Search results for: impact models
13333 Examining How Employee Training and Development Contribute to the Favourable Results of a Business Entity: A Conceptual Analysis
Authors: Paul Saah, Charles Mbohwa, Nelson Sizwe Madonsela
Abstract:
Organisations that want to have a competitive edge over their rivals in their industry are becoming more and more aware of the value of staff training and development programs. This conceptual study's primary goal is to determine how staff development and training affect an organization's ability to succeed. A non-empirical methodological approach was chosen because this was a conceptual study, and a thorough literature analysis was conducted to determine the contribution of staff training and development to the performance of a commercial organization. Twenty of the 100 publications about employee training and development that were obtained from Google Scholar and regarded to be more pertinent were examined for this study. The impact of employee training and development in an organization was found and documented during the analyses. According to the study's findings, some of the major advantages of staff development and training include greater productivity, the discovery of employee potential, job satisfaction, the development of skills, less supervision, a decrease in turnover and absenteeism as well as less supervision and reduction of errors and accidents. The findings show that organisations that make significant investments in the training and development of their personnel are more likely to succeed than those who do not.Keywords: impact, employment, training and development, success, business, organization
Procedia PDF Downloads 7013332 Impact of Geomagnetic Variation over Sub-Auroral Ionospheric Region during High Solar Activity Year 2014
Authors: Arun Kumar Singh, Rupesh M. Das, Shailendra Saini
Abstract:
The present work is an attempt to evaluate the sub-auroral ionospheric behavior under changing space weather conditions especially during high solar activity year 2014. In view of this, the GPS TEC along with Ionosonde data over Indian permanent scientific base 'Maitri', Antarctica (70°46′00″ S, 11°43′56″ E) has been utilized. The results suggested that the nature of ionospheric responses to the geomagnetic disturbances mainly depended upon the status of high latitudinal electro-dynamic processes along with the season of occurrence. Fortunately, in this study, both negative and positive ionospheric impact to the geomagnetic disturbances has been observed in a single year but in different seasons. The study reveals that the combination of equator-ward plasma transportation along with ionospheric compositional changes causes a negative ionospheric impact during summer and equinox seasons. However, the combination of pole-ward contraction of the oval region along with particle precipitation may lead to exhibiting positive ionospheric response during the winter season. Other than this, some Ionosonde based new experimental evidence also provided clear evidence of particle precipitation deep up to the low altitudinal ionospheric heights, i.e., up to E-layer by the sudden and strong appearance of E-layer at 100 km altitudes. The sudden appearance of E-layer along with a decrease in F-layer electron density suggested the dominance of NO⁺ over O⁺ at a considered region under geomagnetic disturbed condition. The strengthening of E-layer is responsible for modification of auroral electrojet and field-aligned current system. The present study provided a good scientific insight on sub-auroral ionospheric to the changing space weather condition.Keywords: high latitude ionosphere, space weather, geomagnetic storms, sub-storm
Procedia PDF Downloads 17013331 Introduction of Mass Rapid Transit System and Its Impact on Para-Transit
Authors: Khalil Ahmad Kakar
Abstract:
In developing countries increasing the automobile and low capacity public transport (para-transit) which are creating congestion, pollution, noise, and traffic accident are the most critical quandary. These issues are under the analysis of assessors to break down the puzzle and propose sustainable urban public transport system. Kabul city is one of those urban areas that the inhabitants are suffering from lack of tolerable and friendly public transport system. The city is the most-populous and overcrowded with around 4.5 million population. The para-transit is the only dominant public transit system with a very poor level of services and low capacity vehicles (6-20 passengers). Therefore, this study after detailed investigations suggests bus rapid transit (BRT) system in Kabul City. It is aimed to mitigate the role of informal transport and decreases congestion. The research covers three parts. In the first part, aggregated travel demand modelling (four-step) is applied to determine the number of users for para-transit and assesses BRT network based on higher passenger demand for public transport mode. In the second part, state preference (SP) survey and binary logit model are exerted to figure out the utility of existing para-transit mode and planned BRT system. Finally, the impact of predicted BRT system on para-transit is evaluated. The extracted outcome based on high travel demand suggests 10 km network for the proposed BRT system, which is originated from the district tenth and it is ended at Kabul International Airport. As well as, the result from the disaggregate travel mode-choice model, based on SP and logit model indicates that the predicted mass rapid transit system has higher utility with the significant impact regarding the reduction of para-transit.Keywords: BRT, para-transit, travel demand modelling, Kabul City, logit model
Procedia PDF Downloads 18313330 The Impact of Air Pollution on Health and the Environment: The Case of Cement Beni-Saf, Western Algeria
Authors: N. Hachemi, I. Benmehdi, O. Hasnaoui
Abstract:
The air like water is an essential element for living beings. Each day, a man breathes about 20m3 of air. It originally consists of a set of gas whose presence and concentrations correspond to the needs of life. This study focuses on air pollution by smoke and dust emitted from the chimney of the cement works of Beni Saf, pathological and their impact on the environment. Dust of the cement plant are harmless to permissible levels for living organisms, but the two combined phenomena namely the release of dust and aridity of the climate, which severely marked area of Beni Saf; have contributed adverse effects in on human health and the degradation of vegetation cover and species especially weakened by environmental stress. The most visible impact is certainly the deposition of dust on the surrounding areas of the cement factory, and seriously affecting the aesthetics of the landscape. Health problems are more important inside and outside the factory. Among the diseases notable caused by the cement works are: deafness, heart disease, asthma and mental. The dust of the cement works is mainly composed of fine particles of limestone, clay, free lime, silicates and also loaded of the gases such as carbon dioxide gas CO2. The accumulation of this gas in the atmosphere is directly involved in the phenomenon of increasing of greenhouse effect. Some gases, for example, are directly toxic. They can change the climate, changing precipitation types and become a greater source of stress by drought, etc. The environment also suffers from air pollution indirectly; it is more precisely the acid rain. They are produced by the combustion of non-metals in air. Acid rain has consequences for contaminating the soil, weakening the flora, fauna and acidifies lakes. Finally, the pollution problems are multiple and specific dust. It can worsen and change, it has reached epidemic proportions quantitatively and qualitatively disturbing and unpredictable.Keywords: atmospheric pollution, cement, dust, environment
