Search results for: user
1901 A Survey of Online User Perspectives and Age Profile in an Undergraduate Fundamental Business Technology Course
Authors: Danielle Morin, Jennifer D. E. Thomas, Raafat G. Saade, Daniela Petrachi
Abstract:
Over the past few decades, more and more students choose to enroll in online classes instead of attending in-class lectures. While past studies consider students’ attitudes towards online education and how their grades differed from in-class lectures, the profile of the online student remains a blur. To shed light on this, an online survey was administered to about 1,500 students enrolled in an undergraduate Fundamental Business Technology course at a Canadian University. The survey was comprised of questions on students’ demographics, their reasons for choosing online courses, their expectations towards the course, the communication channels they use for the course with fellow students and with the instructor. This paper focused on the research question: Do the perspectives of online students concerning the online experience, in general, and in the course in particular, differ according to age profile? After several statistical analyses, it was found that age does have an impact on the reasons why students select online classes instead of in-class. For example, it was found that the perception that an online course might be easier than in-class delivery was a more important reason for younger students than for older ones. Similarly, the influence of friends is much more important for younger students, than for older students. Similar results were found when analyzing students’ expectation about the online course and their use of communication tools. Overall, the age profile of online users had an impact on reasons, expectations and means of communication in an undergraduate Fundamental Business Technology course. It is left to be seen if this holds true across other courses, graduate and undergraduate.Keywords: communication channels, fundamentals of business technology, online classes, pedagogy, user age profile, user perspectives
Procedia PDF Downloads 2501900 The Development of an Automated Computational Workflow to Prioritize Potential Resistance Variants in HIV Integrase Subtype C
Authors: Keaghan Brown
Abstract:
The prioritization of drug resistance mutations impacting protein folding or protein-drug and protein-DNA interactions within macromolecular systems is critical to the success of treatment regimens. With a continual increase in computational tools to assess these impacts, the need for scalability and reproducibility became an essential component of computational analysis and experimental research. Here it introduce a bioinformatics pipeline that combines several structural analysis tools in a simplified workflow, by optimizing the present computational hardware and software to automatically ease the flow of data transformations. Utilizing preestablished software tools, it was possible to develop a pipeline with a set of pre-defined functions that will automate mutation introduction into the HIV-1 Integrase protein structure, calculate the gain and loss of polar interactions and calculate the change in energy of protein fold. Additionally, an automated molecular dynamics analysis was implemented which reduces the constant need for user input and output management. The resulting pipeline, Automated Mutation Introduction and Analysis (AMIA) is an open source set of scripts designed to introduce and analyse the effects of mutations on the static protein structure as well as the results of the multi-conformational states from molecular dynamic simulations. The workflow allows the user to visualize all outputs in a user friendly manner thereby successfully enabling the prioritization of variant systems for experimental validation.Keywords: automated workflow, variant prioritization, drug resistance, HIV Integrase
Procedia PDF Downloads 771899 Searching Linguistic Synonyms through Parts of Speech Tagging
Authors: Faiza Hussain, Usman Qamar
Abstract:
Synonym-based searching is recognized to be a complicated problem as text mining from unstructured data of web is challenging. Finding useful information which matches user need from bulk of web pages is a cumbersome task. In this paper, a novel and practical synonym retrieval technique is proposed for addressing this problem. For replacement of semantics, user intent is taken into consideration to realize the technique. Parts-of-Speech tagging is applied for pattern generation of the query and a thesaurus for this experiment was formed and used. Comparison with Non-Context Based Searching, Context Based searching proved to be a more efficient approach while dealing with linguistic semantics. This approach is very beneficial in doing intent based searching. Finally, results and future dimensions are presented.Keywords: natural language processing, text mining, information retrieval, parts-of-speech tagging, grammar, semantics
Procedia PDF Downloads 3071898 A Recommender System for Job Seekers to Show up Companies Based on Their Psychometric Preferences and Company Sentiment Scores
Authors: A. Ashraff
Abstract:
The increasing importance of the web as a medium for electronic and business transactions has served as a catalyst or rather a driving force for the introduction and implementation of recommender systems. Recommender Systems play a major role in processing and analyzing thousands of data rows or reviews and help humans make a purchase decision of a product or service. It also has the ability to predict whether a particular user would rate a product or service based on the user’s profile behavioral pattern. At present, Recommender Systems are being used extensively in every domain known to us. They are said to be ubiquitous. However, in the field of recruitment, it’s not being utilized exclusively. Recent statistics show an increase in staff turnover, which has negatively impacted the organization as well as the employee. The reasons being company culture, working flexibility (work from home opportunity), no learning advancements, and pay scale. Further investigations revealed that there are lacking guidance or support, which helps a job seeker find the company that will suit him best, and though there’s information available about companies, job seekers can’t read all the reviews by themselves and get an analytical decision. In this paper, we propose an approach to study the available review data on IT companies (score their reviews based on user review sentiments) and gather information on job seekers, which includes their Psychometric evaluations. Then presents the job seeker with useful information or rather outputs on which company is most suitable for the job seeker. The theoretical approach, Algorithmic approach and the importance of such a system will be discussed in this paper.Keywords: psychometric tests, recommender systems, sentiment analysis, hybrid recommender systems
