occurring of hydrological extremes in the region and rapid water resources development in this basin have caused serious concerns over the flood and drought magnitude and frequencies of the river in Poland. The magnitude and frequency result of high and low flows in the basin is needed for flood and drought planning, management and protection at present and future. Hydrological homogeneous high and low flow regions are formed by the cluster analysis of site characteristics, using the hierarchical and C- mean clustering and PCA method. Statistical tests for regional homogeneity are utilized, by Discordancy and Heterogeneity measure tests. In compliance with results of the tests, the region river basin has been divided into ten homogeneous regions. In this study, frequency analysis of high and low flows using AM for high flow and 7-day minimum low flow series is conducted using six statistical distributions. The use of L-moment and LL-moment method showed a homogeneous region over entire province with Generalized logistic (GLOG), Generalized extreme value (GEV), Pearson type III (P-III), Generalized Pareto (GPAR), Weibull (WEI) and Power (PR) distributions as the regional drought and flood frequency distributions. The 95% percentile and Flow duration curves of 1, 7, 10, 30 days have been plotted for 10 stations. However, the cluster analysis performed two regions in west and east of the province where L-moment and LL-moment method demonstrated the homogeneity of the regions and GLOG and Pearson Type III (PIII) distributions as regional frequency distributions for each region, respectively. The spatial variation and regional frequency distribution of flood and drought characteristics for 10 best catchment from the whole region was selected and beside the main variable (streamflow: high and low) we used variables which are more related to physiographic and drainage characteristics for identify and delineate homogeneous pools and to derive best regression models for ungauged sites. Those are mean annual rainfall, seasonal flow, average slope, NDVI, aspect, flow length, flow direction, maximum soil moisture, elevation, and drainage order. The regional high-flow or low-flow relationship among one streamflow characteristics with (AM or 7-day mean annual low flows) some basin characteristics is developed using Generalized Linear Mixed Model (GLMM) and Generalized Least Square (GLS) regression model, providing a simple and effective method for estimation of flood and drought of desired return periods for ungauged catchments.Keywords: flood , drought, frequency, magnitude, regionalization, stochastic, ungauged, Poland
Procedia PDF Downloads 6053963 A Comprehensive Survey of Artificial Intelligence and Machine Learning Approaches across Distinct Phases of Wildland Fire Management
Authors: Ursula Das, Manavjit Singh Dhindsa, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran
Abstract:
Wildland fires, also known as forest fires or wildfires, are exhibiting an alarming surge in frequency in recent times, further adding to its perennial global concern. Forest fires often lead to devastating consequences ranging from loss of healthy forest foliage and wildlife to substantial economic losses and the tragic loss of human lives. Despite the existence of substantial literature on the detection of active forest fires, numerous potential research avenues in forest fire management, such as preventative measures and ancillary effects of forest fires, remain largely underexplored. This paper undertakes a systematic review of these underexplored areas in forest fire research, meticulously categorizing them into distinct phases, namely pre-fire, during-fire, and post-fire stages. The pre-fire phase encompasses the assessment of fire risk, analysis of fuel properties, and other activities aimed at preventing or reducing the risk of forest fires. The during-fire phase includes activities aimed at reducing the impact of active forest fires, such as the detection and localization of active fires, optimization of wildfire suppression methods, and prediction of the behavior of active fires. The post-fire phase involves analyzing the impact of forest fires on various aspects, such as the extent of damage in forest areas, post-fire regeneration of forests, impact on wildlife, economic losses, and health impacts from byproducts produced during burning. A comprehensive understanding of the three stages is