Search results for: hybridization chain reaction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4172

Search results for: hybridization chain reaction

602 Calcitriol Improves Plasma Lipoprotein Profile by Decreasing Plasma Total Cholesterol and Triglyceride in Hypercholesterolemic Golden Syrian Hamsters

Authors: Xiaobo Wang, Zhen-Yu Chen

Abstract:

Higher plasma total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) are independent risk factors of cardiovascular disease while high-density lipoprotein cholesterol (HDL-C) is protective. Vitamin D is well-known for its regulatory role in calcium homeostasis. Its potential important role in cardiovascular disease has recently attracted much attention. This study was conducted to investigate effects of different dosage of calcitriol on plasma lipoprotein profile and the underlying mechanism. Sixty male Syrian Golden hamsters were randomly divided into 6 groups: no-cholesterol control (NCD), high-cholesterol control (HCD), groups with calcitriol supplementation at 10/20/40/80ng/kg body weight (CA, CB, CC, CD), respectively. Calcitriol in medium-chain triacylglycerol (MCT) oil was delivered to four experimental groups via oral gavage every other day, while NCD and HCD received MCT oil in the equivalent amount. NCD hamsters were fed with non-cholesterol diet while other five groups were maintained on diet containing 0.2% cholesterol to induce a hypercholesterolemic condition. The treatment lasts for 6 weeks followed by sample collection after hamsters sacrificed. Four experimental groups experienced a reduction in average food intake around 11% compared to HCD with slight decrease in body weight (not exceeding 10%). This reduction reflects on the deceased relative weights of testis, epididymal and perirenal adipose tissue in a dose-dependent manner. Plasma calcitriol levels were measured and was corresponding to oral gavage. At the end of week 6, lipoprotein profiles were improved with calcitriol supplementation with TC, non-HDL-C and plasma triglyceride (TG) decreased in a dose-dependent manner (TC: r=0.373, p=0.009, non-HDL-C: r=0.479, p=0.001, TG: r=0.405, p=0.004). Since HDL-C of four experiment groups showed no significant difference compared to HCD, the ratio of nHDL-C to HDL-C and HDL-C to TC had been restored in a dose-dependent manner. For hamsters receiving the highest level of calcitriol (80ng/kg) showed a reduction of TC by 11.5%, nHDL-C by 24.1% and TG by 31.25%. Little difference was found among six groups on the acetylcholine-induced endothelium-dependent relaxation or contraction of thoracic aorta. To summarize, calcitriol supplementation in hamster at maximum 80ng/kg body weight for 6 weeks lead to an overall improvement in plasma lipoprotein profile with decreased TC and TG level. The molecular mechanism of its effects is under investigation.

Keywords: cholesterol, vitamin D, calcitriol, hamster

Procedia PDF Downloads 240
601 Evaluation of Occupational Exposure to Chromium for Welders of Stainless Steel

Authors: L. Musak, J. Valachova, T. Vasicko, O. Osina

Abstract:

Stainless steel is resistant to electrochemical corrosion by passivation. Welders are greatly exposed to welding fumes of toxic metals, which added to this steel. The content of chromium (Cr) is above 11.5%, Ni and Mo from 2 to 6.5%. The aim of the study was the evaluation of occupational exposure to Cr, chromosome analysis and valuation of individual susceptibility polymorphism of gene CCND1 c.870 G>A. The exposed group was consisted from 117 welders of stainless steels. The average age was 38.43 years and average exposure time 7.14 years. Smokers represented 40.17%. The control group consisted of 123 non-exposed workers with an average age of 39.74 years and time employment 16.67 years. Smokers accounted for 22.76%. Analysis of Cr in blood and urine was performed by atomic absorption spectrophotometry (AAS Varian SpectraAA 30P) with electrothermal decomposition of the sample in the graphite furnace. For the evaluation of chromosomal aberrations (CA) cytogenetic analysis of peripheral blood lymphocytes was used. Gene polymorphism was determined by PCR-RFLP reaction using appropriate primers and restriction enzymes. For statistic analysis the Mann-Whitney U-test was used. The mean Cr level in blood of exposed group was 0.095 µmol/l (0.019 min - max 0.504). No value exceeds the average normal value. The mean value Cr in urine was 7.9 µmol/mol creatinine (min 0.026 to max 19.26). The total number of CA was 1.86% in compared to 1.70% controls. (CTA-type 0.90% vs. 0.80% and CSA-type 0.96% vs. 0.90%). In the number of total CA statistical difference was observed between smokers and non-smokers of exposed group (S-1.57% vs. NS-2.04%, P<0.05). In CCND1 gene polymorphisms was observed the increasing of the total CA with wild-type allele (WT) via heterozygous to the VAR genotype (1.44% <1.82% <2.13%). A statistically higher incidence of CTA-type aberrations in variant genotypes between exposed and control groups was observed (1.22% vs. 0.59%, P <0.05). The work place is usually higher source of exposure to harmful factors. Workers need consistent and frequent health control. In assessing the risk of adverse effects of metals it is important to consider their persistence, behavior and bioavailability. Prolonged exposure to carcinogens may not manifest symptoms of poisoning, but delayed effects may occur, which resulted in a higher incidence of malignant tumors.

Keywords: CCND1, genotoxicity, polymorphism, stainless steel, welders

Procedia PDF Downloads 354
600 Understanding Ambivalent Behaviors of Social Media Users toward the 'Like' Function: A Social Capital Perspective

Authors: Jung Lee, L. G. Pee

Abstract:

The 'Like' function in social media platforms represents the immediate responses of social media users to postings and other users. A large number of 'likes' is often attributed to fame, agreement, and support from others that many users are proud of and happy with. However, what 'like' implies exactly in social media context is still in discussion. Some argue that it is an accurate parameter of the preferences of social media users, whereas others refute that it is merely an instant reaction that is volatile and vague. To address this gap, this study investigates how social media users perceive the 'like' function and behave differently based on their perceptions. This study posits the following arguments. First, 'like' is interpreted as a quantified form of social capital that resides in social media platforms. This incarnated social capital rationalizes the attraction of people to social media and belief that social media platforms bring benefits to their relationships with others. This social capital is then conceptualized into cognitive and emotive dimensions, where social capital in the cognitive dimension represents the awareness of the 'likes' quantitatively, whereas social capital in the emotive dimension represents the receptions of the 'likes' qualitatively. Finally, the ambivalent perspective of the social media users on 'like' (i.e., social capital) is applied. This view rationalizes why social media users appreciate the reception of 'likes' from others but are aware that those 'likes' can distort the actual responses of other users by sending erroneous signals. The rationale on this ambivalence is based on whether users perceive social media as private or public spheres. When social media is more publicized, the ambivalence is more strongly observed. By combining the ambivalence and dimensionalities of the social capital, four types of social media users with different mechanisms on liking behaviors are identified. To validate this work, a survey with 300 social media users is conducted. The analysis results support most of the hypotheses and confirm that people have ambivalent perceptions on 'like' as a social capital and that perceptions influence behavioral patterns. The implication of the study is clear. First, this study explains why social media users exhibit different behaviors toward 'likes' in social media. Although most of the people believe that the number of 'likes' is the simplest and most frank measure of supports from other social media users, this study introduces the users who do not trust the 'likes' as a stable and reliable parameter of social media. In addition, this study links the concept of social media openness to explain the different behaviors of social media users. Social media openness has theoretical significance because it defines the psychological boundaries of social media from the perspective of users.

