Search results for: semantic data profiling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25563

Search results for: semantic data profiling

25233 Association of Genetic Variants of Apolipoprotein A5 Gene with the Metabolic Syndrome in the Pakistani Population

Authors: Muhammad Fiaz, Muhammad Saqlain, Bernard M. Y. Cheung, S. M. Saqlan Naqvi, Ghazala Kaukab Raja

Abstract:

Background: Association of C allele of rs662799 SNP of APOA5 gene with metabolic syndrome (MetS) has been reported in different populations around the world. A case control study was conducted to explore the relationship of rs662799 variants (T/C) with the MetS and the associated risk phenotypes in a population of Pakistani origin. Methods: MetS was defined according to the IDF criteria. Blood samples were collected from the Pakistan Institute of Medical Sciences, Islamabad, Pakistan for biochemical profiling and DNA extraction. Genotyping of rs662799 was performed using mass ARRAY, iPEX Gold technology. A total of 712 unrelated case and control subjects were genotyped. Data were analyzed using Plink software and SPSS 16.0. Results: The risk allele C of rs662799 showed highly significant association with MetS (OR=1.5, Ρ=0.002). Among risk phenotypes, dyslipidemia, and obesity showed strong association with SNP (OR=1.49, p=0.03; OR =1.46, p=0.01) respectively in models adjusted for age and gender. Conclusion: The rs662799C allele is a significant risk marker for MetS in the local Pakistani population studied. The effect of the SNP is more on dyslipidemia than the other components of the MetS.

Keywords: metabolic syndrome, APOA5, rs662799, dyslipidemia, obesity

Procedia PDF Downloads 502
25232 Using Closed Frequent Itemsets for Hierarchical Document Clustering

Authors: Cheng-Jhe Lee, Chiun-Chieh Hsu

Abstract:

Due to the rapid development of the Internet and the increased availability of digital documents, the excessive information on the Internet has led to information overflow problem. In order to solve these problems for effective information retrieval, document clustering in text mining becomes a popular research topic. Clustering is the unsupervised classification of data items into groups without the need of training data. Many conventional document clustering methods perform inefficiently for large document collections because they were originally designed for relational database. Therefore they are impractical in real-world document clustering and require special handling for high dimensionality and high volume. We propose the FIHC (Frequent Itemset-based Hierarchical Clustering) method, which is a hierarchical clustering method developed for document clustering, where the intuition of FIHC is that there exist some common words for each cluster. FIHC uses such words to cluster documents and builds hierarchical topic tree. In this paper, we combine FIHC algorithm with ontology to solve the semantic problem and mine the meaning behind the words in documents. Furthermore, we use the closed frequent itemsets instead of only use frequent itemsets, which increases efficiency and scalability. The experimental results show that our method is more accurate than those of well-known document clustering algorithms.

Keywords: FIHC, documents clustering, ontology, closed frequent itemset

Procedia PDF Downloads 397
25231 Towards the Use of Software Product Metrics as an Indicator for Measuring Mobile Applications Power Consumption

Authors: Ching Kin Keong, Koh Tieng Wei, Abdul Azim Abd. Ghani, Khaironi Yatim Sharif

Abstract:

Maintaining factory default battery endurance rate over time in supporting huge amount of running applications on energy-restricted mobile devices has created a new challenge for mobile applications developer. While delivering customers’ unlimited expectations, developers are barely aware of efficient use of energy from the application itself. Thus developers need a set of valid energy consumption indicators in assisting them to develop energy saving applications. In this paper, we present a few software product metrics that can be used as an indicator to measure energy consumption of Android-based mobile applications in the early of design stage. In particular, Trepn Profiler (Power profiling tool for Qualcomm processor) has used to collect the data of mobile application power consumption, and then analyzed for the 23 software metrics in this preliminary study. The results show that McCabe cyclomatic complexity, number of parameters, nested block depth, number of methods, weighted methods per class, number of classes, total lines of code and method lines have direct relationship with power consumption of mobile application.