imperative for effective forest fire management and mitigation of the impact of forest fires on both ecological systems and human well-being. Artificial intelligence and machine learning (AI/ML) methods have garnered much attention in the cyber-physical systems domain in recent times leading to their adoption in decision-making in diverse applications including disaster management. This paper explores the current state of AI/ML applications for managing the activities in the aforementioned phases of forest fire. While conventional machine learning and deep learning methods have been extensively explored for the prevention, detection, and management of forest fires, a systematic classification of these methods into distinct AI research domains is conspicuously absent. This paper gives a comprehensive overview of the state of forest fire research across more recent and prominent AI/ML disciplines, including big data, classical machine learning, computer vision, explainable AI, generative AI, natural language processing, optimization algorithms, and time series forecasting. By providing a detailed overview of the potential areas of research and identifying the diverse ways AI/ML can be employed in forest fire research, this paper aims to serve as a roadmap for future investigations in this domain.Keywords: artificial intelligence, computer vision, deep learning, during-fire activities, forest fire management, machine learning, pre-fire activities, post-fire activities
Procedia PDF Downloads 773962 Continuous Functions Modeling with Artificial Neural Network: An Improvement Technique to Feed the Input-Output Mapping
Authors: A. Belayadi, A. Mougari, L. Ait-Gougam, F. Mekideche-Chafa
Abstract:
The artificial neural network is one of the interesting techniques that have been advantageously used to deal with modeling problems. In this study, the computing with artificial neural network (CANN) is proposed. The model is applied to modulate the information processing of one-dimensional task. We aim to integrate a new method which is based on a new coding approach of generating the input-output mapping. The latter is based on increasing the neuron unit in the last layer. Accordingly, to show the efficiency of the approach under study, a comparison is made between the proposed method of generating the input-output set and the conventional method. The results illustrated that the increasing of the neuron units, in the last layer, allows to find the optimal network’s parameters that fit with the mapping data. Moreover, it permits to decrease the training time, during the computation process, which avoids the use of computers with high memory usage.Keywords: neural network computing, continuous functions generating the input-output mapping, decreasing the training time, machines with big memories
Procedia PDF Downloads 2863961 Comparing the Experimental Thermal Conductivity Results Using Transient Methods
Authors: Sofia Mylona, Dale Hume
Abstract:
The main scope of this work is to compare the experimental thermal conductivity results of fluids between devices using transient techniques. A range of different liquids within a range of viscosities was measured with two or more devices, and the results were compared between the different methods and the reference equations wherever it was available. The liquids selected are the most commonly used in academic or industrial laboratories to calibrate their thermal conductivity instruments having a variety of thermal conductivity, viscosity, and density. Three transient methods (Transient Hot Wire, Transient Plane Source, and Transient Line Source) were compared for the thermal conductivity measurements taken by using them. These methods have been chosen as the most accurate and because they all follow the same idea; as a function of the logarithm of time, the thermal conductivity is calculated from the slope of a plot of sensor temperature rise. For all measurements, the selected temperature range was at the atmospheric level from 10 to 40 ° C. Our results are coming with an agreement with the objections of several scientists over the reliability of the results of a few popular devices. The observation was surprising that the device used in many laboratories for fast measurements of liquid thermal conductivity display deviations of 500 percent which can be very poorly reproduced.Keywords: accurate data, liquids, thermal conductivity, transient methods.