Keywords: ambivalent attitude, like function, social capital, social media

Procedia PDF Downloads 243
599 Monitoring Surface Modification of Polylactide Nonwoven Fabric with Weak Polyelectrolytes

Authors: Sima Shakoorjavan, Dawid Stawski, Somaye Akbari

Abstract:

In this study, great attempts have been made to initially modify polylactide (PLA) nonwoven surface with poly(amidoamine) (PAMMA) dendritic polymer to create amine active sites on PLA surface through aminolysis reaction. Further, layer-by-layer deposition of four layers of two weak polyelectrolytes, including PAMAM as polycation and polyacrylic acid (PAA) as polyanion on activated PLA, was monitored with turbidity analysis of waste-polyelectrolytes after each deposition step. The FTIR-ATR analysis confirmed the successful introduction of amine groups into PLA polymeric chains through the emerging peak around 1650 cm⁻¹ corresponding to N-H bending vibration and a double wide peak at around 3670-3170 cm⁻¹ corresponding to N-H stretching vibration. The adsorption-desorption behavior of (PAMAM) and poly (PAA) deposition was monitored by turbidity test. Turbidity results showed the desorption and removal of the previously deposited layer (second and third layers) upon the desorption of the next layers (third and fourth layers). Also, the importance of proper rinsing after aminolysis of PLA nonwoven fabric was revealed by turbidity test. Regarding the sample with insufficient rinsing process, higher desorption and removal of ungrafted PAMAM from aminolyzed-PLA surface into PAA solution was detected upon the deposition of the first PAA layer. This phenomenon can be due to electrostatic attraction between polycation (PAMAM) and polyanion (PAA). Moreover, the successful layer deposition through LBL was confirmed by the staining test of acid red 1 through spectrophotometry analysis. According to the results, layered PLA with four layers with PAMAM as the top layer showed higher dye absorption (46.7%) than neat (1.2%) and aminolyzed PLA (21.7%). In conclusion, the complicated adsorption-desorption behavior of dendritic polycation and linear polyanion systems was observed. Although desorption and removal of previously adsorbed layers occurred upon the deposition of the next layer, the remaining polyelectrolyte on the substrate is sufficient for the adsorption of the next polyelectrolyte through electrostatic attraction between oppositely charged polyelectrolytes. Also, an increase in dye adsorption confirmed more introduction of PAMAM onto PLA surface through LBL.

Keywords: surface modification, layer-by-layer technique, weak polyelectrolytes, adsorption-desorption behavior

Procedia PDF Downloads 69
598 Impact of Electric Vehicles on Energy Consumption and Environment

Authors: Amela Ajanovic, Reinhard Haas

Abstract:

Electric vehicles (EVs) are considered as an important means to cope with current environmental problems in transport. However, their high capital costs and limited driving ranges state major barriers to a broader market penetration. The core objective of this paper is to investigate the future market prospects of various types of EVs from an economic and ecological point of view. Our method of approach is based on the calculation of total cost of ownership of EVs in comparison to conventional cars and a life-cycle approach to assess the environmental benignity. The most crucial parameters in this context are km driven per year, depreciation time of the car and interest rate. The analysis of future prospects it is based on technological learning regarding investment costs of batteries. The major results are the major disadvantages of battery electric vehicles (BEVs) are the high capital costs, mainly due to the battery, and a low driving range in comparison to conventional vehicles. These problems could be reduced with plug-in hybrids (PHEV) and range extenders (REXs). However, these technologies have lower CO₂ emissions in the whole energy supply chain than conventional vehicles, but unlike BEV they are not zero-emission vehicles at the point of use. The number of km driven has a higher impact on total mobility costs than the learning rate. Hence, the use of EVs as taxis and in car-sharing leads to the best economic performance. The most popular EVs are currently full hybrid EVs. They have only slightly higher costs and similar operating ranges as conventional vehicles. But since they are dependent on fossil fuels, they can only be seen as energy efficiency measure. However, they can serve as a bridging technology, as long as BEVs and fuel cell vehicle do not gain high popularity, and together with PHEVs and REX contribute to faster technological learning and reduction in battery costs. Regarding the promotion of EVs, the best results could be reached with a combination of monetary and non-monetary incentives, as in Norway for example. The major conclusion is that to harvest the full environmental benefits of EVs a very important aspect is the introduction of CO₂-based fuel taxes. This should ensure that the electricity for EVs is generated from renewable energy sources; otherwise, total CO₂ emissions are likely higher than those of conventional cars.

Keywords: costs, mobility, policy, sustainability,

Procedia PDF Downloads 228
597 Arginase Enzyme Activity in Human Serum as a Marker of Cognitive Function: The Role of Inositol in Combination with Arginine Silicate

Authors: Katie Emerson, Sara Perez-Ojalvo, Jim Komorowski, Danielle Greenberg

Abstract:

The purpose of this study was to evaluate arginase activity levels in response to combinations of an inositol-stabilized arginine silicate (ASI; Nitrosigine®), L-arginine, and Inositol. Arginine acts as a vasodilator that promotes increased blood flow resulting in enhanced delivery of oxygen and nutrients to the brain and other tissues. ASI alone has been shown to improve performance on cognitive tasks. Arginase, found in human serum, catalyzes the conversion of arginine to ornithine and urea, completing the last step in the urea cycle. Decreasing arginase levels maintains arginine and results in increased nitric oxide production. This study aimed to determine the most effective combination of ASI, L-arginine and inositol for minimizing arginase levels and therefore maximize ASI’s effect on cognition. Serum was taken from untreated healthy donors by separation from clotted factors. Arginase activity of serum in the presence or absence of test products was determined (QuantiChrom™, DARG-100, Bioassay Systems, Hayward CA). The remaining ultra-filtrated serum units were harvested and used as the source for the arginase enzyme. ASI alone or combined with varied levels of Inositol were tested as follows: ASI + inositol at 0.25 g, 0.5 g, 0.75 g, or 1.00 g. L-arginine was also tested as a positive control. All tests elicited changes in arginase activity demonstrating the efficacy of the method used. Adding L-arginine to serum from untreated subjects, with or without inositol only had a mild effect. Adding inositol at all levels reduced arginase activity. Adding 0.5 g to the standardized amount of ASI led to the lowest amount of arginase activity as compared to the 0.25g 0.75g or 1.00g doses of inositol or to L-arginine alone. The outcome of this study demonstrates an interaction of the pairing of inositol with ASI on the activity of the enzyme arginase. We found that neither the maximum nor minimum amount of inositol tested in this study led to maximal arginase inhibition. Since the inhibition of arginase activity is desirable for product formulations looking to maintain arginine levels, the most effective amount of inositol was deemed preferred. Subsequent studies suggest this moderate level of inositol in combination with ASI leads to cognitive improvements including reaction time, executive function, and concentration.

Keywords: arginine, inositol, arginase, cognitive benefits

Procedia PDF Downloads 116
596 Identifying Diabetic Retinopathy Complication by Predictive Techniques in Indian Type 2 Diabetes Mellitus Patients

Authors: Faiz N. K. Yusufi, Aquil Ahmed, Jamal Ahmad

Abstract:

Predicting the risk of diabetic retinopathy (DR) in Indian type 2 diabetes patients is immensely necessary. India, being the second largest country after China in terms of a number of diabetic patients, to the best of our knowledge not a single risk score for complications has ever been investigated. Diabetic retinopathy is a serious complication and is the topmost reason for visual impairment across countries. Any type or form of DR has been taken as the event of interest, be it mild, back, grade I, II, III, and IV DR. A sample was determined and randomly collected from the Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N.M.C., A.M.U., Aligarh, India. Collected variables include patients data such as sex, age, height, weight, body mass index (BMI), blood sugar fasting (BSF), post prandial sugar (PP), glycosylated haemoglobin (HbA1c), diastolic blood pressure (DBP), systolic blood pressure (SBP), smoking, alcohol habits, total cholesterol (TC), triglycerides (TG), high density lipoprotein (HDL), low density lipoprotein (LDL), very low density lipoprotein (VLDL), physical activity, duration of diabetes, diet control, history of antihypertensive drug treatment, family history of diabetes, waist circumference, hip circumference, medications, central obesity and history of DR. Cox proportional hazard regression is used to design risk scores for the prediction of retinopathy. Model calibration and discrimination are assessed from Hosmer Lemeshow and area under receiver operating characteristic curve (ROC). Overfitting and underfitting of the model are checked by applying regularization techniques and best method is selected between ridge, lasso and elastic net regression. Optimal cut off point is chosen by Youden’s index. Five-year probability of DR is predicted by both survival function, and Markov chain two state model and the better technique is concluded. The risk scores developed can be applied by doctors and patients themselves for self evaluation. Furthermore, the five-year probabilities can be applied as well to forecast and maintain the condition of patients. This provides immense benefit in real application of DR prediction in T2DM.