Keywords: battery endurance, software metrics, mobile application, power consumption

Procedia PDF Downloads 392
25230 Factors Effecting the Success and Failure of Social Enterprise in Thailand

Authors: Jatuporn Juyjingam, Pitak Siriwong

Abstract:

This paper presents a study of factors effecting the success and failure of social enterprise in Thailand identifying communication as one of the criteria for measuring the social impact of social enterprise. The study focused on the communication driver of the SCALERS model. The research examines how communication is viewed in Thailand social enterprise. The research aims to determine how selected social enterprise uses communication in their operations. More specifically, the study aims to 1) describe the profile of social enterprise in Thailand, 2) identify the different roles of communication in the operation of social enterprise in Thailand, 3) determine Thailand social enterprise concept of communication. The study made use of the case study and cross case study research designs. For the profiling of the social enterprises, the case study was used. The researchers made use of the cross-case research design in identifying trends across the ten social enterprises and in determining the social entrepreneurs’ concept of communication. Key informant interviews were conducted with the heads or representatives of selected social enterprises, a three-part interview schedule was used to facilitate data gathering. The three parts included are 1) Profile of social enterprise in Thailand 2) How social enterprises apply communication in their operations 3) What is the key success in using communication among social enterprise in Thailand. This study is an exploratory research.

Keywords: communication, social entrepreneurship, social enterprise, sustainability development

Procedia PDF Downloads 498
25229 DNA Methylation Score Development for In utero Exposure to Paternal Smoking Using a Supervised Machine Learning Approach

Authors: Cristy Stagnar, Nina Hubig, Diana Ivankovic

Abstract:

The epigenome is a compelling candidate for mediating long-term responses to environmental effects modifying disease risk. The main goal of this research is to develop a machine learning-based DNA methylation score, which will be valuable in delineating the unique contribution of paternal epigenetic modifications to the germline impacting childhood health outcomes. It will also be a useful tool in validating self-reports of nonsmoking and in adjusting epigenome-wide DNA methylation association studies for this early-life exposure. Using secondary data from two population-based methylation profiling studies, our DNA methylation score is based on CpG DNA methylation measurements from cord blood gathered from children whose fathers smoked pre- and peri-conceptually. Each child’s mother and father fell into one of three class labels in the accompanying questionnaires -never smoker, former smoker, or current smoker. By applying different machine learning algorithms to the accessible resource for integrated epigenomic studies (ARIES) sub-study of the Avon longitudinal study of parents and children (ALSPAC) data set, which we used for training and testing of our model, the best-performing algorithm for classifying the father smoker and mother never smoker was selected based on Cohen’s κ. Error in the model was identified and optimized. The final DNA methylation score was further tested and validated in an independent data set. This resulted in a linear combination of methylation values of selected probes via a logistic link function that accurately classified each group and contributed the most towards classification. The result is a unique, robust DNA methylation score which combines information on DNA methylation and early life exposure of offspring to paternal smoking during pregnancy and which may be used to examine the paternal contribution to offspring health outcomes.

Keywords: epigenome, health outcomes, paternal preconception environmental exposures, supervised machine learning

Procedia PDF Downloads 183
25228 Social Media Idea Ontology: A Concept for Semantic Search of Product Ideas in Customer Knowledge through User-Centered Metrics and Natural Language Processing

Authors: Martin H¨ausl, Maximilian Auch, Johannes Forster, Peter Mandl, Alexander Schill

Abstract:

In order to survive on the market, companies must constantly develop improved and new products. These products are designed to serve the needs of their customers in the best possible way. The creation of new products is also called innovation and is primarily driven by a company’s internal research and development department. However, a new approach has been taking place for some years now, involving external knowledge in the innovation process. This approach is called open innovation and identifies customer knowledge as the most important source in the innovation process. This paper presents a concept of using social media posts as an external source to support the open innovation approach in its initial phase, the Ideation phase. For this purpose, the social media posts are semantically structured with the help of an ontology and the authors are evaluated using graph-theoretical metrics such as density. For the structuring and evaluation of relevant social media posts, we also use the findings of Natural Language Processing, e. g. Named Entity Recognition, specific dictionaries, Triple Tagger and Part-of-Speech-Tagger. The selection and evaluation of the tools used are discussed in this paper. Using our ontology and metrics to structure social media posts enables users to semantically search these posts for new product ideas and thus gain an improved insight into the external sources such as customer needs.