Procedia PDF Downloads 1643960 Effect of Air Gap Distance on the Structure of PVDF Hollow Fiber Membrane Contactors for Physical CO2 Absorption
Authors: J. Shiri, A. Mansourizadeh, F. Faghih, H. Vaez
Abstract:
In this study, porous polyvinylidene fluoride (PVDF) hollow fiber membranes are fabricated via a wet phase-inversion Process and used in the gas–liquid membrane contactor for physical CO2 absorption. Effect of different air gap on the structure and CO2 flux of the membrane was investigated. The hollow fibers were prepared using the wet spinning process using a dope solution containing PVDF/NMP/Licl (18%, 78%, 4%) at the extrusion rate of 4.5ml/min and air gaps of 0, 7, 15cm. Water was used as internal and external coagulants. Membranes were characterized using various techniques such as Field Emission Scanning Electron Microscopy (FESEM), Gas permeation test, Critical Water Entry Pressure (CEPw) to select the best membrane structure for Co2 absorption. The characterization results showed that the prepared membrane at which air gap possess small pore size with high surface porosity and wetting resistance, which are favorable for gas absorption application air gap increased, CEPw had a decrease, but the N2 permeation was decreased. Surface porosity and also Co2 absorption was increased.Keywords: porous PVDF hollow fiber membrane, CO2 absorption, phase inversion, air gap
Procedia PDF Downloads 3973959 A Comparative Study of Microstructure, Thermal and Mechanical Properties of A359 Composites Reinforced with SiC, Si3N4 and AlN Particles
Authors: Essam Shalaby, Alexander Churyumov, Malak Abou El-Khair, Atef Daoud
Abstract:
A comparative study of the thermal and mechanical behavior of squeezed A359 composites containing 5, 10 and 15 wt.% SiC, (SiC+ Si3N4) and AlN particulates was investigated. Stir followed by squeeze casting techniques are used to produce A359 composites. It was noticed that, A359/AlN composites have high thermal conductivity as compared to A359 alloy and even to A359/SiC or A359/(SiC+Si3N4) composites. Microstructures of the composites have shown homogeneous and even distribution of reinforcements within the matrix. Interfacial reactions between particles and matrix were investigated using X-ray diffraction and energy dispersive X-ray analysis. The presence of particles led not only to increase peak hardness of the composites but also to accelerate the aging kinetics. As compared with A359 matrix alloy, compression test of the composites has exhibited a significant increase in the yield and the ultimate compressive strengths with a relative reduction in the failure strain. Those light weight composites have a high potential to be used for automotive and aerospace applications.Keywords: metal-matrix composite, squeeze, microstructure, thermal conductivity, compressive properties
Procedia PDF Downloads 3853958 Objective Evaluation on Medical Image Compression Using Wavelet Transformation
Authors: Amhimmid Mohammed Saffour, Mustafa Mohamed Abdullah
Abstract:
The use of computers for handling image data in the healthcare is growing. However, the amount of data produced by modern image generating techniques is vast. This data might be a problem from a storage point of view or when the data is sent over a network. This paper using wavelet transform technique for medical images compression. MATLAB program, are designed to evaluate medical images storage and transmission time problem at Sebha Medical Center Libya. In this paper, three different Computed Tomography images which are abdomen, brain and chest have been selected and compressed using wavelet transform. Objective evaluation has been performed to measure the quality of the compressed images. For this evaluation, the results show that the Peak Signal to Noise Ratio (PSNR) which indicates the quality of the compressed image is ranging from (25.89db to 34.35db for abdomen images, 23.26db to 33.3db for brain images and 25.5db to 36.11db for chest images. These values shows that the compression ratio is nearly to 30:1 is acceptable.Keywords: medical image, Matlab, image compression, wavelet's, objective evaluation
Procedia PDF Downloads 2893957 The Study of Visible Light Active Bismuth Modified Nitrogen Doped Titanium Dioxide Photocatlysts
Authors: B. Benalioua, I. Benyamina, A. Bentouami, B. Boury
Abstract:
The objective of this study is based on the synthesis of a new photocatalyst based on TiO2 and its application in the photo-degradation of an acid dye under the visible light. The material obtained was characterized by different techniques like diffuse reflectance UV–Vis spectroscopy (DRS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic efficiency of the Bi, N co-doped TiO2 treated at 600°C for 1 h was tested on the Indigo Carmine under the irradiation of visible light and compared with that of the commercial titanium oxide TiO2-P25 (Degussa). The XRD characterization of the material Bi -N- TiO2 (600°C) revealed the presence of the anatase phase and the absence of the rutile phase in comparison of the TiO2 P25 diffractogram. Characterization by UV- visible diffuse reflection (DRS) material showed that the Bi-N-TiO2 exhibits redshift (move visible) relative to commercial titanium oxide TiO2-P25, this property promises a photocatalytic activity of Bi-N-TiO2 under visible light. Indeed, the efficiency of photocatalytic Bi-N-TiO2 as a visible light is shown by a complete discoloration of indigo carmine solution of 16 mg/L after 40 minutes, whereas with the P25-TiO2 discoloration is achieved after 90 minutes.Keywords: POA, heterogeneous photocatalysis, TiO2, co-doping
Procedia PDF Downloads 380