Keywords: Cox proportional hazard regression, diabetic retinopathy, ROC curve, type 2 diabetes mellitus

Procedia PDF Downloads 189
595 Performance of Reinforced Concrete Wall with Opening Using Analytical Model

Authors: Alaa Morsy, Youssef Ibrahim

Abstract:

Earthquake is one of the most catastrophic events, which makes enormous harm to properties and human lives. As a piece of a safe building configuration, reinforced concrete walls are given in structures to decrease horizontal displacements under seismic load. Shear walls are additionally used to oppose the horizontal loads that might be incited by the impact of wind. Reinforced concrete walls in residential buildings might have openings that are required for windows in outside walls or for doors in inside walls or different states of openings due to architectural purposes. The size, position, and area of openings may fluctuate from an engineering perspective. Shear walls can encounter harm around corners of entryways and windows because of advancement of stress concentration under the impact of vertical or horizontal loads. The openings cause a diminishing in shear wall capacity. It might have an unfavorable impact on the stiffness of reinforced concrete wall and on the seismic reaction of structures. Finite Element Method using software package ‘ANSYS ver. 12’ becomes an essential approach in analyzing civil engineering problems numerically. Now we can make various models with different parameters in short time by using ANSYS instead of doing it experimentally, which consumes a lot of time and money. Finite element modeling approach has been conducted to study the effect of opening shape, size and position in RC wall with different thicknesses under axial and lateral static loads. The proposed finite element approach has been verified with experimental programme conducted by the researchers and validated by their variables. A very good correlation has been observed between the model and experimental results including load capacity, failure mode, and lateral displacement. A parametric study is applied to investigate the effect of opening size, shape, position on different reinforced concrete wall thicknesses. The results may be useful for improving existing design models and to be applied in practice, as it satisfies both the architectural and the structural requirements.

Keywords: Ansys, concrete walls, openings, out of plane behavior, seismic, shear wall

Procedia PDF Downloads 173
594 Experimental and Theoretical Mass Transfer Studies of Pure Carbondioxide Absorption in Sodium Hydroxide in Millichannels

Authors: A. Durgadevi, S. Pushpavanam

Abstract:

For the past several decades, CO2 levels have been dramatically increasing in the atmosphere due to the man-made emissions such as fossil fuel-fired power plants. With the increase in CO2 emissions, CO2 concentration in the atmosphere has increased resulting in global warming. This shows the need to study different ways to capture the emitted CO2 directly from the exhausts of power plants or atmosphere. There are several ways to remove CO2, such as absorption into a liquid solvent, adsorption into a solid, cryogenic separation, permeation through membranes and photochemical conversion. In most industries, the absorption of CO2 in chemical solvents (in absorption towers) is used for CO2 capture. In these towers, the mass transfer along with chemical reactions take place between the gas and liquid phase. This helps in the separation of CO2 from other gases. It is important to understand these processes in detail. These flow patterns are difficult to maintain in large scale industrial absorbers. So to get accurate information controlled gas-liquid absorption experiments are carried out in milli-channels in this work under controlled atmosphere. The absorption experiments of CO2 in varying concentrations of sodium hydroxide solution are carried out in T-junction glass milli-channels with a circular cross section (inner diameter of 2mm). The gas and liquid flow rates are controlled by a mass flow controller (MFC) and a Harvard syringe pump respectively. The slug flow in the channel is recorded using a camera and the videos are analysed. The gas slug of pure CO2 is found to decrease in size along the length of the channel due to absorption of gas in the liquid. This is also captured with the model developed and the mass transfer characteristics are studied. The pressure drop across the channel is determined by sum of the pressure drops from the gas slugs and the liquid plugs. A dimensionless correlation for the mass transfer coefficient is developed in terms of Sherwood number and compared with the existing correlations in the literature. They are found to be in close agreement with each other. In this case, due to the presence of chemical reaction, the enhancement of mass transfer is obtained. This is quantified with the help of an enhancement factor.

Keywords: absorption, enhancement factor, mass transfer coefficient, Sherwood number

Procedia PDF Downloads 178
593 Intensified Electrochemical H₂O₂ Synthesis and Highly Efficient Pollutant Removal Enabled by Nickel Oxides with Surface Engineered Facets and Vacancies

Authors: Wenjun Zhang, Thao Thi Le, Dongyup Shin, Jong Min Kim

Abstract:

Electrochemical hydrogen peroxide (H₂O₂) synthesis holds significant promise for decentralized environmental remediation through the electro-Fenton process. However, challenges persist, such as the absence of robust electrocatalysts for the selective two-electron oxygen reduction reaction (2e⁻ ORR) and the high cost and sluggish kinetics of conventional electro-Fenton systems in treating highly concentrated wastewater. This study introduces an efficient water treatment system for removing substantial quantities of organic pollutants using an advanced electro-Fenton system coupled with a high-valent NiO catalyst. By employing a precipitation method involving crystal facet and cation vacancy engineering, a trivalent Ni (Ni³⁺)-rich NiO catalyst with a (111)-domain-exposed crystal facet, named {111}-NivO, was synthesized. This catalyst exhibited a remarkable 96% selectivity and a high mass activity of 59 A g⁻¹ for H₂O₂ production, outperforming all previously reported Ni-based catalysts. Furthermore, an advanced electro-Fenton system, integrated with a flow cell for electrochemical H₂O₂ production, was utilized to achieve 100% removal of 50 ppm bisphenol A (BPA) in 200 mL of wastewater under heavy-duty conditions, reaching a superior rapid degradation rate (4 min, k = 1.125 min⁻¹), approximately 102 times faster than the conventional electro-Fenton system. The hyper-efficiency is attributed to the continuous and appropriate supply of H₂O₂, the provision of O₂, and the timely recycling of the electrolyte under high current density operation. This catalyst also demonstrated a 93% removal of total organic carbon after 2 hours of operation and can be applied for efficient removal of highly concentrated phenol pollutants from aqueous systems, which opens new avenues for wastewater treatment.

Keywords: hydrogen peroxide production, nickel oxides, crystal facet and cation vacancy engineering, wastewater treatment, flow cell, electro-Fenton

Procedia PDF Downloads 62
592 Development and Characterization of Cathode Materials for Sodium-Metal Chloride Batteries

Authors: C. D’Urso, L. Frusteri, M. Samperi, G. Leonardi

Abstract:

Solid metal halides are used as active cathode ingredients in the case of Na-NiCl2 batteries that require a fused secondary electrolyte, sodium tetrachloraluminate (NaAlCl4), to facilitate the movement of the Na+ ion into the cathode. The sodium-nickel chloride (Na - NiCl2) battery has been extensively investigated as a promising system for large-scale energy storage applications. The growth of Ni and NaCl particles in the cathodes is one of the most important factors that degrade the performance of the Na-NiCl2 battery. The larger the particles of active ingredients contained in the cathode, the smaller the active surface available for the electrochemical reaction. Therefore, the growth of Ni and NaCl particles can lead to an increase in cell polarization resulting from the reduced active area. A higher current density, a higher state of charge (SOC) at the end of the charge (EOC) and a lower Ni / NaCl ratio are the main parameters that result in the rapid growth of Ni particles. In light of these problems, cathode and chemistry Nano-materials with recognized and well-documented electrochemical functions have been studied and manufactured to simultaneously improve battery performance and develop less expensive and more performing, sustainable and environmentally friendly materials. Starting from the well-known cathodic material (Na-NiCl2), the new electrolytic materials have been prepared on the replacement of nickel with iron (10-90%substitution of Nichel with Iron), to obtain a new material with potential advantages compared to current battery technologies; for example,, (1) lower cost of cathode material compared to state of the art as well as (2) choices of cheaper materials (stainless steels could be used for cell components, including cathode current collectors and cell housings). The study on the particle size of the cathode and the physicochemical characterization of the cathode was carried out in the test cell using, where possible, the GITT method (galvanostatic technique of intermittent titration). Furthermore, the impact of temperature on the different cathode compositions of the positive electrode was studied. Especially the optimum operating temperature is an important parameter of the active material.