Keywords: idea ontology, innovation management, semantic search, open information extraction

Procedia PDF Downloads 187
25227 Building Information Modelling Based Value for Money Assessment in Public-Private Partnership

Authors: Guoqian Ren, Haijiang Li, Jisong Zhang

Abstract:

Over the past 40 years, urban development has undergone large-scale, high-speed expansion, beyond what was previously considered normal and in a manner not proportionally related to population growth or physical considerations. With more scientific and refined decision-making in the urban construction process, new urbanization approaches, aligned with public-private partnerships (PPPs) which evolved in the early 1990s, have become acceptable and, in some situations, even better solutions to outstanding urban municipal construction projects, especially in developing countries. However, as the main driving force to deal with urban public services, PPPs are still problematic regarding value for money (VFM) process in most large-scale construction projects. This paper therefore reviews recent PPP articles in popular project management journals and relevant toolkits, published in the last 10 years, to identify the indicators that influence VFM within PPPs across regions. With increasing concerns about profitability and environmental and social impacts, the current PPP structure requires a more integrated platform to manage multi-performance project life cycles. Building information modelling (BIM), a popular approach to the procurement process in AEC sectors, provides the potential to ensure VFM while also working in tandem with the semantic approach to holistically measure life cycle costs (LCC) and achieve better sustainability. This paper suggests that BIM applied to the entire PPP life cycle could support holistic decision-making regarding VFM processes and thus meet service targets.

Keywords: public-private partnership, value for money, building information modelling, semantic approach

Procedia PDF Downloads 209
25226 Using Satellite Images Datasets for Road Intersection Detection in Route Planning

Authors: Fatma El-Zahraa El-Taher, Ayman Taha, Jane Courtney, Susan Mckeever

Abstract:

Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions, is critical to decisions such as crossing roads or selecting the safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer the state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset is examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of the detection of intersections in satellite images is evaluated.

Keywords: satellite images, remote sensing images, data acquisition, autonomous vehicles

Procedia PDF Downloads 143
25225 Cultural Semiotics of the Traditional Costume from Banat’s Plain from 1870 to 1950 from Lotman’s Perspective

Authors: Glavan Claudiu

Abstract:

My paper focuses on the cultural semiotic interpretation of the Romanian costume from Banat region, from the perspective of Lotman’s semiotic theory of culture. Using Lotman’s system we will analyse the level of language, text and semiosphere within the unity of Banat’s traditional costume. In order to establish a common language and to communicate, the forms and chromatic compositions were expressed through symbols, which carried semantic meanings with an obvious significant semantic load. The symbols, used in this region, receive a strong specific ethnical mark in its representation, in its compositional and chromatic complexity, in accordance with the values and conceptions of life for the people living here. Thus the signs become a unifying force of this ethnic community. Associated with the signs, were the fabrics used in manufacturing the costumes and the careful selections of colours. For example, softer fabrics like silk associated with red vivid colours were used for young woman sending the message they ready to be married. The unity of these elements created the important message that you were sending to your community. The unity of the symbol, fabrics and choice of colours used on the costume carried out an important message like: marital status, social position, or even the village you belonged to. Using Lotman’s perspective on cultural semiotics we will read and analyse the symbolism of the traditional Romanian art from Banat. We will discover meaning in the codified existence of ancient solar symbols, symbols regarding fertility, religious symbols and very few heraldic symbols. Visual communication makes obvious the importance of semiotic value that the traditional costume is carrying from our ancestors.

Keywords: traditional costume, semiotics, Lotman’s theory of culture, traditional culture, signs and symbols

Procedia PDF Downloads 142
25224 Processing Big Data: An Approach Using Feature Selection

Authors: Nikat Parveen, M. Ananthi

Abstract:

Big data is one of the emerging technology, which collects the data from various sensors and those data will be used in many fields. Data retrieval is one of the major issue where there is a need to extract the exact data as per the need. In this paper, large amount of data set is processed by using the feature selection. Feature selection helps to choose the data which are actually needed to process and execute the task. The key value is the one which helps to point out exact data available in the storage space. Here the available data is streamed and R-Center is proposed to achieve this task.