Procedia PDF Downloads 33713329 The Impact of Rising Architectural Façade in Improving Terms of the Physical Urban Ambience Inside the Free Space for Urban Fabric - the Street- Case Study the City of Biskra
Authors: Rami Qaoud, Alkama Djamal
Abstract:
When we ask about the impact of rising architectural façade in improving the terms physical urban ambiance inside the free space for urban fabric. Considered as bringing back life and culture values and civilization to these cities. And This will be the theme of this search. Where we have conducted the study about the relationship that connects the empty and full of in the urban fabric in terms of the density construction and the architectural elevation of its façade to street view. In this framework, we adopted in the methodology of this research the technical field experience. And according to three types of Street engineering(H≥2W, H=W, H≤0.5W). Where we conducted a field to raise the values of the physical ambiance according to three main axes of ambiance. The first axe 1 - Thermal ambiance. Where the temperature values were collected, relative humidity, wind speed, temperature of surfaces (the outer wall-ground). The second axe 2- Visual ambiance. Where we took the values of natural lighting levels during the daytime. The third axe 3- Acoustic ambiance . Where we take sound values during the entire day. That experience, which lasted for three consecutive days, and through six stations of measuring, where it has been one measuring station for each type of the street engineering and in two different way street. Through the obtained results and with the comparison of those values. We noticed the difference between this values and the three type of street engineering. Where the difference the calorific values of air equal 4 ° C , in terms of the visual ambiance the difference in the direct lighting natural periods amounted six hours between the three types of street engineering. As well in terms of sound ambience, registered a difference in values of up 15 (db) between the three types. This difference in values indicates The impact of rising architectural façade in improving the physical urban ambiance within the free field - street- for urban fabric.Keywords: street, physical urban ambience, rising architectural façade, urban fabric
Procedia PDF Downloads 28913328 Temporal Migration and Community Development in Rural Indonesia
Authors: Gunawan Prayitno, Kakuya Matshusima, Kiyoshi Kobayashi
Abstract:
Indonesia’s rural regions are characterized by wide-spread poverty, under-employment, and surplus of low-skilled labor. The aim of this paper is to empirically prove the effect of social ties (strong and weak tie) as social capital construct on households’ migration decision in the case of developing country (Indonesia). The methodology incorporated indicators of observe variables (four demographic attributes data: income, occupation, education, and family members) and indicators of latent variables (ties to neighbors, ties to community and sense of place) provided by responses to survey questions to aid in estimating the model. Using structural equation model that we employed in Mplus program, the result of our study shows that ties to community positively have a significant impact to the decision of respondents (migrate or not). Besides, education as observed variable directly influences the migration decisions. It seems that higher level of education have impact on migration decision. Our current model so far could explain the relation between social capital and migration decision choice.Keywords: migration, ties to community, ties to neighbors, education
Procedia PDF Downloads 32313327 Intended-Actual First Asking/Offer Price Discrepancies and Their Impact on Negotiation Behaviour and Outcomes
Authors: Liuyao Chai, Colin Clark
Abstract:
Analysis of 574 participants in a simulated two-person distributive negotiation revealed that the first price 245 (42.7%) of these participants actually asked/offered for the item under negotiation (a used car) differed from the first price they previously stated they intended to ask/offer during their negotiation. This discrepancy between a negotiator’s intended first asking/offer price and his/her actual first asking/offer price had a significant and economically consequential impact on both the course and the outcomes of the negotiations studied. Participants whose actual first price remained the same as their intended first price tended to secure better negotiation outcomes. Moreover, participants who changed their intended first price tended to obtain relatively lower outcomes regardless of whether their modified first announced price had created a negotiating position that was ‘stronger’ or ‘weaker’ than if they had opened with their intended first price. Subsequent investigation of over twenty negotiation behaviours and pre-negotiation perceptual variables within this dataset indicated that the three types of first price announcers—i.e. intended first asking/offer price ‘weakeners’, ‘maintainers’ and ‘strengtheners’— comprised persons who tended to have significantly different pre-negotiation perceptions and behaved in systematically different ways during their negotiation. Typically, the most negative, outcome-compromising consequences of changing, weakening or strengthening an intended first price occurred at the very beginning of a negotiation when participants exchanged their actual first asking/offer prices.Keywords: business communication, negotiation, persuasion, intended first asking/offer prices, bargaining
Procedia PDF Downloads 37113326 Unlocking Green Hydrogen Potential: A Machine Learning-Based Assessment
Authors: Said Alshukri, Mazhar Hussain Malik
Abstract:
Green hydrogen is hydrogen produced using renewable energy sources. In the last few years, Oman aimed to reduce its dependency on fossil fuels. Recently, the hydrogen economy has become a global trend, and many countries have started to investigate the feasibility of implementing this sector. Oman created an alliance to establish the policy and rules for this sector. With motivation coming from both global and local interest in green hydrogen, this paper investigates the potential of producing hydrogen from wind and solar energies in three different locations in Oman, namely Duqm, Salalah, and Sohar. By using machine learning-based software “WEKA” and local metrological data, the project was designed to figure out which location has the highest wind and solar energy potential. First, various supervised models were tested to obtain their prediction accuracy, and it was found that the Random Forest (RF) model has the best prediction performance. The RF model was applied to 2021 metrological data for each location, and the results indicated that Duqm has the highest wind and solar energy potential. The system of one wind turbine in Duqm can produce 8335 MWh/year, which could be utilized in the water electrolysis process to produce 88847 kg of hydrogen mass, while a solar system consisting of 2820 solar cells is estimated to produce 1666.223 MWh/ year which is capable of producing 177591 kg of hydrogen mass.Keywords: green hydrogen, machine learning, wind and solar energies, WEKA, supervised models, random forest