Keywords: critical raw materials, energy storage, sodium metal halide, battery

Procedia PDF Downloads 123
591 Repetitive Compulsions of Trauma: Critically Analyzing Damages Done When Perpetuating Heroic White Masculinity at Federally Managed United States Civil War Battlefields

Authors: Cait M. Henry, Sarah Jackson

Abstract:

Abstract-This study is built from the culmination of four years of research into the cultural interpretation of Civil War heritage at a National Park Service (NPS) site, namely the Manassas National Battlefield Park, within an increasingly contentious political landscape surrounding the U.S. Civil War. Originating as questions regarding the relevancy of historic battlefields to the current culture within the United States soon evolved into more philosophical questions about what it means to feel welcome at a battlefield site, and what are considered appropriate actions and behaviors at what was once a mass gravesite. In trying to answer these questions, this work aims to critically analyze the confluence between the cultural authority of the NPS and collective memories of the U.S. Civil War. Operationalizing trauma as repeated violent acts within public spaces, the authors posit that the normalization of violence from white or white-passing men partially stems from the glorification of heroic white masculinity at National Park Service Civil War battlefield sites—especially those which also commemorate Confederate military strategy and prowess. From here the study moves outward to focus on the prevalence of heroic white masculinity within the nation’s current social zeitgeist, and particularly the notion that to take back masculinity one must utilize violence as a means of symbolic restoration from perceptions of white victimhood. The study ends with case studies of dark tourism framing at international battlefields as models for expanding heritage interpretation at the NPS site to foster narratives of empathy and responsibility within an increasingly contentious political landscape within the United States of America. Visitors do not leave Manassas National Battlefield Park with answers about the social and moral implications of the U.S. Civil War, but the tools for championing their own (predominantly white) heroic masculinity. As such, it is only logical that one common reaction when masculinity is symbolically threatened is to enact violence against Others as a restorative force within the United States.

Keywords: confederate heritage, military history, national park service, trauma, United States civil war

Procedia PDF Downloads 20
590 Multi-Criteria Decision Making Tool for Assessment of Biorefinery Strategies

Authors: Marzouk Benali, Jawad Jeaidi, Behrang Mansoornejad, Olumoye Ajao, Banafsheh Gilani, Nima Ghavidel Mehr

Abstract:

Canadian forest industry is seeking to identify and implement transformational strategies for enhanced financial performance through the emerging bioeconomy or more specifically through the concept of the biorefinery. For example, processing forest residues or surplus of biomass available on the mill sites for the production of biofuels, biochemicals and/or biomaterials is one of the attractive strategies along with traditional wood and paper products and cogenerated energy. There are many possible process-product biorefinery pathways, each associated with specific product portfolios with different levels of risk. Thus, it is not obvious which unique strategy forest industry should select and implement. Therefore, there is a need for analytical and design tools that enable evaluating biorefinery strategies based on a set of criteria considering a perspective of sustainability over the short and long terms, while selecting the existing core products as well as selecting the new product portfolio. In addition, it is critical to assess the manufacturing flexibility to internalize the risk from market price volatility of each targeted bio-based product in the product portfolio, prior to invest heavily in any biorefinery strategy. The proposed paper will focus on introducing a systematic methodology for designing integrated biorefineries using process systems engineering tools as well as a multi-criteria decision making framework to put forward the most effective biorefinery strategies that fulfill the needs of the forest industry. Topics to be covered will include market analysis, techno-economic assessment, cost accounting, energy integration analysis, life cycle assessment and supply chain analysis. This will be followed by describing the vision as well as the key features and functionalities of the I-BIOREF software platform, developed by CanmetENERGY of Natural Resources Canada. Two industrial case studies will be presented to support the robustness and flexibility of I-BIOREF software platform: i) An integrated Canadian Kraft pulp mill with lignin recovery process (namely, LignoBoost™); ii) A standalone biorefinery based on ethanol-organosolv process.

Keywords: biorefinery strategies, bioproducts, co-production, multi-criteria decision making, tool

Procedia PDF Downloads 233
589 Study on Accumulation of Heavy Metals in Sweet Potato, Grown in Industrially Polluted Regions

Authors: Violina Angelova, Galina Pevicharova

Abstract:

A comparative research had been carried out to allow us to determine the quantities and the centers of accumulation of Pb, Cu, Zn and Cd in the vegetative and reproductive organs of the sweet potatoes and to ascertain the possibilities for growing them on soils, polluted with heavy metals. The experiments were performed on agricultural fields contaminated by the (1) Non-Ferrous-Metal Works near Plovdiv, (2) Lead and Zinc Complex near Kardjali and (3) a copper smelter near Pirdop, Bulgaria. The soils used in this experiment were characterized by acid, neutral and slightly alkaline reaction, loamy texture and a moderate content of organic matter. The total content of Zn, Pb, and Cd was high and exceeded the limit value in agriculture soils. Sweet potatoes were in a 2-year rotation scheme on three blocks in the experimental field. On reaching commercial ripeness the sweet potatoes were gathered and the contents of heavy metals in their different parts – root, tuber (peel and core), leaves and stems, were determined after microwave mineralization. The quantitative measurements were carried out with inductively coupled plasma atomic emission spectroscopy. The contamination of the sweet potatoes was due mainly to the presence of heavy metals in the soil, which entered the plants through their root system, as well as by diffusion through the peel. Pb, Cu, Zn, and Cd were selectively accumulated in the underground parts of the sweet potatoes, and most of all in the root system and the peel. Heavy metals have an impact on the development and productivity of the sweet potatoes. The high anthropogenic contamination leads to an increased assimilation of heavy metals which reduces the yield and the quality of the production of sweet potatoes, as well as leads to decrease of the absolute dry substance and the quantity of sugars in sweet potatoes. Sweet potatoes could be grown on soils, which are light to medium polluted with lead, zinc, and cadmium, as they do not accumulate these elements. On heavily polluted soils, however, (Pb – 1504 mg/kg, Zn – 3322 mg/kg, Cd – 47 mg/kg) the growing of sweet potatoes is not allowed, as the accumulation of Pb and Cd in the core of the potatoes exceeds the Maximum Acceptable Concentration. Acknowledgment: The authors gratefully acknowledge the financial support by the Bulgarian National Science Fund (Project DFNI DH04/9).

Keywords: heavy metals, polluted soils, sweet potatoes, uptake

Procedia PDF Downloads 216
588 Treatment of Municipal Wastewater by Means of Uv-Assisted Irradiation Technologies: Fouling Studies and Optimization of Operational Parameters

Authors: Tooba Aslam, Efthalia Chatzisymeon

Abstract:

UV-assisted irradiation technologies are well-established for water and wastewater treatment. UVC treatments are widely used at large-scale, while UVA irradiation has more often been applied in combination with a catalyst (e.g. TiO₂ or FeSO₄) in smaller-scale systems. A technical issue of these systems is the formation of fouling on the quartz sleeves that houses the lamps. This fouling can prevent complete irradiation, therefore reducing the efficiency of the process. This paper investigates the effects of operational parameters, such as the type of wastewater, irradiation source, H₂O₂ addition, and water pH on fouling formation and, ultimately, the treatment of municipal wastewater. Batch experiments have been performed at lab-scale while monitoring water quality parameters including: COD, TS, TSS, TDS, temperature, pH, hardness, alkalinity, turbidity, TOC, UV transmission, UV₂₅₄ absorbance, and metal concentrations. The residence time of the wastewater in the reactor was 5 days in order to observe any fouling formation on the quartz surface. Over this period, it was observed that chemical oxygen demand (COD) decreased by 30% and 59% during photolysis (Ultraviolet A) and photo-catalysis (UVA/Fe/H₂O₂), respectively. Higher fouling formation was observed with iron-rich and phosphorous-rich wastewater. The highest rate of fouling was developed with phosphorous-rich wastewater, followed by the iron-rich wastewater. Photo-catalysis (UVA/Fe/H₂O₂) had better removal efficiency than photolysis (UVA). This was attributed to the Photo-Fenton reaction, which was initiated under these operational conditions. Scanning electron microscope (SEM) measurements of fouling formed on the quartz sleeves showed that particles vary in size, shape, and structure; some have more distinct structures and are generally larger and have less compact structure than the others. Energy-dispersive X-ray spectroscopy (EDX) results showed that the major metals present in the fouling cake were iron, phosphorous, and calcium. In conclusion, iron-rich wastewaters are more suitable for UV-assisted treatment since fouling formation on quartz sleeves can be minimized by the formation of oxidizing agents during treatment, such as hydroxyl radicals.