Procedia PDF Downloads 1061897 User Requirements Analysis for the Development of Assistive Navigation Mobile Apps for Blind and Visually Impaired People
Authors: Paraskevi Theodorou, Apostolos Meliones
Abstract:
In the context of the development process of two assistive navigation mobile apps for blind and visually impaired people (BVI) an extensive qualitative analysis of the requirements of potential users has been conducted. The analysis was based on interviews with BVIs and aimed to elicit not only their needs with respect to autonomous navigation but also their preferences on specific features of the apps under development. The elicited requirements were structured into four main categories, namely, requirements concerning the capabilities, functionality and usability of the apps, as well as compatibility requirements with respect to other apps and services. The main categories were then further divided into nine sub-categories. This classification, along with its content, aims to become a useful tool for the researcher or the developer who is involved in the development of digital services for BVI.Keywords: accessibility, assistive mobile apps, blind and visually impaired people, user requirements analysis
Procedia PDF Downloads 1231896 Context Detection in Spreadsheets Based on Automatically Inferred Table Schema
Authors: Alexander Wachtel, Michael T. Franzen, Walter F. Tichy
Abstract:
Programming requires years of training. With natural language and end user development methods, programming could become available to everyone. It enables end users to program their own devices and extend the functionality of the existing system without any knowledge of programming languages. In this paper, we describe an Interactive Spreadsheet Processing Module (ISPM), a natural language interface to spreadsheets that allows users to address ranges within the spreadsheet based on inferred table schema. Using the ISPM, end users are able to search for values in the schema of the table and to address the data in spreadsheets implicitly. Furthermore, it enables them to select and sort the spreadsheet data by using natural language. ISPM uses a machine learning technique to automatically infer areas within a spreadsheet, including different kinds of headers and data ranges. Since ranges can be identified from natural language queries, the end users can query the data using natural language. During the evaluation 12 undergraduate students were asked to perform operations (sum, sort, group and select) using the system and also Excel without ISPM interface, and the time taken for task completion was compared across the two systems. Only for the selection task did users take less time in Excel (since they directly selected the cells using the mouse) than in ISPM, by using natural language for end user software engineering, to overcome the present bottleneck of professional developers.Keywords: natural language processing, natural language interfaces, human computer interaction, end user development, dialog systems, data recognition, spreadsheet
Procedia PDF Downloads 3111895 Evaluation of Gesture-Based Password: User Behavioral Features Using Machine Learning Algorithms
Authors: Lakshmidevi Sreeramareddy, Komalpreet Kaur, Nane Pothier
Abstract:
Graphical-based passwords have existed for decades. Their major advantage is that they are easier to remember than an alphanumeric password. However, their disadvantage (especially recognition-based passwords) is the smaller password space, making them more vulnerable to brute force attacks. Graphical passwords are also highly susceptible to the shoulder-surfing effect. The gesture-based password method that we developed is a grid-free, template-free method. In this study, we evaluated the gesture-based passwords for usability and vulnerability. The results of the study are significant. We developed a gesture-based password application for data collection. Two modes of data collection were used: Creation mode and Replication mode. In creation mode (Session 1), users were asked to create six different passwords and reenter each password five times. In replication mode, users saw a password image created by some other user for a fixed duration of time. Three different duration timers, such as 5 seconds (Session 2), 10 seconds (Session 3), and 15 seconds (Session 4), were used to mimic the shoulder-surfing attack. After the timer expired, the password image was removed, and users were asked to replicate the password. There were 74, 57, 50, and 44 users participated in Session 1, Session 2, Session 3, and Session 4 respectfully. In this study, the machine learning algorithms have been applied to determine whether the person is a genuine user or an imposter based on the password entered. Five different machine learning algorithms were deployed to compare the performance in user authentication: namely, Decision Trees, Linear Discriminant Analysis, Naive Bayes Classifier, Support Vector Machines (SVMs) with Gaussian Radial Basis Kernel function, and K-Nearest Neighbor. Gesture-based password features vary from one entry to the next. It is difficult to distinguish between a creator and an intruder for authentication. For each password entered by the user, four features were extracted: password score, password length, password speed, and password size. All four features were normalized before being fed to a classifier. Three different classifiers were trained using data from all four sessions. Classifiers A, B, and C were trained and tested using data from the password creation session and the password replication with a timer of 5 seconds, 10 seconds, and 15 seconds, respectively. The classification accuracies for Classifier A using five ML algorithms are 72.5%, 71.3%, 71.9%, 74.4%, and 72.9%, respectively. The classification accuracies for Classifier B using five ML algorithms are 69.7%, 67.9%, 70.2%, 73.8%, and 71.2%, respectively. The classification accuracies for Classifier C using five ML algorithms are 68.1%, 64.9%, 68.4%, 71.5%, and 69.8%, respectively. SVMs with Gaussian Radial Basis Kernel outperform other ML algorithms for gesture-based password authentication. Results confirm that the shorter the duration of the shoulder-surfing attack, the higher the authentication accuracy. In conclusion, behavioral features extracted from the gesture-based passwords lead to less vulnerable user authentication.Keywords: authentication, gesture-based passwords, machine learning algorithms, shoulder-surfing attacks, usability