Procedia PDF Downloads 7913325 Linking Soil Spectral Behavior and Moisture Content for Soil Moisture Content Retrieval at Field Scale
Authors: Yonwaba Atyosi, Moses Cho, Abel Ramoelo, Nobuhle Majozi, Cecilia Masemola, Yoliswa Mkhize
Abstract:
Spectroscopy has been widely used to understand the hyperspectral remote sensing of soils. Accurate and efficient measurement of soil moisture is essential for precision agriculture. The aim of this study was to understand the spectral behavior of soil at different soil water content levels and identify the significant spectral bands for soil moisture content retrieval at field-scale. The study consisted of 60 soil samples from a maize farm, divided into four different treatments representing different moisture levels. Spectral signatures were measured for each sample in laboratory under artificial light using an Analytical Spectral Device (ASD) spectrometer, covering a wavelength range from 350 nm to 2500 nm, with a spectral resolution of 1 nm. The results showed that the absorption features at 1450 nm, 1900 nm, and 2200 nm were particularly sensitive to soil moisture content and exhibited strong correlations with the water content levels. Continuum removal was developed in the R programming language to enhance the absorption features of soil moisture and to precisely understand its spectral behavior at different water content levels. Statistical analysis using partial least squares regression (PLSR) models were performed to quantify the correlation between the spectral bands and soil moisture content. This study provides insights into the spectral behavior of soil at different water content levels and identifies the significant spectral bands for soil moisture content retrieval. The findings highlight the potential of spectroscopy for non-destructive and rapid soil moisture measurement, which can be applied to various fields such as precision agriculture, hydrology, and environmental monitoring. However, it is important to note that the spectral behavior of soil can be influenced by various factors such as soil type, texture, and organic matter content, and caution should be taken when applying the results to other soil systems. The results of this study showed a good agreement between measured and predicted values of Soil Moisture Content with high R2 and low root mean square error (RMSE) values. Model validation using independent data was satisfactory for all the studied soil samples. The results has significant implications for developing high-resolution and precise field-scale soil moisture retrieval models. These models can be used to understand the spatial and temporal variation of soil moisture content in agricultural fields, which is essential for managing irrigation and optimizing crop yield.Keywords: soil moisture content retrieval, precision agriculture, continuum removal, remote sensing, machine learning, spectroscopy
Procedia PDF Downloads 9913324 Primary Analysis of a Randomized Controlled Trial of Topical Analgesia Post Haemorrhoidectomy
Authors: James Jin, Weisi Xia, Runzhe Gao, Alain Vandal, Darren Svirkis, Andrew Hill
Abstract:
Background: Post-haemorrhoidectomy pain is concerned by patients/clinicians. Minimizing the postoperation pain is highly interested clinically. Combinations of topical cream targeting three hypothesised post-haemorrhoidectomy pain mechanisms were developed and their effectiveness were evaluated. Specifically, a multi-centred double-blinded randomized clinical trial (RCT) was conducted in adults undergoing excisional haemorrhoidectomy. The primary analysis was conveyed on the data collected to evaluate the effectiveness of the combinations of topical cream targeting three hypothesized pain mechanisms after the operations. Methods: 192 patients were randomly allocated to 4 arms (each arm has 48 patients), and each arm was provided with pain cream 10% metronidazole (M), M and 2% diltiazem (MD), M with 4% lidocaine (ML), or MDL, respectively. Patients were instructed to apply topical treatments three times a day for 7 days, and record outcomes for 14 days after the operations. The primary outcome was VAS pain on day 4. Covariates and models were selected in the blind review stage. Multiple imputations were applied for the missingness. LMER, GLMER models together with natural splines were applied. Sandwich estimators and Wald statistics were used. P-values < 0.05 were considered as significant. Conclusions: The addition of topical lidocaine or diltiazem to metronidazole does not add any benefit. ML had significantly better pain and recovery scores than combination MDL. Multimodal topical analgesia with ML after haemorrhoidectomy could be considered for further evaluation. Further trials considering only 3 arms (M, ML, MD) might be worth exploring.Keywords: RCT, primary analysis, multiple imputation, pain scores, haemorrhoidectomy, analgesia, lmer
Procedia PDF Downloads 12013323 Transverse Momentum Dependent Factorization and Evolution for Spin Physics
Authors: Bipin Popat Sonawane
Abstract:
After 1988 Electron muon Collaboration (EMC) announcement of measurement of spin dependent structure function, it has been found that it has become a need to understand spin structure of a hadron. In the study of three-dimensional spin structure of a proton, we need to understand the foundation of quantum field theory in terms of electro-weak and strong theories using rigorous mathematical theories and models. In the process of understanding the inner dynamical stricture of proton we need understand the mathematical formalism in perturbative quantum chromodynamics (pQCD). In QCD processes like proton-proton collision at high energy we calculate cross section using conventional collinear factorization schemes. In this calculations, parton distribution functions (PDFs) and fragmentation function are used which provide the information about probability density of finding quarks and gluons ( partons) inside the proton and probability density of finding final hadronic state from initial partons. In transverse momentum dependent (TMD) PDFs and FFs, collectively called as TMDs, take an account for intrinsic transverse motion of partons. The TMD factorization in the calculation of cross sections provide a scheme of hadronic and partonic states in the given QCD process. In this study we review Transverse Momentum Dependent (TMD) factorization scheme using Collins-Soper-Sterman (CSS) Formalism. CSS formalism considers the transverse momentum dependence of the partons, in this formalism the cross section is written as a Fourier transform over a transverse position variable which has physical interpretation as impact parameter. Along with this we compare this formalism with improved CSS formalism. In this work we study the TMD evolution schemes and their comparison with other schemes. This would provide description in the process of measurement of transverse single spin asymmetry (TSSA) in hadro-production and electro-production of J/psi meson at RHIC, LHC, ILC energy scales. This would surely help us to understand J/psi production mechanism which is an appropriate test of QCD. Procedia PDF Downloads 6913322 Deep Brain Stimulation and Motor Cortex Stimulation for Post-Stroke Pain: A Systematic Review and Meta-Analysis