Keywords: big data, key value, feature selection, retrieval, performance

Procedia PDF Downloads 339
25223 Chemical Characterization of Octopus Vulgaris Ink and Evaluation of its in-vitro Antioxidant, Antimicrobial, and Anti-Schistosomicidal Activities

Authors: Salwa A. H. Hamdi, Maha A. M. El-Shazly, Mona Fathi Fol, Hanan S. Mossalem, Mosad A. Ghareeb, Amina M. Ibrahim

Abstract:

One of the most distinctive and defining features of cephalopods squid, cuttlefish, and Octopus is their inking behavior. Their ink, which is blackened by melanin but also contains other constituents, has been used by humans in various ways for millennia. The present study aims to investigate the chemical profiling of the Octopus vulgaris ink extract and to evaluate its antioxidant, antimicrobial, and anti-schistosomal activities. The present results showed that GC-MS examination of Octopus vulgaris ink comprises 21 compounds. The main detected compounds are (E)-1, 2, 3, 4-Tetra (4-phenylphenyl)-2-butene-1,4-dione, Lipo-3-episapelin A, and 5,10-Dihexyltetrabenzoporphyrin. Results showed that the octopus ink had antioxidant capacity and the capability to mask DPPH free radicals in comparison with ascorbic acid. Octopus Vulgaris ink extract had inhibitory action against three gram-positive bacteria, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis, and three gram-negative bacteria, Neisseria gonorrhoeae, Escherichia coli, and Pseudomonas aeuroginosa. Additionally, the extracted ink revealed antifungal activity against Aspergillus flavus and yeast as Candida albicans. The obtained data indicated the effectiveness of ink extract in pharmaceutical industries as an antioxidant, antimicrobial and antischistosomicidal

Keywords: antimicrobial, antioxidant, ink, octopus vulgaris

Procedia PDF Downloads 93
25222 Eye Tracking Syntax in Language Education

Authors: Marcus Maia

Abstract:

The present study reports and discusses the use of eye tracking qualitative data in reading workshops in Brazilian middle and high schools and in Generative Syntax and Sentence Processing courses at the undergraduate and graduate levels at the Federal University of Rio de Janeiro, respectively. Both endeavors take the sentential level as the proper object to be metacognitively explored in language education (cf. Chomsky, Gallego & Ott, 2019) to develop innate science forming capacity and knowledge of language. In both projects, non-discrepant qualitative eye tracking data collected and quantitatively analyzed in experimental syntax and psycholinguistic studies carried out in Lapex (Experimental Psycholinguistics Laboratory of the Federal University of Rio de Janeiro) were displayed to students as a point of departure, triggering discussions. Classes would generally start with the display of videos showing eye tracking data, such as gaze plots and heatmaps from several studies in Psycholinguistics and Experimental Syntax that we had already developed in our laboratory. The videos usually triggered discussions with students about linguistic and psycholinguistic issues, such as the reading of sentences for gist, garden-path sentences, syntactic and semantic anomalies, the filled-gap effect, island effects, direct and indirect cause, and recursive constructions, among other topics. Active, problem-solving based methodologies were employed with the objective of stimulating student participation. The communication also discusses the importance of developing full literacy, epistemic vigilance and intellectual self-defense in an infodemic world in the lines of Maia (2022).

Keywords: reading, educational psycholinguistics, eye-tracking, active methodology

Procedia PDF Downloads 64
25221 Security Report Profiling for Mobile Banking Applications in Indonesia Based on OWASP Mobile Top 10-2016

Authors: Bambang Novianto, Rizal Aditya Herdianto, Raphael Bianco Huwae, Afifah, Alfonso Brolin Sihite, Rudi Lumanto

Abstract:

The mobile banking application is a type of mobile application that is growing rapidly. This is caused by the ease of service and time savings in making transactions. On the other hand, this certainly provides a challenge in security issues. The use of mobile banking can not be separated from cyberattacks that may occur which can result the theft of sensitive information or financial loss. The financial loss and the theft of sensitive information is the most avoided thing because besides harming the user, it can also cause a loss of customer trust in a bank. Cyberattacks that are often carried out against mobile applications are phishing, hacking, theft, misuse of data, etc. Cyberattack can occur when a vulnerability is successfully exploited. OWASP mobile Top 10 has recorded as many as 10 vulnerabilities that are most commonly found in mobile applications. In the others, android permissions also have the potential to cause vulnerabilities. Therefore, an overview of the profile of the mobile banking application becomes an urgency that needs to be known. So that it is expected to be a consideration of the parties involved for improving security. In this study, an experiment has been conducted to capture the profile of the mobile banking applications in Indonesia based on android permission and OWASP mobile top 10 2016. The results show that there are six basic vulnerabilities based on OWASP Mobile Top 10 that are most commonly found in mobile banking applications in Indonesia, i.e. M1:Improper Platform Usage, M2:Insecure Data Storage, M3:Insecure Communication, M5:Insufficient Cryptography, M7:Client Code Quality, and M9:Reverse Engineering. The most permitted android permissions are the internet, status network access, and telephone read status.

Keywords: mobile banking application, OWASP mobile top 10 2016, android permission, sensitive information, financial loss

Procedia PDF Downloads 138
25220 Efficacy of Learning: Digital Sources versus Print

Authors: Rahimah Akbar, Abdullah Al-Hashemi, Hanan Taqi, Taiba Sadeq

Abstract:

As technology continues to develop, teaching curriculums in both schools and universities have begun adopting a more computer/digital based approach to the transmission of knowledge and information, as opposed to the more old-fashioned use of textbooks. This gives rise to the question: Are there any differences in learning from a digital source over learning from a printed source, as in from a textbook? More specifically, which medium of information results in better long-term retention? A review of the confounding factors implicated in understanding the relationship between learning from the two different mediums was done. Alongside this, a 4-week cohort study involving 76 1st year English Language female students was performed, whereby the participants were divided into 2 groups. Group A studied material from a paper source (referred to as the Print Medium), and Group B studied material from a digital source (Digital Medium). The dependent variables were grading of memory recall indexed by a 4 point grading system, and total frequency of item repetition. The study was facilitated by advanced computer software called Super Memo. Results showed that, contrary to prevailing evidence, the Digital Medium group showed no statistically significant differences in terms of the shift from Remember (Episodic) to Know (Semantic) when all confounding factors were accounted for. The shift from Random Guess and Familiar to Remember occurred faster in the Digital Medium than it did in the Print Medium.

Keywords: digital medium, print medium, long-term memory recall, episodic memory, semantic memory, super memo, forgetting index, frequency of repetitions, total time spent

Procedia PDF Downloads 288
25219 An Ontology for Investment in Chinese Steel Company

Authors: Liming Chen, Baoxin Xu, Zhaoyun Ding, Bin Liu, Xianqiang Zhu

Abstract:

In the era of big data, public investors are faced with more complicated information related to investment decisions than ever before. To survive in the fierce competition, it has become increasingly urgent for investors to combine multi-source knowledge and evaluate the companies’ true value efficiently. For this, a rule-based ontology reasoning method is proposed to support steel companies’ value assessment. Considering the delay in financial disclosure and based on cost-benefit analysis, this paper introduces the supply chain enterprises financial analysis and constructs the ontology model used to value the value of steel company. In addition, domain knowledge is formally expressed with the help of Web Ontology Language (OWL) language and SWRL (Semantic Web Rule Language) rules. Finally, a case study on a steel company in China proved the effectiveness of the method we proposed.

Keywords: financial ontology, steel company, supply chain, ontology reasoning

Procedia PDF Downloads 130
25218 Deep-Learning Coupled with Pragmatic Categorization Method to Classify the Urban Environment of the Developing World

Authors: Qianwei Cheng, A. K. M. Mahbubur Rahman, Anis Sarker, Abu Bakar Siddik Nayem, Ovi Paul, Amin Ahsan Ali, M. Ashraful Amin, Ryosuke Shibasaki, Moinul Zaber

Abstract:

Thomas Friedman, in his famous book, argued that the world in this 21st century is flat and will continue to be flatter. This is attributed to rapid globalization and the interdependence of humanity that engendered tremendous in-flow of human migration towards the urban spaces. In order to keep the urban environment sustainable, policy makers need to plan based on extensive analysis of the urban environment. With the advent of high definition satellite images, high resolution data, computational methods such as deep neural network analysis, and hardware capable of high-speed analysis; urban planning is seeing a paradigm shift. Legacy data on urban environments are now being complemented with high-volume, high-frequency data. However, the first step of understanding urban space lies in useful categorization of the space that is usable for data collection, analysis, and visualization. In this paper, we propose a pragmatic categorization method that is readily usable for machine analysis and show applicability of the methodology on a developing world setting. Categorization to plan sustainable urban spaces should encompass the buildings and their surroundings. However, the state-of-the-art is mostly dominated by classification of building structures, building types, etc. and largely represents the developed world. Hence, these methods and models are not sufficient for developing countries such as Bangladesh, where the surrounding environment is crucial for the categorization. Moreover, these categorizations propose small-scale classifications, which give limited information, have poor scalability and are slow to compute in real time. Our proposed method is divided into two steps-categorization and automation. We categorize the urban area in terms of informal and formal spaces and take the surrounding environment into account. 50 km × 50 km Google Earth image of Dhaka, Bangladesh was visually annotated and categorized by an expert and consequently a map was drawn. The categorization is based broadly on two dimensions-the state of urbanization and the architectural form of urban environment. Consequently, the urban space is divided into four categories: 1) highly informal area; 2) moderately informal area; 3) moderately formal area; and 4) highly formal area. In total, sixteen sub-categories were identified. For semantic segmentation and automatic categorization, Google’s DeeplabV3+ model was used. The model uses Atrous convolution operation to analyze different layers of texture and shape. This allows us to enlarge the field of view of the filters to incorporate larger context. Image encompassing 70% of the urban space was used to train the model, and the remaining 30% was used for testing and validation. The model is able to segment with 75% accuracy and 60% Mean Intersection over Union (mIoU). In this paper, we propose a pragmatic categorization method that is readily applicable for automatic use in both developing and developed world context. The method can be augmented for real-time socio-economic comparative analysis among cities. It can be an essential tool for the policy makers to plan future sustainable urban spaces.

Keywords: semantic segmentation, urban environment, deep learning, urban building, classification

Procedia PDF Downloads 188
25217 Research on Strategies of Building a Child Friendly City in Wuhan

Authors: Tianyue Wan

Abstract:

Building a child-friendly city (CFC) contributes to improving the quality of urbanization. It also forms a local system committed to fulfilling children's rights and development. Yet, the work related to CFC is still at the initial stage in China. Therefore, taking Wuhan, the most populous city in central China, as the pilot city would offer some reference for other cities. Based on the analysis of theories and practice examples, this study puts forward the challenges of building a child-friendly city under the particularity of China's national conditions. To handle these challenges, this study uses four methods to collect status data: literature research, site observation, research inquiry, and semantic differential (SD). And it adopts three data analysis methods: case analysis, geographic information system (GIS) analysis, and analytic hierarchy process (AHP) method. Through data analysis, this study identifies the evaluation system and appraises the current situation of Wuhan. According to the status of Wuhan's child-friendly city, this study proposes three strategies: 1) construct the evaluation system; 2) establish a child-friendly space system integrating 'point-line-surface'; 3) build a digitalized service platform. At the same time, this study suggests building a long-term mechanism for children's participation and multi-subject supervision from laws, medical treatment, education, safety protection, social welfare, and other aspects. Finally, some conclusions of strategies about CFC are tried to be drawn to promote the highest quality of life for all citizens in Wuhan.