Keywords: advanced oxidation processes, photo-fenton treatment, photo-catalysis, wastewater treatment

Procedia PDF Downloads 81
587 The Dependency of the Solar Based Disinfection on the Microbial Quality of the Source Water

Authors: M. T. Amina, A. A. Alazba, U. Manzoor

Abstract:

Solar disinfection (SODIS) is a viable method for household water treatment and is recommended by the World Health Organization as cost effective approach that can be used without special skills. The efficiency of both SODIS and solar collector disinfection (SOCODIS) system was evaluated using four different sources of water including stored rainwater, storm water, ground water and treated sewage. Samples with naturally occurring microorganisms were exposed to sunlight for about 8-9 hours in 2-L polyethylene terephthalate bottles under similar experimental conditions. Total coliform (TC), Escherichia coli (E. coli) and heterotrophic plate counts (HPC) were used as microbial water quality indicators for evaluating the disinfection efficiency at different sunlight intensities categorized as weak, mild and strong weathers. Heterotrophic bacteria showed lower inactivation rates compared to E. coli and TC in both SODIS and SOCODIS system. The SOCODIS system at strong weather was the strongest disinfection system in this study and the complete inactivation of HPC was observed after 8-9 hours of exposure with SODIS being ineffective for HPC. At moderate weathers, however, the SOCODIS system did not show complete inactivation of HPC due to very high concentrations (up to 5x10^7 CFU/ml) in both storm water and treated sewage. SODIS even remained ineffective for the complete inactivation of E. coli due to its high concentrations of about 2.5x10^5 in treated sewage compared with other waters even after 8-9 hours of exposure. At weak weather, SODIS was not effective at all while SOCODIS system, though incomplete, showed good disinfection efficiency except for HPC and to some extent for high E. coli concentrations in storm water. Largest reduction of >5 log occurred for TC when used stored rainwater even after 6 hours of exposure in the case of SOCODIS system at strong weather. The lowest E. coli and HPC reduction of ~2 log was observed in SODIS system at weak weather. Further tests with varying pH and turbidity are required to understand the effects of reaction parameters that could be a step forward towards maximizing the disinfection efficiency of such systems for the complete inactivation of naturally occurring E. coli or HPC at moderate or even at weak weathers.

Keywords: efficiency, microbial, SODIS, SOCODIS, weathers

Procedia PDF Downloads 266
586 Multi-omics Integrative Analysis with Genome-Scale Metabolic Model Simulation Reveals Reaction Essentiality data in Human Astrocytes Under the Lipotoxic Effect of Palmitic Acid

Authors: Janneth Gonzalez, Andres Pinzon Velasco, Maria Angarita, Nicolas Mendoza

Abstract:

Astrocytes play an important role in various processes in the brain, including pathological conditions such as neurodegenerative diseases. Recent studies have shown that the increase in saturated fatty acids such as palmitic acid (PA) triggers pro-inflammatory pathways in the brain. The use of synthetic neurosteroids such as tibolone has demonstrated neuro-protective mechanisms. However, there are few studies on the neuro-protective mechanisms of tibolone, especially at the systemic (omic) level. In this study, we performed the integration of multi-omic data (transcriptome and proteome) into a human astrocyte genomic scale metabolic model to study the astrocytic response during palmitate treatment. We evaluated metabolic fluxes in three scenarios (healthy, induced inflammation by PA, and tibolone treatment under PA inflammation). We also use control theory to identify those reactions that control the astrocytic system. Our results suggest that PA generates a modulation of central and secondary metabolism, showing a change in energy source use through inhibition of folate cycle and fatty acid β-oxidation and upregulation of ketone bodies formation.We found 25 metabolic switches under PA-mediated cellular regulation, 9 of which were critical only in the inflammatory scenario but not in the protective tibolone one. Within these reactions, inhibitory, total, and directional coupling profiles were key findings, playing a fundamental role in the (de)regulation in metabolic pathways that increase neurotoxicity and represent potential treatment targets. Finally, this study framework facilitates the understanding of metabolic regulation strategies, andit can be used for in silico exploring the mechanisms of astrocytic cell regulation, directing a more complex future experimental work in neurodegenerative diseases.

Keywords: astrocytes, data integration, palmitic acid, computational model, multi-omics, control theory

Procedia PDF Downloads 124
585 An Electrochemical Enzymatic Biosensor Based on Multi-Walled Carbon Nanotubes and Poly (3,4 Ethylenedioxythiophene) Nanocomposites for Organophosphate Detection

Authors: Navpreet Kaur, Himkusha Thakur, Nirmal Prabhakar

Abstract:

The most controversial issue in crop production is the use of Organophosphate insecticides. This is evident in many reports that Organophosphate (OP) insecticides, among the broad range of pesticides are mainly involved in acute and chronic poisoning cases. OPs detection is of crucial importance for health protection, food and environmental safety. In our study, a nanocomposite of poly (3,4 ethylenedioxythiophene) (PEDOT) and multi-walled carbon nanotubes (MWCNTs) has been deposited electrochemically onto the surface of fluorine doped tin oxide sheets (FTO) for the analysis of malathion OP. The -COOH functionalization of MWCNTs has been done for the covalent binding with amino groups of AChE enzyme. The use of PEDOT-MWCNT films exhibited an excellent conductivity, enables fast transfer kinetics and provided a favourable biocompatible microenvironment for AChE, for the significant malathion OP detection. The prepared biosensors were characterized by Fourier transform infrared spectrometry (FTIR), Field emission-scanning electron microscopy (FE-SEM) and electrochemical studies. Various optimization studies were done for different parameters including pH (7.5), AChE concentration (50 mU), substrate concentration (0.3 mM) and inhibition time (10 min). Substrate kinetics has been performed and studied for the determination of Michaelis Menten constant. The detection limit for malathion OP was calculated to be 1 fM within the linear range 1 fM to 1 µM. The activity of inhibited AChE enzyme was restored to 98% of its original value by 2-pyridine aldoxime methiodide (2-PAM) (5 mM) treatment for 11 min. The oxime 2-PAM is able to remove malathion from the active site of AChE by means of trans-esterification reaction. The storage stability and reusability of the prepared biosensor is observed to be 30 days and seven times, respectively. The application of the developed biosensor has also been evaluated for spiked lettuce sample. Recoveries of malathion from the spiked lettuce sample ranged between 96-98%. The low detection limit obtained by the developed biosensor made them reliable, sensitive and a low cost process.

Keywords: PEDOT-MWCNT, malathion, organophosphates, acetylcholinesterase, biosensor, oxime (2-PAM)

Procedia PDF Downloads 447
584 Casusation and Criminal Responsibility

Authors: László Schmidt

Abstract:

“Post hoc ergo propter hoc” means after it, therefore because of it. In other words: If event Y followed event X, then event Y must have been caused by event X. The question of causation has long been a central theme in philosophical thought, and many different theories have been put forward. However, causality is an essentially contested concept (ECC), as it has no universally accepted definition and is used differently in everyday, scientific, and legal thinking. In the field of law, the question of causality arises mainly in the context of establishing legal liability: in criminal law and in the rules of civil law on liability for damages arising either from breach of contract or from tort. In the study some philosophical theories of causality will be presented and how these theories correlate with legal causality. It’s quite interesting when philosophical abstractions meet the pragmatic demands of jurisprudence. In Hungarian criminal judicial practice the principle of equivalence of conditions is the generally accepted and applicable standard of causation, where all necessary conditions are considered equivalent and thus a cause. The idea is that without the trigger, the subsequent outcome would not have occurred; all the conditions that led to the subsequent outcome are equivalent. In the case where the trigger that led to the result is accompanied by an additional intervening cause, including an accidental one, independent of the perpetrator, the causal link is not broken, but at most the causal link becomes looser. The importance of the intervening causes in the outcome should be given due weight in the imposition of the sentence. According to court practice if the conduct of the offender sets in motion the causal process which led to the result, it does not exclude his criminal liability and does not interrupt the causal process if other factors, such as the victim's illness, may have contributed to it. The concausa does not break the chain of causation, i.e. the existence of a causal link establish the criminal liability of the offender. Courts also adjudicates that if an act is a cause of the result if the act cannot be omitted without the result being omitted. This essentially assumes a hypothetical elimination procedure, i.e. the act must be omitted in thought and then examined to see whether the result would still occur or whether it would be omitted. On the substantive side, the essential condition for establishing the offence is that the result must be demonstrably connected with the activity committed. The provision on the assessment of the facts beyond reasonable doubt must also apply to the causal link: that is to say, the uncertainty of the causal link between the conduct and the result of the offence precludes the perpetrator from being held liable for the result. Sometimes, however, the courts do not specify in the reasons for their judgments what standard of causation they apply, i.e. on what basis they establish the existence of (legal) causation.