Procedia PDF Downloads 1071894 Co-Design of Accessible Speech Recognition for Users with Dysarthric Speech
Authors: Elizabeth Howarth, Dawn Green, Sean Connolly, Geena Vabulas, Sara Smolley
Abstract:
Through the EU Horizon 2020 Nuvoic Project, the project team recruited 70 individuals in the UK and Ireland to test the Voiceitt speech recognition app and provide user feedback to developers. The app is designed for people with dysarthric speech, to support communication with unfamiliar people and access to speech-driven technologies such as smart home equipment and smart assistants. Participants with atypical speech, due to a range of conditions such as cerebral palsy, acquired brain injury, Down syndrome, stroke and hearing impairment, were recruited, primarily through organisations supporting disabled people. Most had physical or learning disabilities in addition to dysarthric speech. The project team worked with individuals, their families and local support teams, to provide access to the app, including through additional assistive technologies where needed. Testing was user-led, with participants asked to identify and test use cases most relevant to their daily lives over a period of three months or more. Ongoing technical support and training were provided remotely and in-person throughout the testing period. Structured interviews were used to collect feedback on users' experiences, with delivery adapted to individuals' needs and preferences. Informal feedback was collected through ongoing contact between participants, their families and support teams and the project team. Focus groups were held to collect feedback on specific design proposals. User feedback shared with developers has led to improvements to the user interface and functionality, including faster voice training, simplified navigation, the introduction of gamification elements and of switch access as an alternative to touchscreen access, with other feature requests from users still in development. This work offers a case-study in successful and inclusive co-design with the disabled community.Keywords: co-design, assistive technology, dysarthria, inclusive speech recognition
Procedia PDF Downloads 1101893 Exploratory Study of Individual User Characteristics That Predict Attraction to Computer-Mediated Social Support Platforms and Mental Health Apps
Authors: Rachel Cherner
Abstract:
Introduction: The current study investigates several user characteristics that may predict the adoption of digital mental health supports. The extent to which individual characteristics predict preferences for functional elements of computer-mediated social support (CMSS) platforms and mental health (MH) apps is relatively unstudied. Aims: The present study seeks to illuminate the relationship between broad user characteristics and perceived attraction to CMSS platforms and MH apps. Methods: Participants (n=353) were recruited using convenience sampling methods (i.e., digital flyers, email distribution, and online survey forums). The sample was 68% male, and 32% female, with a mean age of 29. Participant racial and ethnic breakdown was 75% White, 7%, 5% Asian, and 5% Black or African American. Participants were asked to complete a 25-minute self-report questionnaire that included empirically validated measures assessing a battery of characteristics (i.e., subjective levels of anxiety/depression via PHQ-9 (Patient Health Questionnaire 9-item) and GAD-7 (Generalized Anxiety Disorder 7-item); attachment style via MAQ (Measure of Attachment Qualities); personality types via TIPI (The 10-Item Personality Inventory); growth mindset and mental health-seeking attitudes via GM (Growth Mindset Scale) and MHSAS (Mental Help Seeking Attitudes Scale)) and subsequent attitudes toward CMSS platforms and MH apps. Results: A stepwise linear regression was used to test if user characteristics significantly predicted attitudes towards key features of CMSS platforms and MH apps. The overall regression was statistically significant (R² =.20, F(1,344)=14.49, p<.000). Conclusion: This original study examines the clinical and sociocultural factors influencing decisions to use CMSS platforms and MH apps. Findings provide valuable insight for increasing adoption and engagement with digital mental health support. Fostering a growth mindset may be a method of increasing participant/patient engagement. In addition, CMSS platforms and MH apps may empower under-resourced and minority groups to gain basic access to mental health support. We do not assume this final model contains the best predictors of use; this is merely a preliminary step toward understanding the psychology and attitudes of CMSS platform/MH app users.Keywords: computer-mediated social support platforms, digital mental health, growth mindset, health-seeking attitudes, mental health apps, user characteristics
Procedia PDF Downloads 921892 Comparison Between PID and PD Controllers for 4 Cable-Based Robots
Authors: Fouad Inel, Lakhdar Khochemane
Abstract:
This article presents a comparative response specification performance between two controllers of three and four cable based robots for various applications. The main objective of this work is: the first is to use the direct and inverse geometric model to study and simulate the end effector position of the robot with three and four cables. A graphical user interface has been implemented in order to visualizing the position of the robot. Secondly, we present the determination of static and dynamic tensions and lengths of cables required to flow different trajectories. At the end, we study the response of our systems in closed loop with a Proportional-IntegratedDerivative (PID) and Proportional-Integrated (PD) controllers then this last are compared the results of the same examples using MATLAB/Simulink; we found that the PID method gives the better performance, such as rapidly speed response, settling time, compared to PD controller.Keywords: dynamic modeling, geometric modeling, graphical user interface, open loop, parallel cable-based robots, PID/PD controllers
Procedia PDF Downloads 4211891 Unsupervised Assistive and Adaptative Intelligent Agent in Smart Enviroment
Authors: Sebastião Pais, João Casal, Ricardo Ponciano, Sérgio Lorenço
Abstract:
The adaptation paradigm is a basic defining feature for pervasive computing systems. Adaptation systems must work efficiently in a smart environment while providing suitable information relevant to the user system interaction. The key objective is to deduce the information needed information changes. Therefore relying on fixed operational models would be inappropriate. This paper presents a study on developing an Intelligent Personal Assistant to assist the user in interacting with their Smart Environment. We propose an Unsupervised and Language-Independent Adaptation through Intelligent Speech Interface and a set of methods of Acquiring Knowledge, namely Semantic Similarity and Unsupervised Learning.Keywords: intelligent personal assistants, intelligent speech interface, unsupervised learning, language-independent, knowledge acquisition, association measures, symmetric word similarities, attributional word similarities
Procedia PDF Downloads 5621890 Co-payment Strategies for Chronic Medications: A Qualitative and Comparative Analysis at European Level
Authors: Pedro M. Abreu, Bruno R. Mendes
Abstract:
The management of pharmacotherapy and the process of dispensing medicines is becoming critical in clinical pharmacy due to the increase of incidence and prevalence of chronic diseases, the complexity and customization of therapeutic regimens, the introduction of innovative and more expensive medicines, the unbalanced relation between expenditure and revenue as well as due to the lack of rationalization associated with medication use. For these reasons, co-payments emerged in Europe in the 70s and have been applied over the past few years in healthcare. Co-payments lead to a rationing and rationalization of user’s access under healthcare services and products, and simultaneously, to a qualification and improvement of the services and products for the end-user. This analysis, under hospital practices particularly and co-payment strategies in general, was carried out on all the European regions and identified four reference countries, that apply repeatedly this tool and with different approaches. The structure, content and adaptation of European co-payments were analyzed through 7 qualitative attributes and 19 performance indicators, and the results expressed in a scorecard, allowing to conclude that the German models (total score of 68,2% and 63,6% in both elected co-payments) can collect more compliance and effectiveness, the English models (total score of 50%) can be more accessible, and the French models (total score of 50%) can be more adequate to the socio-economic and legal framework. Other European models did not show the same quality and/or performance, so were not taken as a standard in the future design of co-payments strategies. In this sense, we can see in the co-payments a strategy not only to moderate the consumption of healthcare products and services, but especially to improve them, as well as a strategy to increment the value that the end-user assigns to these services and products, such as medicines.Keywords: clinical pharmacy, co-payments, healthcare, medicines
Procedia PDF Downloads 2511889 Unsupervised Assistive and Adaptive Intelligent Agent in Smart Environment
Authors: Sebastião Pais, João Casal, Ricardo Ponciano, Sérgio Lourenço
Abstract:
The adaptation paradigm is a basic defining feature for pervasive computing systems. Adaptation systems must work efficiently in smart environment while providing suitable information relevant to the user system interaction. The key objective is to deduce the information needed information changes. Therefore, relying on fixed operational models would be inappropriate. This paper presents a study on developing a Intelligent Personal Assistant to assist the user in interacting with their Smart Environment. We propose a Unsupervised and Language-Independent Adaptation through Intelligent Speech Interface and a set of methods of Acquiring Knowledge, namely Semantic Similarity and Unsupervised Learning.Keywords: intelligent personal assistants, intelligent speech interface, unsupervised learning, language-independent, knowledge acquisition, association measures, symmetric word similarities, attributional word similarities
Procedia PDF Downloads 6431888 A Comprehensive Survey on Machine Learning Techniques and User Authentication Approaches for Credit Card Fraud Detection
Authors: Niloofar Yousefi, Marie Alaghband, Ivan Garibay
Abstract:
With the increase of credit card usage, the volume of credit card misuse also has significantly increased, which may cause appreciable financial losses for both credit card holders and financial organizations issuing credit cards. As a result, financial organizations are working hard on developing and deploying credit card fraud detection methods, in order to adapt to ever-evolving, increasingly sophisticated defrauding strategies and identifying illicit transactions as quickly as possible to protect themselves and their customers. Compounding on the complex nature of such adverse strategies, credit card fraudulent activities are rare events compared to the number of legitimate transactions. Hence, the challenge to develop fraud detection that are accurate and efficient is substantially intensified and, as a consequence, credit card fraud detection has lately become a very active area of research. In this work, we provide a survey of current techniques most relevant to the problem of credit card fraud detection. We carry out our survey in two main parts. In the first part, we focus on studies utilizing classical machine learning models, which mostly employ traditional transnational features to make fraud predictions. These models typically rely on some static physical characteristics, such as what the user knows (knowledge-based method), or what he/she has access to (object-based method). In the second part of our survey, we review more advanced techniques of user authentication, which use behavioral biometrics to identify an individual based on his/her unique behavior while he/she is interacting with his/her electronic devices. These approaches rely on how people behave (instead of what they do), which cannot be easily forged. By providing an overview of current approaches and the results reported in the literature, this survey aims to drive the future research agenda for the community in order to develop more accurate, reliable and scalable models of credit card fraud detection.Keywords: Credit Card Fraud Detection, User Authentication, Behavioral Biometrics, Machine Learning, Literature Survey
Procedia PDF Downloads 1211887 Exploring the Relationship Between Past and Present Reviews: The Influence of User Generated Content on Future Hotel Guest Experience Perceptions
Authors: Sacha Joseph-Mathews, Leili Javadpour
Abstract:
In the tourism industry, hoteliers spend millions annually on marketing and positioning efforts for their respective hotels, all in an effort to create a specific image in the minds of the consumer. Yet despite extensive efforts to seduce potential hotel guests with sophisticated advertising messages generated by hotel entities, consumers continue to mistrust corporate branding, preferring instead to place their trust in the reviews of their consumer peers. In today’s complex and cluttered marketplace, online reviews can serve as a mediator for consumers who do not have actual knowledge and experiences with the brand, but are in the process of deciding whether or not to engage in a consumption exercise. Traditionally, consumers have used online reviews as a source of comfort and confirmation of a product/service’s positioning. But today, very few customers make any purchase decisions without first researching existing user reviews, making reviews more of a necessity, rather than a luxury in the purchase decision process. The influence of user generated content (UGC) is amplified in the tourism industry; as more than a third of potential hotel guests will not book a room without first reading a review. As corporate branding becomes less relevant and online reviews become more important, how much of the consumer’s stay expectations are being dictated by existing UGC? Moreover, as hotel guest experience a hotel through the lens of an existing review, how much of their stay and in turn their review, would have been influenced by those reviews that they read? Ultimately, there is the potential for UGC to dictate what potential guests will be most critical about, and or most focused on during their stay. If UGC is a stronger influencer in the purchase decision process than corporate branding, doesn’t it have the potential to dictate, the entire stay experience by influencing the expectations of the guest prior to them arriving on the property? For example, if a hotel is an eco-destination and they focus their branding on their website around sustainability and the retreat nature of the hotel. Yet, guest reviews constantly discuss how dissatisfactory the service and food was with no mention of nature or sustainability, will future reviews then focus primarily on the food? Using text analysis software to examine over 25,000 online reviews, we explore the extent to which new reviews are influenced by wording used in previous reviews for a hotel property, versus content generated by corporate positioning. Additionally, we investigate how distinct hotel related UGC is across different types of tourism destinations. Our findings suggest that UGC can have a greater impact on future reviews, than corporate branding and there is more cohesiveness across UGC of different types of hotel properties than anticipated. A model of User Generated Content Influence is presented and the managerial impact of the power of online reviews to trump corporate branding and shape future user experiences is discussed.Keywords: user generated content, UGC, corporate branding, online reviews, hotels and tourism
Procedia PDF Downloads 941886 Social Media Data Analysis for Personality Modelling and Learning Styles Prediction Using Educational Data Mining
Authors: Srushti Patil, Preethi Baligar, Gopalkrishna Joshi, Gururaj N. Bhadri
Abstract:
In designing learning environments, the instructional strategies can be tailored to suit the learning style of an individual to ensure effective learning. In this study, the information shared on social media like Facebook is being used to predict learning style of a learner. Previous research studies have shown that Facebook data can be used to predict user personality. Users with a particular personality exhibit an inherent pattern in their digital footprint on Facebook. The proposed work aims to correlate the user's’ personality, predicted from Facebook data to the learning styles, predicted through questionnaires. For Millennial learners, Facebook has become a primary means for information sharing and interaction with peers. Thus, it can serve as a rich bed for research and direct the design of learning environments. The authors have conducted this study in an undergraduate freshman engineering course. Data from 320 freshmen Facebook users was collected. The same users also participated in the learning style and personality prediction survey. The Kolb’s Learning style questionnaires and Big 5 personality Inventory were adopted for the survey. The users have agreed to participate in this research and have signed individual consent forms. A specific page was created on Facebook to collect user data like personal details, status updates, comments, demographic characteristics and egocentric network parameters. This data was captured by an application created using Python program. The data captured from Facebook was subjected to text analysis process using the Linguistic Inquiry and Word Count dictionary. An analysis of the data collected from the questionnaires performed reveals individual student personality and learning style. The results obtained from analysis of Facebook, learning style and personality data were then fed into an automatic classifier that was trained by using the data mining techniques like Rule-based classifiers and Decision trees. This helps to predict the user personality and learning styles by analysing the common patterns. Rule-based classifiers applied for text analysis helps to categorize Facebook data into positive, negative and neutral. There were totally two models trained, one to predict the personality from Facebook data; another one to predict the learning styles from the personalities. The results show that the classifier model has high accuracy which makes the proposed method to be a reliable one for predicting the user personality and learning styles.Keywords: educational data mining, Facebook, learning styles, personality traits
Procedia PDF Downloads 2311885 Numeric Modeling of Condensation of Water Vapor from Humid Air in a Room
Authors: Nguyen Van Que, Nguyen Huy The
Abstract:
This paper presents combined natural and forced convection of humid air flow. The film condensation of water vapour on a cold floor was investigated using ANSYS Fluent software. User-defined Functions(UDFs) were developed and added to address the issue of film condensation at the surface of the floor. Those UDFs were validated by analytical results on a flat plate. The film condensation model based on mass transfer was used to solve phase change. On the floor, condensation rate was obtained by mass fraction change near the floor. The study investigated effects of inlet velocity, inlet relative humidity and cold floor temperature on the condensation rate. The simulations were done in both 2D and 3D models to show the difference and need for 3D modeling of condensation.Keywords: heat and mass transfer, convection, condensation, relative humidity, user-defined functions
Procedia PDF Downloads 3311884 Design On Demand (DoD): Spiral Model of The Lifecycle of Products in The Personal 3D-Printed Products' Market