Authors: Siddarth Kannan
Abstract:
Objectives: Deep Brain Stimulation (DBS) and Motor Cortex stimulation (MCS) are innovative interventions in order to treat various neuropathic pain disorders such as post-stroke pain. While each treatment has a varying degree of success in managing pain, comparative analysis has not yet been performed, and the success rates of these techniques using validated, objective pain scores have not been synthesised. The aim of this study was to compare the effect of pain relief offered by MCS and DBS on patients with post-stroke pain and to assess if either of these procedures offered better results. Methods: A systematic review and meta-analysis were conducted in accordance with PRISMA guidelines (PROSPEROID CRD42021277542). Three databases were searched, and articles published from 2000 to June 2023 were included (last search date 25 June 2023). Meta-analysis was performed using random effects models. We evaluated the performance of DBS or MCS by assessing studies that reported pain relief using the Visual Analogue Scale (VAS). Data analysis of descriptive statistics was performed using SPSS (Version 27; IBM; Armonk; NY; USA). R statistics (Rstudio Version 4.0.1) was used to perform meta-analysis. Results: Of the 478 articles identified, 27 were included in the analysis (232 patients- 117 DBS & 115 MCS). The pooled number of patients who improved after DBS was 0.68 (95% CI, 0.57-0.77, I2=36%). The pooled number of patients who improved after MCS was 0.72 (95% CI, 0.62-0.80, I2=59%). Further sensitivity analysis was done to include only studies with a minimum of 5 patients in order to assess if there was any impact on the overall results. Nine studies each for DBS and MCS met these criteria. There seemed to be no significant difference in results. Conclusions: The use of surgical interventions such as DBS and MCS is an upcoming field for the treatment of post-stroke pain, with limited studies exploring and comparing these two techniques. While our study shows that MCS might be a slightly better treatment option, further research would need to be done in order to determine the appropriate surgical intervention for post-stroke pain.Keywords: post-stroke pain, deep brain stimulation, motor cortex stimulation, pain relief
Procedia PDF Downloads 13913321 Unveiling Comorbidities in Irritable Bowel Syndrome: A UK BioBank Study utilizing Supervised Machine Learning
Authors: Uswah Ahmad Khan, Muhammad Moazam Fraz, Humayoon Shafique Satti, Qasim Aziz
Abstract:
Approximately 10-14% of the global population experiences a functional disorder known as irritable bowel syndrome (IBS). The disorder is defined by persistent abdominal pain and an irregular bowel pattern. IBS significantly impairs work productivity and disrupts patients' daily lives and activities. Although IBS is widespread, there is still an incomplete understanding of its underlying pathophysiology. This study aims to help characterize the phenotype of IBS patients by differentiating the comorbidities found in IBS patients from those in non-IBS patients using machine learning algorithms. In this study, we extracted samples coding for IBS from the UK BioBank cohort and randomly selected patients without a code for IBS to create a total sample size of 18,000. We selected the codes for comorbidities of these cases from 2 years before and after their IBS diagnosis and compared them to the comorbidities in the non-IBS cohort. Machine learning models, including Decision Trees, Gradient Boosting, Support Vector Machine (SVM), AdaBoost, Logistic Regression, and XGBoost, were employed to assess their accuracy in predicting IBS. The most accurate model was then chosen to identify the features associated with IBS. In our case, we used XGBoost feature importance as a feature selection method. We applied different models to the top 10% of features, which numbered 50. Gradient Boosting, Logistic Regression and XGBoost algorithms yielded a diagnosis of IBS with an optimal accuracy of 71.08%, 71.427%, and 71.53%, respectively. Among the comorbidities most closely associated with IBS included gut diseases (Haemorrhoids, diverticular diseases), atopic conditions(asthma), and psychiatric comorbidities (depressive episodes or disorder, anxiety). This finding emphasizes the need for a comprehensive approach when evaluating the phenotype of IBS, suggesting the possibility of identifying new subsets of IBS rather than relying solely on the conventional classification based on stool type. Additionally, our study demonstrates the potential of machine learning algorithms in predicting the development of IBS based on comorbidities, which may enhance diagnosis and facilitate better management of modifiable risk factors for IBS. Further research is necessary to confirm our findings and establish cause and effect. Alternative feature selection methods and even larger and more diverse datasets may lead to more accurate classification models. Despite these limitations, our findings highlight the effectiveness of Logistic Regression and XGBoost in predicting IBS diagnosis.Keywords: comorbidities, disease association, irritable bowel syndrome (IBS), predictive analytics
Procedia PDF Downloads 11913320 Dynamic Process Model for Designing Smart Spaces Based on Context-Awareness and Computational Methods Principles
Authors: Heba M. Jahin, Ali F. Bakr, Zeyad T. Elsayad
Abstract:
As smart spaces can be defined as any working environment which integrates embedded computers, information appliances and multi-modal sensors to remain focused on the interaction between the users, their activity, and their behavior in the space; hence, smart space must be aware of their contexts and automatically adapt to their changing context-awareness, by interacting with their physical environment through natural and multimodal interfaces. Also, by serving the information used proactively. This paper suggests a dynamic framework through the architectural design process of the space based on the principles of computational methods and context-awareness principles to help in creating a field of changes and modifications. It generates possibilities, concerns about the physical, structural and user contexts. This framework is concerned with five main processes: gathering and analyzing data to generate smart design scenarios, parameters, and attributes; which will be transformed by coding into four types of models. Furthmore, connecting those models together in the interaction model which will represent the context-awareness system. Then, transforming that model into a virtual and ambient environment which represents the physical and real environments, to act as a linkage phase between the users and their activities taking place in that smart space . Finally, the feedback phase from users of that environment to be sure that the design of that smart space fulfill their needs. Therefore, the generated design process will help in designing smarts spaces that can be adapted and controlled to answer the users’ defined goals, needs, and activity.Keywords: computational methods, context-awareness, design process, smart spaces