Keywords: action plan, child friendly city, construction strategy, urban space

Procedia PDF Downloads 89
25216 The Comparison Study of Methanol and Water Extract of Chuanxiong Rhizoma: A Fingerprint Analysis

Authors: Li Chun Zhao, Zhi Chao Hu, Xi Qiang Liu, Man Lai Lee, Chak Shing Yeung, Man Fei Xu, Yuen Yee Kwan, Alan H. M. Ho, Nickie W. K. Chan, Bin Deng, Zhong Zhen Zhao, Min Xu

Abstract:

Background: Chuangxiong Rhizoma (Chuangxion, CX) is one of the most frequently used herbs in Chinese medicine because of its wide therapeutic effects such as vasorelaxation and anti-inflammation. Aim: The purposes of this study are (1) to perform non-targeted / targeted analyses of CX methanol extract and water extract, and compare the present data with previously LC-MS or GC-MS fingerprints; (2) to examine the difference between CX methanol extract and water extract for preliminarily evaluating whether current compound markers of methanol extract from crude CX materials could be suitable for quality control of CX water extract. Method: CX methanol extract was prepared according to the Hong Kong Chinese Materia Medica Standards. DG water extract was prepared by boiling with pure water for three times (one hour each). UHPLC-Q-TOF-MS/MS fingerprint analysis was performed by C18 column (1.7 µm, 2.1 × 100 mm) with Agilent 1290 Infinity system. Experimental data were analyzed by Agilent MassHunter Software. A database was established based on 13 published LC-MS and GC-MS CX fingerprint analyses. Total 18 targeted compounds in database were selected as markers to compare present data with previous data, and these markers also used to compare CX methanol extract and water extract. Result: (1) Non-targeted analysis indicated that there were 133 compounds identified in CX methanol extract, while 325 compounds in CX water extract that was more than double of CX methanol extract. (2) Targeted analysis further indicated that 9 in 18 targeted compounds were identified in CX methanol extract, while 12 in 18 targeted compounds in CX water extract that showed a lower lose-rate of water extract when compared with methanol extract. (3) By comparing CX methanol extract and water extract, Senkyunolide A (+1578%), Ferulic acid (+529%) and Senkyunolide H (+169%) were significantly higher in water extract when compared with methanol extract. (4) Other bioactive compounds such as Tetramethylpyrazine were only found in CX water extract. Conclusion: Many new compounds in both CX methanol and water extracts were found by using UHPLC Q-TOF MS/MS analysis when compared with previous published reports. A new standard reference including non-targeted compound profiling and targeted markers functioned especially for quality control of CX water extract (herbal decoction) should be established in future. (This project was supported by Hong Kong Baptist University (FRG2/14-15/109) & Natural Science Foundation of Guangdong Province (2014A030313414)).

Keywords: Chuanxiong rhizoma, fingerprint analysis, targeted analysis, quality control

Procedia PDF Downloads 493
25215 Alignment and Antagonism in Flux: A Diachronic Sentiment Analysis of Attitudes towards the Chinese Mainland in the Hong Kong Press

Authors: William Feng, Qingyu Gao

Abstract:

Despite the extensive discussions about Hong Kong’s sentiments towards the Chinese Mainland since the sovereignty transfer in 1997, there has been no large-scale empirical analysis of the changing attitudes in the mainstream media, which both reflect and shape sentiments in the society. To address this gap, the present study uses an optimised semantic-based automatic sentiment analysis method to examine a corpus of news about China from 1997 to 2020 in three main Chinese-language newspapers in Hong Kong, namely Apple Daily, Ming Pao, and Oriental Daily News. The analysis shows that although the Hong Kong press had a positive emotional tone toward China in general, the overall trend of sentiment was becoming increasingly negative. Meanwhile, the alignment and antagonism toward China have both increased, providing empirical evidence of attitudinal polarisation in the Hong Kong society. Specifically, Apple Daily’s depictions of China have become increasingly negative, though with some positive turns before 2008, whilst Oriental Daily News has consistently expressed more favourable sentiments. Ming Pao maintained an impartial stance toward China through an increased but balanced representation of positive and negative sentiments, with its subjectivity and sentiment intensity growing to an industry-standard level. The results provide new insights into the complexity of sentiments towards China in the Hong Kong press and media attitudes in general in terms of the “us” and “them” positioning by explicating the cross-newspaper and cross-period variations using an enhanced sentiment analysis method which incorporates sentiment-oriented and semantic role analysis techniques.