Authors: Zuk Nechemia Turbovich
Abstract:
This paper introduces DoD, a contextual spiral model that describes the lifecycle of products intended for manufacturing using Personal 3D Printers (P3DP). The study is based on a review of the desktop P3DPs market that shows that the combination of digital connectivity, coupled with the potential ownership of P3DP by home users, is radically changing the form of the product lifecycle, comparatively to familiar lifecycle paradigms. The paper presents the change in the design process, considering the characterization of product types in the P3DP market and the possibility of having a direct dialogue between end-user and product designers. The model, as an updated paradigm, provides a strategic perspective on product design and tools for success, understanding that design is subject to rapid and continuous improvement and that products are subject to repair, update, and customization. The paper will include a review of real cases.Keywords: lifecycle, mass-customization, personal 3d-printing, user involvement
Procedia PDF Downloads 1831883 A Bottleneck-Aware Power Management Scheme in Heterogeneous Processors for Web Apps
Authors: Inyoung Park, Youngjoo Woo, Euiseong Seo
Abstract:
With the advent of WebGL, Web apps are now able to provide high quality graphics by utilizing the underlying graphic processing units (GPUs). Despite that the Web apps are becoming common and popular, the current power management schemes, which were devised for the conventional native applications, are suboptimal for Web apps because of the additional layer, the Web browser, between OS and application. The Web browser running on a CPU issues GL commands, which are for rendering images to be displayed by the Web app currently running, to the GPU and the GPU processes them. The size and number of issued GL commands determine the processing load of the GPU. While the GPU is processing the GL commands, CPU simultaneously executes the other compute intensive threads. The actual user experience will be determined by either CPU processing or GPU processing depending on which of the two is the more demanded resource. For example, when the GPU work queue is saturated by the outstanding commands, lowering the performance level of the CPU does not affect the user experience because it is already deteriorated by the retarded execution of GPU commands. Consequently, it would be desirable to lower CPU or GPU performance level to save energy when the other resource is saturated and becomes a bottleneck in the execution flow. Based on this observation, we propose a power management scheme that is specialized for the Web app runtime environment. This approach incurs two technical challenges; identification of the bottleneck resource and determination of the appropriate performance level for unsaturated resource. The proposed power management scheme uses the CPU utilization level of the Window Manager to tell which one is the bottleneck if exists. The Window Manager draws the final screen using the processed results delivered from the GPU. Thus, the Window Manager is on the critical path that determines the quality of user experience and purely executed by the CPU. The proposed scheme uses the weighted average of the Window Manager utilization to prevent excessive sensitivity and fluctuation. We classified Web apps into three categories using the analysis results that measure frame-per-second (FPS) changes under diverse CPU/GPU clock combinations. The results showed that the capability of the CPU decides user experience when the Window Manager utilization is above 90% and consequently, the proposed scheme decreases the performance level of CPU by one step. On the contrary, when its utilization is less than 60%, the bottleneck usually lies in the GPU and it is desirable to decrease the performance of GPU. Even the processing unit that is not on critical path, excessive performance drop can occur and that may adversely affect the user experience. Therefore, our scheme lowers the frequency gradually, until it finds an appropriate level by periodically checking the CPU utilization. The proposed scheme reduced the energy consumption by 10.34% on average in comparison to the conventional Linux kernel, and it worsened their FPS by 1.07% only on average.Keywords: interactive applications, power management, QoS, Web apps, WebGL
Procedia PDF Downloads 1921882 PRISM: An Analytical Tool for Forest Plan Development
Authors: Dung Nguyen, Yu Wei, Eric Henderson
Abstract:
Analytical tools have been used for decades to assist in the development of forest plans. In 2016, a new decision support system, PRISM, was jointly developed by United States Forest Service (USFS) Northern Region and Colorado State University to support the forest planning process. Prism has a friendly user interface with functionality for database management, model development, data visualization, and sensitivity analysis. The software is tailored for USFS planning, but it is flexible enough to support planning efforts by other forestland owners and managers. Here, the core capability of PRISM and its applications in developing plans for several United States national forests are presented. The strengths of PRISM are also discussed to show its potential of being a preferable tool for managers and experts in the domain of forest management and planning.Keywords: decision support, forest management, forest plan, graphical user interface, software
Procedia PDF Downloads 1111881 Towards Learning Query Expansion
Authors: Ahlem Bouziri, Chiraz Latiri, Eric Gaussier
Abstract:
The steady growth in the size of textual document collections is a key progress-driver for modern information retrieval techniques whose effectiveness and efficiency are constantly challenged. Given a user query, the number of retrieved documents can be overwhelmingly large, hampering their efficient exploitation by the user. In addition, retaining only relevant documents in a query answer is of paramount importance for an effective meeting of the user needs. In this situation, the query expansion technique offers an interesting solution for obtaining a complete answer while preserving the quality of retained documents. This mainly relies on an accurate choice of the added terms to an initial query. Interestingly enough, query expansion takes advantage of large text volumes by extracting statistical information about index terms co-occurrences and using it to make user queries better fit the real information needs. In this respect, a promising track consists in the application of data mining methods to extract dependencies between terms, namely a generic basis of association