Procedia PDF Downloads 33113319 The Relationship of Lean Management Principles with Lean Maturity Levels: Multiple Case Study in Manufacturing Companies
Authors: Alexandre D. Ferraz, Dario H. Alliprandini, Mauro Sampaio
Abstract:
Companies and other institutions are constantly seeking better organizational performance and greater competitiveness. In order to fulfill this purpose, there are many tools, methodologies and models for increasing performance. However, the Lean Management approach seems to be the most effective in terms of achieving a significant improvement in productivity relatively quickly. Although Lean tools are relatively easy to understand and implement in different contexts, many organizations are not able to transform themselves into 'Lean companies'. Most of the efforts in its implementation have shown single benefits, failing to achieve the desired impact on the performance of the overall enterprise system. There is also a growing perception of the importance of management in Lean transformation, but few studies have empirically investigated and described the 'Lean Management'. In order to understand more clearly the ideas that guide Lean Management and its influence on the maturity level of the production system, the objective of this research is analyze the relationship between the Lean Management principles and the Lean maturity level in the organizations. The research also analyzes the principles of Lean Management and its relationship with the 'Lean culture' and the results obtained. The research was developed using the case study methodology. Three manufacturing units of a German multinational company from industrial automation segment, located in different countries were studied, in order to have a better comparison between the practices and the level of maturity in the implementation. The primary source of information was the application of a research questionnaire based on the theoretical review. The research showed that higher the level of Lean Management principles, higher are the Lean maturity level, the Lean culture level, and the level of Lean results obtained in the organization. The research also showed that factors such as time for application of Lean concepts and company size were not determinant for the level of Lean Management principles and, consequently, for the level of Lean maturity in the organization. The characteristics of the production system showed much more influence in different evaluated aspects. The present research also left recommendations for the managers of the plants analyzed and suggestions for future research.Keywords: lean management, lean principles, lean maturity level, lean manufacturing
Procedia PDF Downloads 14413318 The Impact of Nonverbal Communication Between Restaurant Staff and Customers on Customer Attraction in Restaurants: A Case Study of Food Courts in Tehran City
Authors: Mahshid Asadollahi, Mohammad Akbari Asl
Abstract:
The restaurant industry is highly competitive, and restaurants are constantly looking for ways to attract new customers and retain their existing ones. Nonverbal communication is an important factor in creating a positive customer experience and can play a significant role in attracting customers to restaurants. Nonverbal communication can include body language, facial expressions, tone of voice, and physical proximity, among other things. The present study aimed to investigate the impact of nonverbal communication between restaurant employees and customers on attracting customers in food courts in Tehran. The research method was descriptive-correlational, and the statistical population of this study included all customers of food court restaurants in Tehran, which was about 30 restaurants. The research sample was selected through probability sampling, and 440 customers completed emotional response, customer satisfaction, and nonverbal communication questionnaires in person. The data obtained were analyzed using multiple regression analysis. The results showed that vocal language, employee proximity, physical appearance, and speech movements, as components of nonverbal communication of restaurant employees, had an impact on attracting customers. Additionally, positive and negative emotions of customers have a significant relationship with customer attraction in Food Court restaurants. The study shows that various nonverbal communication factors can play a significant role in attracting customers, and that positive and negative customer emotions can affect customer satisfaction. Therefore, restaurant owners and managers should pay attention to nonverbal communication and train their employees accordingly to create a positive and welcoming atmosphere for customers.Keywords: verbal language, proximity of employees, physical appearance, speech gestures, nonverbal communication, customer emotions, customer attraction
Procedia PDF Downloads 9913317 Impact of Massive Weight Loss Body Contouring Surgery in the Patient’s Quality of Life
Authors: Maria Albuquerque, Miguel Matias, Ângelo Sá, Juliana Sousa, Maria Manuel Mouzinho
Abstract:
Obesity is a frequent disease in Portugal. The surgical treatment is very effective and has an indication when there is a failure of the medical treatment. Although massive weight loss is associated with considerable health gains, these patients are characterized by a variable degree of dermolipodistrophy. In some cases, there is even the development of physical symptoms such as intertriginous, and some degree of psychological distress is present. In almost all cases, a desire for a better body contour, which inhibits some aspects of social life, is a fact. A prospective study was made to access the impact of body contouring surgery in the quality of life of patients who underwent a massive weight lost correction surgical procedure at Centro Hospitalar de Lisboa Central between January 2020 and December 2021. The patients were submitted to the Body Q subjective questionnaire adapted for the Portuguese language and accessed for the following categories: Anguish with Appearance, Contempt with Body Image, Satisfaction with the Abdomen, and Overall Satisfaction with the Body. The questionnaire was repeated at the 6 months mark. A total of 80 patients were sampled. The sex distribution was 79 female and 1 male. The median BMI index before surgery was inferior to 28%. The pre operatory questionnaire showed high scores for Anguish with Appearance and low scores for the body image self-evaluation. Overall, there was an improvement of at least 50% in all the evaluated scores. Additionally, a correlation was found between abdominoplasty and the contempt with body image and satisfaction with the abdomen (p-value <0.05). Massive weight loss is associated with important body deformities that have a significant impact on the patient’s personal and social life. Body contouring surgery is then vital for these patients as it implicates major aesthetic and functional benefits.Keywords: abdominoplasty, cruroplasty, obesity, massive weight loss