Keywords: causation, Hungarian criminal law, responsibility, philosophy of law

Procedia PDF Downloads 44
583 Exploring Stakeholders’ Perceptions of the Implementation of the Door-to-Door Vaccination Campaign for the Oral Polio Vaccine (NOPV2) In Uganda: A Qualitative Study

Authors: Elizabeth B. Katana, Brenda N. Simbwa, Josephine Namayanja, Bob O. Amodan, Edirisa J. Nsubuga, Eva A. O. Laker

Abstract:

Background: Understanding stakeholders’ perceptions towards the implementation of a mass vaccination campaign is important to ensure the design of better strategies to address challenges. We explored stakeholders’ perceptions of the implementation of a nationwide door-to-door mass vaccination campaign for the oral polio vaccine (nOPV2) in Uganda for the two rounds that occurred in January and November 2022. Methods: A qualitative study was conducted among stakeholders who participated in the campaign implementation from 8 districts in Uganda using random sampling. We conducted 46 In-depth interviews lasting 30 – 40 minutes with 6 national/central supervisors, 12 district, 14 sub-county, and 14 parish-level supervisors. Stakeholders were asked about their experiences in the campaign implementation, including challenges faced and their opinions of the campaign impact and use of the door-to-door strategy. Data were analyzed thematically in line with the major campaign activities. Results: Most of the stakeholders were primarily concerned about poor planning, inadequate training of vaccination teams, community resistance including schools, challenges with recruitment and teaming of vaccinators, poor and delayed payments, lack of logistics and motivation for vaccination teams, the timing of the activities and implementing amidst COVID-19 and Ebola. The stakeholders believed that the first round was not well planned and implemented, while the second round was leveraged in their previous experiences. On the other hand, some positive experiences were noted with regard to communication, advocacy and mobilization, vaccine delivery and distribution, district readiness assessments, and cold chain management. Conclusion: This study identified many challenges that were faced in the implementation of the door-to-door mass campaign for nOPV2 in Uganda. This study identified that more needs to be done to improve door-to-door mass campaigns with a focus on motivating the implementers. These findings highlight the need for conducting performance reviews, improved planning, especially routine updates and verification of target populations and training in microplanning, and adequate mapping of community resistance to inform the implementation of future mass campaigns.

Keywords: mass polio vaccination campaigns, door-to-door strategy, stakeholders' perceptions, implementation challenges

Procedia PDF Downloads 74
582 The Influence of Production Hygiene Training on Farming Practices Employed by Rural Small-Scale Organic Farmers - South Africa

Authors: Mdluli Fezile, Schmidt Stefan, Thamaga-Chitja Joyce

Abstract:

In view of the frequently reported foodborne disease outbreaks caused by contaminated fresh produce, consumers have a preference for foods that meet requisite hygiene standards to reduce the risk of foodborne illnesses. Producing good quality fresh produce then becomes critical in improving market access and food security, especially for small-scale farmers. Questions of hygiene and subsequent microbiological quality in the rural small-scale farming sector of South Africa are even more crucial, given the policy drive to develop small-scale farming as a measure for reinforcement of household food security and reduction of poverty. Farming practices and methods, throughout the fresh produce value chain, influence the quality of the final product, which in turn determines its success in the market. This study’s aim was to therefore determine the extent to which training on organic farming methods, including modules such as Importance of Production Hygiene, influenced the hygienic farming practices employed by eTholeni small-scale organic farmers in uMbumbulu, KwaZulu-Natal- South Africa. Questionnaires were administered to 73 uncertified organic farmers and analysis showed that a total of 33 farmers were trained and supplied the local Agri-Hub while 40 had not received training. The questionnaire probed respondents’ attitudes, knowledge of hygiene and composting practices. Data analysis included descriptive statistics such as the Chi-square test and a logistic regression model. Descriptive analysis indicated that a majority of the farmers (60%) were female, most of which (73%) were above the age of 40. The logistic regression indicated that factors such as farmer training and prior experience in the farming sector had a significant influence on hygiene practices both at 5% significance levels. These results emphasize the importance of training, education and farming experience in implementing good hygiene practices in small-scale farming. It is therefore recommended that South African policies should advocate for small-scale farmer training, not only for subsistence purposes, but also with an aim of supplying produce markets with high fresh produce.

Keywords: small-scale farmers, leafy salad vegetables, organic produce, food safety, hygienic practices, food security

Procedia PDF Downloads 428
581 Characterization of WNK2 Role on Glioma Cells Vesicular Traffic

Authors: Viviane A. O. Silva, Angela M. Costa, Glaucia N. M. Hajj, Ana Preto, Aline Tansini, Martin Roffé, Peter Jordan, Rui M. Reis

Abstract:

Autophagy is a recycling and degradative system suggested to be a major cell death pathway in cancer cells. Autophagy pathway is interconnected with the endocytosis pathways sharing the same ultimate lysosomal destination. Lysosomes are crucial regulators of cell homeostasis, responsible to downregulate receptor signalling and turnover. It seems highly likely that derailed endocytosis can make major contributions to several hallmarks of cancer. WNK2, a member of the WNK (with-no-lysine [K]) subfamily of protein kinases, had been found downregulated by its promoter hypermethylation, and has been proposed to act as a specific tumour-suppressor gene in brain tumors. Although some contradictory studies indicated WNK2 as an autophagy modulator, its role in cancer cell death is largely unknown. There is also growing evidence for additional roles of WNK kinases in vesicular traffic. Aim: To evaluate the role of WNK2 in autophagy and endocytosis on glioma context. Methods: Wild-type (wt) A172 cells (WNK2 promoter-methylated), and A172 transfected either with an empty vector (Ev) or with a WNK2 expression vector, were used to assess the cellular basal capacities to promote autophagy, through western blot and flow-cytometry analysis. Additionally, we evaluated the effect of WNK2 on general endocytosis trafficking routes by immunofluorescence. Results: The re-expression of ectopic WNK2 did not interfere with autophagy-related protein light chain 3 (LC3-II) expression levels as well as did not promote mTOR signaling pathway alteration when compared with Ev or wt A172 cells. However, the restoration of WNK2 resulted in a marked increase (8 to 92,4%) of Acidic Vesicular Organelles formation (AVOs). Moreover, our results also suggest that WNK2 cells promotes delay in uptake and internalization rate of cholera toxin B and transferrin ligands. Conclusions: The restoration of WNK2 interferes in vesicular traffic during endocytosis pathway and increase AVOs formation. This results also suggest the role of WNK2 in growth factor receptor turnover related to cell growth and homeostasis and associates one more time, WNK2 silencing contribution in genesis of gliomas.

Keywords: autophagy, endocytosis, glioma, WNK2

Procedia PDF Downloads 370
580 The Effect of Foot Progression Angle on Human Lower Extremity

Authors: Sungpil Ha, Ju Yong Kang, Sangbaek Park, Seung-Ju Lee, Soo-Won Chae

Abstract:

The growing number of obese patients in aging societies has led to an increase in the number of patients with knee medial osteoarthritis (OA). Artificial joint insertion is the most common treatment for knee medial OA. Surgery is effective for patients with serious arthritic symptoms, but it is costly and dangerous. It is also inappropriate way to prevent a disease as an early stage. Therefore Non-operative treatments such as toe-in gait are proposed recently. Toe-in gait is one of non-surgical interventions, which restrain the progression of arthritis and relieves pain by reducing knee adduction moment (KAM) to facilitate lateral distribution of load on to knee medial cartilage. Numerous studies have measured KAM in various foot progression angle (FPA), and KAM data could be obtained by motion analysis. However, variations in stress at knee cartilage could not be directly observed or evaluated by these experiments of measuring KAM. Therefore, this study applied motion analysis to major gait points (1st peak, mid –stance, 2nd peak) with regard to FPA, and to evaluate the effects of FPA on the human lower extremity, the finite element (FE) method was employed. Three types of gait analysis (toe-in, toe-out, baseline gait) were performed with markers placed at the lower extremity. Ground reaction forces (GRF) were obtained by the force plates. The forces associated with the major muscles were computed using GRF and marker trajectory data. MRI data provided by the Visible Human Project were used to develop a human lower extremity FE model. FE analyses for three types of gait simulations were performed based on the calculated muscle force and GRF. We observed the maximum stress point during toe-in gait was lower than the other types, by comparing the results of FE analyses at the 1st peak across gait types. This is the same as the trend exhibited by KAM, measured through motion analysis in other papers. This indicates that the progression of knee medial OA could be suppressed by adopting toe-in gait. This study integrated motion analysis with FE analysis. One advantage of this method is that re-modeling is not required even with changes in posture. Therefore another type of gait simulation or various motions of lower extremity can be easily analyzed using this method.