rules between terms. The key feature of our approach is a better trade off between the size of the mining result and the conveyed knowledge. Thus, face to the huge number of derived association rules and in order to select the optimal combination of query terms from the generic basis, we propose to model the problem as a classification problem and solve it using a supervised learning algorithm such as SVM or k-means. For this purpose, we first generate a training set using a genetic algorithm based approach that explores the association rules space in order to find an optimal set of expansion terms, improving the MAP of the search results. The experiments were performed on SDA 95 collection, a data collection for information retrieval. It was found that the results were better in both terms of MAP and NDCG. The main observation is that the hybridization of text mining techniques and query expansion in an intelligent way allows us to incorporate the good features of all of them. As this is a preliminary attempt in this direction, there is a large scope for enhancing the proposed method.Keywords: supervised leaning, classification, query expansion, association rules
Procedia PDF Downloads 3251880 Comparison Performance between PID and PD Controllers for 3 and 4 Cable-Based Robots
Authors: Fouad. Inel, Lakhdar. Khochemane
Abstract:
This article presents a comparative response specification performance between two controllers of three and four cable based robots for various applications. The main objective of this work is: The first is to use the direct and inverse geometric model to study and simulate the end effector position of the robot with three and four cables. A graphical user interface has been implemented in order to visualizing the position of the robot. Secondly, we present the determination of static and dynamic tensions and lengths of cables required to flow different trajectories. At the end, we study the response of our systems in closed loop with a Proportional-Integrated Derivative (PID) and Proportional-Integrated (PD) controllers then this last are compared the results of the same examples using MATLAB/Simulink; we found that the PID method gives the better performance, such as rapidly speed response, settling time, compared to PD controller.Keywords: parallel cable-based robots, geometric modeling, dynamic modeling, graphical user interface, open loop, PID/PD controllers
Procedia PDF Downloads 4501879 Popular eReaders
Authors: Tom D. Gedeon, Ujala Rampaul
Abstract:
The evaluation of electronic consumer goods are most often done from the perspective of analysing the latest models, comparing their advantages and disadvantages with respect to price. This style of evaluation is often performed by one or a few product experts on a wide range of features that may not be applicable to each user. We instead used a scenario-based approach to evaluate a number of e-readers. The setting is similar to a user who is interested in a new product or technology and has allocated a limited budget. We evaluate the quality and usability of e-readers available within that budget range. This is based on the assumption of a rational market which prices older second hand devices the same as functionally equivalent new devices. We describe our evaluation and comparison of four branded eReaders, as the initial stage of a larger project. The scenario has a range of tasks approximating a busy person who does not bother to read the manual. We found that navigation within books to be the most significant differentiator between the eReaders in our scenario based evaluation process.Keywords: eReader, scenario based, price comparison, Kindle, Kobo, Nook, Sony, technology adoption
Procedia PDF Downloads 5301878 Meeting User’s Information Need: A Study on the Acceptance of Mobile Library Service at UGM Library
Authors: M. Fikriansyah Wicaksono, Rafael Arief Budiman, M. Very Setiawan
Abstract:
Currently, a wide range of innovative mobile library (M-Library) service is provided for the users in the library. The M-Library service is an innovation that aims to bring the collections of the library to users who currently use their smartphone so often. With M-Library services, it is expected that the users can fulfill their information needs more conveniently and practically. This study aims to find out how users use M-Library services provided by UGM library. This study applied a quantitative approach to investigate how to use the application M-Library. The Technology Acceptance Model (TAM) theory is applied to perform the analysis in terms of perceived usefulness, perceived ease of use, attitude towards behavior, behavioral intention and actual system usage. The results show that overall the users found that the M-Library application is useful to meet their information needs. Such as facilitate user to access e-resources, search UGM library collections, online booking collections, and reminder for returning book.Keywords: m-library, mobile library services, technology acceptance, library of UGM
Procedia PDF Downloads 2291877 WHSS: A Platform for Designing Water Harvesting Systems for Multiple Purposes
Authors: Ignacio Sanchez Cohen, Aurelio Pedroza Sandoval, Ricardo Trejo Calzada
Abstract:
Water harvesting systems (WHS) has become the unique alternative that farmers in dry areas accounts for surviving dry periods. Nevertheless, technicians, agronomists, and users, in general, have to cope with the difficulty of finding suitable technology for optimal design of WHS. In this paper, we describe a user-friendly computer program that uses readily available information for the design of multiple WHS depending upon the water final use (agriculture, household, conservation, etc). The application (APP) itself contains several links to help the user complete the input requirements. It is not a prerequisite to have any computer skills for the use of the APP. Outputs of the APP are the dimensions of the WHS named terraces, micro-catchments, cisterns, and small household cisterns for roof water catchment. The APP also provides guidance on crops for backyard agriculture. We believe that this tool may guide users to better optimize WHS for multiple purposes and to widen the possibility of copping with dry spells in arid lands.Keywords: rainfall-catchment, models, computer aid, arid lands
Procedia PDF Downloads 1771876 A Study of Human Communication in an Internet Community
Authors: Andrew Laghos
Abstract:
The Internet is a big part of our everyday lives. People can now access the internet from a variety of places including home, college, and work. Many airports, hotels, restaurants and cafeterias, provide free wireless internet to their visitors. Using technologies like computers, tablets, and mobile phones, we spend a lot of our time online getting entertained, getting informed, and communicating with each other. This study deals with the latter part, namely, human communication through the Internet. People can communicate with each other using social media, social network sites (SNS), e-mail, messengers, chatrooms, and so on. By connecting with each other they form virtual communities. Regarding SNS, types of connections that can be studied include friendships and cliques. Analyzing these connections is important to help us understand online user behavior. The method of Social Network Analysis (SNA) was used on a case study, and results revealed the existence of some useful patterns of interactivity between the participants. The study ends with implications of the results and ideas for future research.Keywords: human communication, internet communities, online user behavior, psychology
Procedia PDF Downloads 4971875 Using Artificial Intelligence Technology to Build the User-Oriented Platform for Integrated Archival Service
Authors: Lai Wenfang
Abstract:
Tthis study will describe how to use artificial intelligence (AI) technology to build the user-oriented platform for integrated archival service. The platform will be launched in 2020 by the National Archives Administration (NAA) in Taiwan. With the progression of information communication technology (ICT) the NAA has built many systems to provide archival service. In order to cope with new challenges, such as new ICT, artificial intelligence or blockchain etc. the NAA will try to use the natural language processing (NLP) and machine learning (ML) skill to build a training model and propose suggestions based on the data sent to the platform. NAA expects the platform not only can automatically inform the sending agencies’ staffs which records catalogues are against the transfer or destroy rules, but also can use the model to find the details hidden in the catalogues and suggest NAA’s staff whether the records should be or not to be, to shorten the auditing time. The platform keeps all the users’ browse trails; so that the platform can predict what kinds of archives user could be interested and recommend the search terms by visualization, moreover, inform them the new coming archives. In addition, according to the Archives Act, the NAA’s staff must spend a lot of time to mark or remove the personal data, classified data, etc. before archives provided. To upgrade the archives access service process, the platform will use some text recognition pattern to black out automatically, the staff only need to adjust the error and upload the correct one, when the platform has learned the accuracy will be getting higher. In short, the purpose of the platform is to deduct the government digital transformation and implement the vision of a service-oriented smart government.Keywords: artificial intelligence, natural language processing, machine learning, visualization
Procedia PDF Downloads 1741874 Efficient Manageability and Intelligent Classification of Web Browsing History Using Machine Learning
Authors: Suraj Gururaj, Sumantha Udupa U.
Abstract:
Browsing the Web has emerged as the de facto activity performed on the Internet. Although browsing gets tracked, the manageability aspect of Web browsing history is very poor. In this paper, we have a workable solution implemented by using machine learning and natural language processing techniques for efficient manageability of user’s browsing history. The significance of adding such a capability to a Web browser is that it ensures efficient and quick information retrieval from browsing history, which currently is very challenging. Our solution guarantees that any important websites visited in the past can be easily accessible because of the intelligent and automatic classification. In a nutshell, our solution-based paper provides an implementation as a browser extension by intelligently classifying the browsing history into most relevant category automatically without any user’s intervention. This guarantees no information is lost and increases productivity by saving time spent revisiting websites that were of much importance.Keywords: adhoc retrieval, Chrome extension, supervised learning, tile, Web personalization
Procedia PDF Downloads 3761873 Deep Reinforcement Learning with Leonard-Ornstein Processes Based Recommender System
Authors: Khalil Bachiri, Ali Yahyaouy, Nicoleta Rogovschi
Abstract:
Improved user experience is a goal of contemporary recommender systems. Recommender systems are starting to incorporate reinforcement learning since it easily satisfies this goal of increasing a user’s reward every session. In this paper, we examine the most effective Reinforcement Learning agent tactics on the Movielens (1M) dataset, balancing precision and a variety of recommendations. The absence of variability in final predictions makes simplistic techniques, although able to optimize ranking quality criteria, worthless for consumers of the recommendation system. Utilizing the stochasticity of Leonard-Ornstein processes, our suggested strategy encourages the agent to investigate its surroundings. Research demonstrates that raising the NDCG (Discounted Cumulative Gain) and HR (HitRate) criterion without lowering the Ornstein-Uhlenbeck process drift coefficient enhances the diversity of suggestions.Keywords: recommender systems, reinforcement learning, deep learning, DDPG, Leonard-Ornstein process
Procedia PDF Downloads 1421872 Analysis of User Data Usage Trends on Cellular and Wi-Fi Networks
Authors: Jayesh M. Patel, Bharat P. Modi
Abstract:
The availability of on mobile devices that can invoke the demonstrated that the total data demand from users is far higher than previously articulated by measurements based solely on a cellular-centric view of smart-phone usage. The ratio of Wi-Fi to cellular traffic varies significantly between countries, This paper is shown the compression between the cellular data usage and Wi-Fi data usage by the user. This strategy helps operators to understand the growing importance and application of yield management strategies designed to squeeze maximum returns from their investments into the networks and devices that enable the mobile data ecosystem. The transition from unlimited data plans towards tiered pricing and, in the future, towards more value-centric pricing offers significant revenue upside potential for mobile operators, but, without a complete insight into all aspects of smartphone customer behavior, operators will unlikely be able to capture the maximum return from this billion-dollar market opportunity.Keywords: cellular, Wi-Fi, mobile, smart phone
Procedia PDF Downloads 365