Procedia PDF Downloads 15813316 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities
Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun
Abstract:
The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids
Procedia PDF Downloads 6413315 Load Balancing Technique for Energy - Efficiency in Cloud Computing
Authors: Rani Danavath, V. B. Narsimha
Abstract:
Cloud computing is emerging as a new paradigm of large scale distributed computing. Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., three service models, and four deployment networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. This cloud model is composed of five essential characteristics models. Load balancing is one of the main challenges in cloud computing, which is required to distribute the dynamic workload across multiple nodes, to ensure that no single node is overloaded. It helps in optimal utilization of resources, enhancing the performance of the system. The goal of the load balancing is to minimize the resource consumption and carbon emission rate, that is the direct need of cloud computing. This determined the need of new metrics energy consumption and carbon emission for energy-efficiency load balancing techniques in cloud computing. Existing load balancing techniques mainly focuses on reducing overhead, services, response time and improving performance etc. In this paper we introduced a Technique for energy-efficiency, but none of the techniques have considered the energy consumption and carbon emission. Therefore, our proposed work will go towards energy – efficiency. So this energy-efficiency load balancing technique can be used to improve the performance of cloud computing by balancing the workload across all the nodes in the cloud with the minimum resource utilization, in turn, reducing energy consumption, and carbon emission to an extent, which will help to achieve green computing.Keywords: cloud computing, distributed computing, energy efficiency, green computing, load balancing, energy consumption, carbon emission
Procedia PDF Downloads 44913314 Influencer Endorsement: Consumer Purchase Intention in Social Media Marketing
Authors: Izian Idris, Melissa Ha, Mikkay Wong
Abstract:
Social media marketing, including influencer marketing, is an ongoing phenomenon, and most companies as well as industries, are finding it crucial to implement social media marketing in their marketing strategies. However, social media influencer marketing still needs to be explored, and further research on this area needs to be carried out to fully understand the importance of social media influencer marketing in impacting consumer purchase decisions. Influencer endorsement has become a trend to grab users’ attention these days. Thus, the aim of this research paper is to explore the attributes of social media influencers/influencer as the endorser that impact consumer purchase intentions. The attributes that will be investigated include attitude homophily, physical attractiveness, and social attractiveness. Following this, the elaboration likelihood model from the theory of persuasion is implemented in this research to further examine the influence of social media influencer attributes on consumer purchase intentions. This study will be able to help marketers, businesses, and researchers understand the attributes of social media influencers as endorsers that will impact consumer purchase intentions and allow businesses to enhance their strategies to better cater to their target market.Keywords: influencer, endorsement, consumer purchase, social media
Procedia PDF Downloads 8413313 CO2 Mitigation by Promoting Solar Heating in Housing Sector
Authors: F. Sahnoune, M. Madani, M. Zelmat, M. Belhamel
Abstract:
Home heating and generation of domestic hot water are nowadays important items of expenditure and energy consumption. These are also a major source of pollution and emission of greenhouse gases (GHG). Algeria, like other countries of the southern shore of the Mediterranean has an enormous solar potential (more than 3000 hours of sunshine/year). This potential can be exploited in reducing GHG emissions and contribute to climate change adaptation. This work presents the environmental impact of introduction of solar heating in an individual house in Algerian climate conditions. For this purpose, we determined energy needs for heating and domestic hot water taking into account the thermic heat losses of the no isolated house. Based on these needs, sizing of the solar system was carried out. To compare the performances of solar and classic systems, we conducted also an economic evaluation what is very important for countries like Algeria where conventional energy is subsidized. The study clearly show that environmental and economic benefits are in favor of solar heating development in particular in countries where the thermal insulation of the building and energy efficiency are poorly developed.Keywords: CO2 mitigation, solar energy, solar heating, environmental impact
Procedia PDF Downloads 39913312 Prevalence of Sexually Transmitted Infections in Pregnancy, Preterm Birth, Low Birthweight, and the Importance of Prenatal Care: Data from the 2020 United States Birth Certificate
Authors: Anthony J. Kondracki, Bonzo Reddick, Jennifer L. Barkin
Abstract:
Background: Many pregnancies in the United States are affected each year with the most common sexually transmitted infections (STIs), including Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG), and Treponema pallidum (TP, syphilis), and the rate of congenital syphilis has reached a 20-year high. We sought to estimate the prevalence of CT, NG, and TP in pregnancy and the risk of preterm birth (PTB) (<37 weeks gestation) and low birthweight (LBW) (<2500g) deliveries according to utilization of prenatal care (PNC) during the COVID-19 pandemic. Methods: This study was based on the 2020 National Center for Health Statistics (NCHS) Natality File restricted to singleton births (N=3,512,858). We estimated the prevalence of CT, NG, TP, PTBand LBW across timing and the number of prenatal care (PNC) visits attended. In multivariable logistic regression models, adjusted odds ratios of PTB and LBW were assessed according to STIs and PNC status. E-values, based on effect size estimates and the lower bound of the 95% confidence intervals (CIs) of the association, examined the potential impact of unmeasured confounding. Results: CT (1.8%) was most prevalent in pregnancy, followed by NG (0.3%) and TP (0.1%). The strongest predictors of PTB and LBW were maternal NG (12.2% and 12.1%, respectively), late initiation/no PNC (8.5% and 7.6%, respectively), and ≤10 prenatal visits (13.1% and 10.3%, respectively). The odds of PTB and LBW were 2.5- to 3-fold greater for each STI in women who received ≤10 compared to >10 prenatal visits. E-values demonstrated the minimum strength of potential unmeasured confounding necessary to explain away observed associations. Conclusions: Timely initiation and receipt of recommended number of prenatal visits benefits screening and treatment of all women for STIs, including NG to substantially reduce infant morbidity and mortality related to PTB and LBW among infants born during the COVID-19 pandemic.Keywords: COVID-19 pandemic, sexually transmitted infections, preterm birth, low birthweight, prenatal care