Keywords: finite element analysis, gait analysis, human model, motion capture

Procedia PDF Downloads 338
579 NFTs, between Opportunities and Absence of Legislation: A Study on the Effect of the Rulings of the OpenSea Case

Authors: Andrea Ando

Abstract:

The development of the blockchain has been a major innovation in the technology field. It opened the door to the creation of novel cyberassets and currencies. In more recent times, the non-fungible tokens have started to be at the centre of media attention. Their popularity has been increasing since 2021, and they represent the latest in the world of distributed ledger technologies and cryptocurrencies. It seems more and more likely that NFTs will play a more important role in our online interactions. They are indeed increasingly taking part in the arts and technology sectors. Their impact on society and the market is still very difficult to define, but it is very likely that there will be a turning point in the world of digital assets. There are some examples of their peculiar behaviour and effect in our contemporary tech-market: the former CEO of the famous social media site Twitter sold an NFT of his first tweet for around £2,1 million ($2,5 million), or the National Basketball Association has created a platform to sale unique moment and memorabilia from the history of basketball through the non-fungible token technology. Their growth, as imaginable, paved the way for civil disputes, mostly regarding their position under the current intellectual property law in each jurisdiction. In April 2022, the High Court of England and Wales ruled in the OpenSea case that non-fungible tokens can be considered properties. The judge, indeed, concluded that the cryptoasset had all the indicia of property under common law (National Provincial Bank v. Ainsworth). The research has demonstrated that the ruling of the High Court is not providing enough answers to the dilemma of whether minting an NFT is a violation or not of intellectual property and/or property rights. Indeed, if, on the one hand, the technology follows the framework set by the case law (e.g., the 4 criteria of Ainsworth), on the other hand, the question that arises is what is effectively protected and owned by both the creator and the purchaser. Then the question that arises is whether a person has ownership of the cryptographed code, that it is indeed definable, identifiable, intangible, distinct, and has a degree of permanence, or what is attached to this block-chain, hence even a physical object or piece of art. Indeed, a simple code would not have any financial importance if it were not attached to something that is widely recognised as valuable. This was demonstrated first through the analysis of the expectations of intellectual property law. Then, after having laid the foundation, the paper examined the OpenSea case, and finally, it analysed whether the expectations were met or not.

Keywords: technology, technology law, digital law, cryptoassets, NFTs, NFT, property law, intellectual property law, copyright law

Procedia PDF Downloads 91
578 Safety Climate Assessment and Its Impact on the Productivity of Construction Enterprises

Authors: Krzysztof J. Czarnocki, F. Silveira, E. Czarnocka, K. Szaniawska

Abstract:

Research background: Problems related to the occupational health and decreasing level of safety occur commonly in the construction industry. Important factor in the occupational safety in construction industry is scaffold use. All scaffolds used in construction, renovation, and demolition shall be erected, dismantled and maintained in accordance with safety procedure. Increasing demand for new construction projects unfortunately still is linked to high level of occupational accidents. Therefore, it is crucial to implement concrete actions while dealing with scaffolds and risk assessment in construction industry, the way on doing assessment and liability of assessment is critical for both construction workers and regulatory framework. Unfortunately, professionals, who tend to rely heavily on their own experience and knowledge when taking decisions regarding risk assessment, may show lack of reliability in checking the results of decisions taken. Purpose of the article: The aim was to indicate crucial parameters that could be modeling with Risk Assessment Model (RAM) use for improving both building enterprise productivity and/or developing potential and safety climate. The developed RAM could be a benefit for predicting high-risk construction activities and thus preventing accidents occurred based on a set of historical accident data. Methodology/Methods: A RAM has been developed for assessing risk levels as various construction process stages with various work trades impacting different spheres of enterprise activity. This project includes research carried out by teams of researchers on over 60 construction sites in Poland and Portugal, under which over 450 individual research cycles were carried out. The conducted research trials included variable conditions of employee exposure to harmful physical and chemical factors, variable levels of stress of employees and differences in behaviors and habits of staff. Genetic modeling tool has been used for developing the RAM. Findings and value added: Common types of trades, accidents, and accident causes have been explored, in addition to suitable risk assessment methods and criteria. We have found that the initial worker stress level is more direct predictor for developing the unsafe chain leading to the accident rather than the workload, or concentration of harmful factors at the workplace or even training frequency and management involvement.

Keywords: safety climate, occupational health, civil engineering, productivity

Procedia PDF Downloads 321
577 Reactive Transport Modeling in Carbonate Rocks: A Single Pore Model

Authors: Priyanka Agrawal, Janou Koskamp, Amir Raoof, Mariette Wolthers

Abstract:

Calcite is the main mineral found in carbonate rocks, which form significant hydrocarbon reservoirs and subsurface repositories for CO2 sequestration. The injected CO2 mixes with the reservoir fluid and disturbs the geochemical equilibrium, triggering calcite dissolution. Different combinations of fluid chemistry and injection rate may therefore result in different evolution of porosity, permeability and dissolution patterns. To model the changes in porosity and permeability Kozeny-Carman equation K∝〖(∅)〗^n is used, where K is permeability and ∅ is porosity. The value of n is mostly based on experimental data or pore network models. In pore network models, this derivation is based on accuracy of relation used for conductivity and pore volume change. In fact, at a single pore scale, this relationship is the result of the pore shape development due to dissolution. We have prepared a new reactive transport model for a single pore which simulates the complex chemical reaction of carbonic-acid induced calcite dissolution and subsequent pore-geometry evolution at a single pore scale. We use COMSOL Multiphysics package 5.3 for the simulation. COMSOL utilizes the arbitary-Lagrangian Eulerian (ALE) method for the free-moving domain boundary. We examined the effect of flow rate on the evolution of single pore shape profiles due to calcite dissolution. We used three flow rates to cover diffusion dominated and advection-dominated transport regimes. The fluid in diffusion dominated flow (Pe number 0.037 and 0.37) becomes less reactive along the pore length and thus produced non-uniform pore shapes. However, for the advection-dominated flow (Pe number 3.75), the fast velocity of the fluid keeps the fluid relatively more reactive towards the end of the pore length, thus yielding uniform pore shape. Different pore shapes in terms of inlet opening vs overall pore opening will have an impact on the relation between changing volumes and conductivity. We have related the shape of pore with the Pe number which controls the transport regimes. For every Pe number, we have derived the relation between conductivity and porosity. These relations will be used in the pore network model to get the porosity and permeability variation.