Procedia PDF Downloads 15213311 The Improvement of Turbulent Heat Flux Parameterizations in Tropical GCMs Simulations Using Low Wind Speed Excess Resistance Parameter
Authors: M. O. Adeniyi, R. T. Akinnubi
Abstract:
The parameterization of turbulent heat fluxes is needed for modeling land-atmosphere interactions in Global Climate Models (GCMs). However, current GCMs still have difficulties with producing reliable turbulent heat fluxes for humid tropical regions, which may be due to inadequate parameterization of the roughness lengths for momentum (z0m) and heat (z0h) transfer. These roughness lengths are usually expressed in term of excess resistance factor (κB^(-1)), and this factor is used to account for different resistances for momentum and heat transfers. In this paper, a more appropriate excess resistance factor (〖 κB〗^(-1)) suitable for low wind speed condition was developed and incorporated into the aerodynamic resistance approach (ARA) in the GCMs. Also, the performance of various standard GCMs κB^(-1) schemes developed for high wind speed conditions were assessed. Based on the in-situ surface heat fluxes and profile measurements of wind speed and temperature from Nigeria Micrometeorological Experimental site (NIMEX), new κB^(-1) was derived through application of the Monin–Obukhov similarity theory and Brutsaert theoretical model for heat transfer. Turbulent flux parameterizations with this new formula provides better estimates of heat fluxes when compared with others estimated using existing GCMs κB^(-1) schemes. The derived κB^(-1) MBE and RMSE in the parameterized QH ranged from -1.15 to – 5.10 Wm-2 and 10.01 to 23.47 Wm-2, while that of QE ranged from - 8.02 to 6.11 Wm-2 and 14.01 to 18.11 Wm-2 respectively. The derived 〖 κB〗^(-1) gave better estimates of QH than QE during daytime. The derived 〖 κB〗^(-1)=6.66〖 Re〗_*^0.02-5.47, where Re_* is the Reynolds number. The derived κB^(-1) scheme which corrects a well documented large overestimation of turbulent heat fluxes is therefore, recommended for most regional models within the tropic where low wind speed is prevalent.Keywords: humid, tropic, excess resistance factor, overestimation, turbulent heat fluxes
Procedia PDF Downloads 20213310 The System Dynamics Research of China-Africa Trade, Investment and Economic Growth
Authors: Emma Serwaa Obobisaa, Haibo Chen
Abstract:
International trade and outward foreign direct investment are important factors which are generally recognized in the economic growth and development. Though several scholars have struggled to reveal the influence of trade and outward foreign direct investment (FDI) on economic growth, most studies utilized common econometric models such as vector autoregression and aggregated the variables, which for the most part prompts, however, contradictory and mixed results. Thus, there is an exigent need for the precise study of the trade and FDI effect of economic growth while applying strong econometric models and disaggregating the variables into its separate individual variables to explicate their respective effects on economic growth. This will guarantee the provision of policies and strategies that are geared towards individual variables to ensure sustainable development and growth. This study, therefore, seeks to examine the causal effect of China-Africa trade and Outward Foreign Direct Investment on the economic growth of Africa using a robust and recent econometric approach such as system dynamics model. Our study impanels and tests an ensemble of a group of vital variables predominant in recent studies on trade-FDI-economic growth causality: Foreign direct ınvestment, international trade and economic growth. Our results showed that the system dynamics method provides accurate statistical inference regarding the direction of the causality among the variables than the conventional method such as OLS and Granger Causality predominantly used in the literature as it is more robust and provides accurate, critical values.Keywords: economic growth, outward foreign direct investment, system dynamics model, international trade
Procedia PDF Downloads 10813309 The Impact of E-Commerce on the Physical Space of Traditional Retail System
Authors: Sumayya S.
Abstract:
Making cities adaptive and inclusive is one among the inherent goal and challenge for contemporary cities. This is a serious concern when the urban transformations occur in varying magnitude due to visible and invisible factors. One type of visibly invisible factor is ecommerce and its expanding operation that is understood to cause changes to the conventional spatial structure positively and negatively. With the continued growth in e-commerce activities and its future potential, market analysts, media, and even retailers have questioned the importance of a future presence of traditional Brick-and-mortar stores in cities as a critical element, with some even referring to the repeated announcement of the closure of some store chains as the end of the online shopping era. Essentially this raises the question of how adaptive and inclusive the cities are to the dynamics of transformative changes that are often unseen. People have become more comfortable with seating inside and door delivery systems, and this increased change in usage of public spaces, especially the commercial corridors. Through this research helped in presetting a new approach for planning and designing commercial activities centers and also presents the impact of ecommerce on the urban fabric, such as division and fragmentation of space, showroom syndrome, reconceptualization of space, etc., in a critical way. The changes are understood by analyzing the e-commerce logistic process. Based on the inferences reach at the conclusion for the need of an integrated approach in the field of planning and designing of public spaces for the sustainable omnichannel retailing. This study was carried out with the following objectives Monitoring the impact of e commerce on the traditional shopping space. Explore the new challenges and opportunities faced by the urban form. Explore how adaptive and inclusive our cities are to the dynamics of transformative changes caused by ecommerce.Keywords: E-commerce, shopping streets, online environment, offline environment, shopping factors
Procedia PDF Downloads 8813308 Augmented Reality in Advertising and Brand Communication: An Experimental Study
Authors: O. Mauroner, L. Le, S. Best
Abstract:
Digital technologies offer many opportunities in the design and implementation of brand communication and advertising. Augmented reality (AR) is an innovative technology in marketing communication that focuses on the fact that virtual interaction with a product ad offers additional value to consumers. AR enables consumers to obtain (almost) real product experiences by the way of virtual information even before the purchase of a certain product. Aim of AR applications in relation with advertising is in-depth examination of product characteristics to enhance product knowledge as well as brand knowledge. Interactive design of advertising provides observers with an intense examination of a specific advertising message and therefore leads to better brand knowledge. The elaboration likelihood model and the central route to persuasion strongly support this argumentation. Nevertheless, AR in brand communication is still in an initial stage and therefore scientific findings about the impact of AR on information processing and brand attitude are rare. The aim of this paper is to empirically investigate the potential of AR applications in combination with traditional print advertising. To that effect an experimental design with different levels of interactivity is built to measure the impact of interactivity of an ad on different variables o advertising effectiveness.Keywords: advertising effectiveness, augmented reality, brand communication, brand recall
Procedia PDF Downloads 30213307 Filtration Efficacy of Reusable Full-Face Snorkel Masks for Personal Protective Equipment
Authors: Adrian Kong, William Chang, Rolando Valdes, Alec Rodriguez, Roberto Miki
Abstract:
The Pneumask consists of a custom snorkel-specific adapter that attaches a snorkel-port of the mask to a 3D-printed filter. This full-face snorkel mask was designed for use as personal protective equipment (PPE) during the COVID-19 pandemic when there was a widespread shortage of PPE for medical personnel. Various clinical validation tests have been conducted, including the sealing capability of the mask, filter performance, CO2 buildup, and clinical usability. However, data regarding the filter efficiencies of Pneumask and multiple filter types have not been determined. Using an experimental system, we evaluated the filtration efficiency across various masks and filters during inhalation. Eighteen combinations of respirator models (5 P100 FFRs, 4 Dolfino Masks) and filters (2091, 7093, 7093CN, BB50T) were evaluated for their exposure to airborne particles sized 0.3 - 10.0 microns using an electronic airborne particle counter. All respirator model combinations provided similar performance levels for 1.0-micron, 3.0-micron, 5.0-micron, 10.0-microns, with the greatest differences in the 0.3-micron and 0.5-micron range. All models provided expected performances against all particle sizes, with Class P100 respirators providing the highest performance levels across all particle size ranges. In conclusion, the modified snorkel mask has the potential to protect providers who care for patients with COVID-19 from increased airborne particle exposure.Keywords: COVID-19, PPE, mask, filtration, efficiency
Procedia PDF Downloads 16813306 Austempering Heat Treatment of AISI 4340 Steel and Comparative Analysis of Various Physical Properties at Different Parameters
Authors: Najeeb Niazi, Salman Nisar, Aqueel Shah
Abstract:
In this study a special heat treatment process named austempering on AISI 4340 steel is carried out. Heat treatment on steel is carried out to enhance mechanical properties. In this regard, it is considered essential to undertake a study to evaluate different changes occurred in AISI 4340 steel in terms of hardness, tensile strength and impact strength at different austempering temperatures and cooling times and achieving the best combination of these improved mechanical properties for better and optimum utilization of this grade of steel. By using software Design Expert DOE is formulated with Taguchi orthogonal arrays comprising of L18 (3*3) with 03 factors and 03 responses to be calculated. Results of experiments are analyzed via Taguchi method. Signal to noise ratio of responses are carried out to determine the significant factors among the 03 factors chosen for experimental runs. Overall analysis showed that impact factor along with hardness is improved to great extent by austempering process.Keywords: austempering temperature, AISI 4340 steel, bainite, Taguchi
Procedia PDF Downloads 46813305 The Impact of Governance Criteria in the Supplier Selection Process of Large German Companies
Authors: Christoph Köster
Abstract:
Supplier selection is one of the key challenges in supply chain management and can be considered a multi-criteria decision-making (MCDM) problem. In the 1960s, it evolved from considering only economic criteria, such as price, quality, and performance, to including environmental and social criteria nowadays. Although receiving considerable attention from scholars and practitioners over the past decades, existing research has not considered governance criteria so far. This is, however, surprising, as ESG (environmental, social, and governance) criteria have gained considerable attention. In order to complement ESG criteria in the supplier selection process, this study investigates German DAX and MDAX companies and evaluates the impact of governance criteria along their supplier selection process. Moreover, it proposes a set of criteria for the respective process steps. Specifically, eleven criteria for the first process step and five criteria for the second process step are identified. This paper contributes to a better understanding of the supplier selection process by elucidating the relevance of governance criteria in the supplier selection process and providing a set of empirically developed governance criteria. These results can be applied by practitioners to complement the criteria set in the supplier selection process and thus balance economic, environmental, social, and governance targets.Keywords: ESG, governance, sustainable supplier selection, sustainability
Procedia PDF Downloads 11813304 Impact of Tablet Based Learning on Continuous Assessment (ESPRIT Smart School Framework)
Authors: Mehdi Attia, Sana Ben Fadhel, Lamjed Bettaieb
Abstract:
Mobile technology has become a part of our daily lives and assist learners (despite their level and age) in their leaning process using various apparatus and mobile devices (laptop, tablets, etc.). This paper presents a new learning framework based on tablets. This solution has been developed and tested in ESPRIT “Ecole Supérieure Privée d’Igénieurie et de Technologies”, a Tunisian school of engineering. This application is named ESSF: Esprit Smart School Framework. In this work, the main features of the proposed solution are listed, particularly its impact on the learners’ evaluation process. Learner’s assessment has always been a critical component of the learning process as it measures students’ knowledge. However, traditional evaluation methods in which the learner is evaluated once or twice each year cannot reflect his real level. This is why a continuous assessment (CA) process becomes necessary. In this context we have proved that ESSF offers many important features that enhance and facilitate the implementation of the CA process.Keywords: continuous assessment, mobile learning, tablet based learning, smart school, ESSF
Procedia PDF Downloads 334