Keywords: single pore, reactive transport, calcite system, moving boundary

Procedia PDF Downloads 374
576 Evaluation of the CRISP-DM Business Understanding Step: An Approach for Assessing the Predictive Power of Regression versus Classification for the Quality Prediction of Hydraulic Test Results

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

Digitalisation in production technology is a driver for the application of machine learning methods. Through the application of predictive quality, the great potential for saving necessary quality control can be exploited through the data-based prediction of product quality and states. However, the serial use of machine learning applications is often prevented by various problems. Fluctuations occur in real production data sets, which are reflected in trends and systematic shifts over time. To counteract these problems, data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets to extract stable features. Successful process control of the target variables aims to centre the measured values around a mean and minimise variance. Competitive leaders claim to have mastered their processes. As a result, much of the real data has a relatively low variance. For the training of prediction models, the highest possible generalisability is required, which is at least made more difficult by this data availability. The implementation of a machine learning application can be interpreted as a production process. The CRoss Industry Standard Process for Data Mining (CRISP-DM) is a process model with six phases that describes the life cycle of data science. As in any process, the costs to eliminate errors increase significantly with each advancing process phase. For the quality prediction of hydraulic test steps of directional control valves, the question arises in the initial phase whether a regression or a classification is more suitable. In the context of this work, the initial phase of the CRISP-DM, the business understanding, is critically compared for the use case at Bosch Rexroth with regard to regression and classification. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. Suitable methods for leakage volume flow regression and classification for inspection decision are applied. Impressively, classification is clearly superior to regression and achieves promising accuracies.

Keywords: classification, CRISP-DM, machine learning, predictive quality, regression

Procedia PDF Downloads 150
575 Concanavaline a Conjugated Bacterial Polyester Based PHBHHx Nanoparticles Loaded with Curcumin for the Ovarian Cancer Therapy

Authors: E. Kilicay, Z. Karahaliloglu, B. Hazer, E. B. Denkbas

Abstract:

In this study, we have prepared concanavaline A (ConA) functionalized curcumin (CUR) loaded PHBHHx (poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)) nanoparticles as a novel and efficient drug delivery system. CUR is a promising anticancer agent for various cancer types. The aim of this study was to evaluate therapeutic potential of curcumin loaded PHBHHx nanoparticles (CUR-NPs) and concanavaline A conjugated curcumin loaded NPs (ConA-CUR NPs) for ovarian cancer treatment. ConA was covalently connected to the carboxylic group of nanoparticles by EDC/NHS activation method. In the ligand attachment experiment, the binding capacity of ConA on the surface of NPs was found about 90%. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis showed that the prepared nanoparticles were smooth and spherical in shape. The size and zeta potential of prepared NPs were about 228±5 nm and −21.3 mV respectively. ConA-CUR NPs were characterized by FT-IR spectroscopy which confirmed the existence of CUR and ConA in the nanoparticles. The entrapment and loading efficiencies of different polymer/drug weight ratios, 1/0.125 PHBHHx/CUR= 1.25CUR-NPs; 1/0.25 PHBHHx/CUR= 2.5CUR-NPs; 1/0.5 PHBHHx/CUR= 5CUR-NPs, ConA-1.25CUR NPs, ConA-2.5CUR NPs and ConA-5CUR NPs were found to be ≈ 68%-16.8%; 55%-17.7 %; 45%-33.6%; 70%-15.7%; 60%-17%; 51%-30.2% respectively. In vitro drug release showed that the sustained release of curcumin was observed from CUR-NPs and ConA-CUR NPs over a period of 19 days. After binding of ConA, the release rate was slightly increased due to the migration of curcumin to the surface of the nanoparticles and the matrix integrities was decreased because of the conjugation reaction. This functionalized nanoparticles demonstrated high drug loading capacity, sustained drug release profile, and high and long term anticancer efficacy in human cancer cell lines. Anticancer activity of ConA-CUR NPs was proved by MTT assay and reconfirmed by apoptosis and necrosis assay. The anticancer activity of ConA-CUR NPs was measured in ovarian cancer cells (SKOV-3) and the results revealed that the ConA-CUR NPs had better tumor cells decline activity than free curcumin. The nacked nanoparticles have no cytotoxicity against human ovarian carcinoma cells. Thus the developed functionalized nanoformulation could be a promising candidate in cancer therapy.

Keywords: curcumin, curcumin-PHBHHx nanoparticles, concanavalin A, concanavalin A-curcumin PHBHHx nanoparticles, PHBHHx nanoparticles, ovarian cancer cell

Procedia PDF Downloads 401
574 Biological Regulation of Endogenous Enzymatic Activity of Rainbow Trout (Oncorhynchus Mykiss) with Protease Inhibitors Chickpea in Model Systems

Authors: Delgado-Meza M., Minor-Pérez H.

Abstract:

Protease is the generic name of enzymes that hydrolyze proteins. These are classified in the subgroup EC3.4.11-99X of the classification enzymes. In food technology the proteolysis is used to modify functional and nutritional properties of food, and in some cases this proteolysis may cause food spoilage. In general, seafood and rainbow trout have accelerated decomposition process once it has done its capture, due to various factors such as the endogenous enzymatic activity that can result in loss of structure, shape and firmness, besides the release of amino acid precursors of biogenic amines. Some studies suggest the use of protease inhibitors from legume as biological regulators of proteolytic activity. The enzyme inhibitors are any substance that reduces the rate of a reaction catalyzed by an enzyme. The objective of this study was to evaluate the reduction of the proteolytic activity of enzymes in extracts of rainbow trout with protease inhibitors obtained from chickpea flour. Different proportions of rainbow trout enzyme extract (75%, 50% and 25%) and extract chickpea enzyme inhibitors were evaluated. Chickpea inhibitors were obtained by mixing 5 g of flour in 30 mL of pH 7.0 phosphate buffer. The sample was centrifuged at 8000 rpm for 10 min. The supernatant was stored at -15°C. Likewise, 20 g of rainbow trout were ground in 20 mL of phosphate buffer solution at pH 7.0 and the mixture was centrifuged at 5000 rpm for 20 min. The supernatant was used for the study. In each treatment was determined the specific enzymatic activity with the technique of Kunitz, using hemoglobin as substrate for the enzymes acid fraction and casein for basic enzymes. Also biuret protein was quantified for each treatment. The results showed for fraction of basic enzymes in the treatments evaluated, that were inhibition of endogenous enzymatic activity. Inhibition values compared to control were 51.05%, 56.59% and 59.29% when the proportions of endogenous enzymes extract rainbow trout were 75%, 50% and 25% and the remaining volume used was extract with inhibitors. Treatments with acid enzymes showed no reduction in enzyme activity. In conclusion chickpea flour reduced the endogenous enzymatic activity of rainbow trout, which may favor its application to increase the half-life of this food. The authors acknowledge the funding provided by the CONACYT for the project 131998.

Keywords: rainbouw trout, enzyme inhibitors, proteolysis, enzyme activity

Procedia PDF Downloads 426
573 Macroeconomic Effects and Dynamics of Natural Disaster Damages: Evidence from SETX on the Resiliency Hypothesis

Authors: Agim Kukelii, Gevorg Sargsyan

Abstract:

This study, focusing on the base regional area (county level), estimates the effect of natural disaster damages on aggregate personal income, aggregate wages, wages per worker, aggregate employment, and aggregate income transfer. The study further estimates the dynamics of personal income, employment, and wages under natural disaster shocks. Southeast Texas, located at the center of Golf Coast, is hit by meteorological and hydrological caused natural disasters yearly. On average, there are more than four natural disasters per year that cane an estimated damage average of 2.2% of real personal income. The study uses the panel data method to estimate the average effect of natural disasters on the area’s economy (personal income, wages, employment, and income transfer). It also uses Panel Vector Autoregressive (PVAR) model to study the dynamics of macroeconomic variables under natural disaster shocks. The study finds that the average effect of natural disasters is positive for personal income and income transfer and is negative for wages and employment. The PVAR and the impulse response function estimates reveal that natural disaster shocks cause a decrease in personal income, employment, and wages. However, the economy’s variables bounce back after three years. The novelty of this study rests on several aspects. First, this is the first study to investigate the effects of natural disasters on macroeconomic variables at a regional level. Second, the study uses direct measures of natural disaster damages. Third, the study estimates that the time that the local economy takes to absorb the natural disaster damages shocks is three years. This is a relatively good reaction to the local economy, therefore, adding to the “resiliency” hypothesis. The study has several implications for policymakers, businesses, and households. First, this study serves to increase the awareness of local stakeholders that natural disaster damages do worsen, macroeconomic variables, such as personal income, employment, and wages beyond the immediate damages to residential and commercial properties, physical infrastructure, and discomfort in daily lives. Second, the study estimates that these effects linger on the economy on average for three years, which would require policymakers to factor in the time area need to be on focus.

Keywords: natural disaster damages, macroeconomics effects, PVAR, panel data

Procedia PDF Downloads 91