Keywords: media attitude, sentiment analysis, Hong Kong press, one country two systems

Procedia PDF Downloads 116
25214 Detecting Indigenous Languages: A System for Maya Text Profiling and Machine Learning Classification Techniques

Authors: Alejandro Molina-Villegas, Silvia Fernández-Sabido, Eduardo Mendoza-Vargas, Fátima Miranda-Pestaña

Abstract:

The automatic detection of indigenous languages ​​in digital texts is essential to promote their inclusion in digital media. Underrepresented languages, such as Maya, are often excluded from language detection tools like Google’s language-detection library, LANGDETECT. This study addresses these limitations by developing a hybrid language detection solution that accurately distinguishes Maya (YUA) from Spanish (ES). Two strategies are employed: the first focuses on creating a profile for the Maya language within the LANGDETECT library, while the second involves training a Naive Bayes classification model with two categories, YUA and ES. The process includes comprehensive data preprocessing steps, such as cleaning, normalization, tokenization, and n-gram counting, applied to text samples collected from various sources, including articles from La Jornada Maya, a major newspaper in Mexico and the only media outlet that includes a Maya section. After the training phase, a portion of the data is used to create the YUA profile within LANGDETECT, which achieves an accuracy rate above 95% in identifying the Maya language during testing. Additionally, the Naive Bayes classifier, trained and tested on the same database, achieves an accuracy close to 98% in distinguishing between Maya and Spanish, with further validation through F1 score, recall, and logarithmic scoring, without signs of overfitting. This strategy, which combines the LANGDETECT profile with a Naive Bayes model, highlights an adaptable framework that can be extended to other underrepresented languages in future research. This fills a gap in Natural Language Processing and supports the preservation and revitalization of these languages.

Keywords: indigenous languages, language detection, Maya language, Naive Bayes classifier, natural language processing, low-resource languages

Procedia PDF Downloads 15
25213 Effect of Salinity and Heavy Metal Toxicity on Gene Expression, and Morphological Characteristics in Stevia rebaudiana Plants

Authors: Umara Nissar Rafiqi, Irum Gul, Nazima Nasrullah, Monica Saifi, Malik Z. Abdin

Abstract:

Background: Stevia rebaudiana, a member of Asteraceae family is an important medicinal plant and produces a commercially used non-caloric natural sweetener, which is also an alternate herbal cure for diabetes. Steviol glycosides are the main sweetening compounds present in these plants. Secondary metabolites are crucial to the adaption of plants to the environment and its overcoming stress conditions. In agricultural procedures, the abiotic stresses like salinity, high metal toxicity and drought, in particular, are responsible for the majority of the reduction that differentiates yield potential from harvestable yield. Salt stress and heavy metal toxicity lead to increased production of reactive oxygen species (ROS). To avoid oxidative damage due to ROS and osmotic stress, plants have a system of anti-oxidant enzymes along with several stress induced enzymes. This helps in scavenging the ROS and relieve the osmotic stress in different cell compartments. However, whether stress induced toxicity modulates the activity of these enzymes in Stevia rebaudiana is poorly understood. Aim: The present study focussed on the effect of salinity, heavy metal toxicity (lead and mercury) on physiological traits and transcriptional profiling of Stevia rebaudiana. Method: Stevia rebaudiana plants were collected from the Central Institute of Medicinal and Aromatic plants (CIMAP), Patnagar, India and maintained under controlled conditions in a greenhouse at Hamdard University, Delhi, India. The plants were subjected to different concentrations of salt (0, 25, 50 and 75 mM respectively) and heavy metals, lead and mercury (0, 100, 200 and 300 µM respectively). The physiological traits such as shoot length, root numbers, leaf growth were evaluated. The samples were collected at different developmental stages and analysed for transcription profiling by RT-PCR. Transcriptional studies in stevia rebaudiana involves important antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), cytochrome P450 monooxygenase (CYP) and stress induced aquaporin (AQU), auxin repressed protein (ARP-1), Ndhc gene. The data was analysed using GraphPad Prism and expressed as mean ± SD. Result: Low salinity and lower metal toxicity did not affect the fresh weight of the plant. However, this was substantially decreased by 55% at high salinity and heavy metal treatment. With increasing salinity and heavy metal toxicity, the values of all studied physiological traits were significantly decreased. Chlorosis in treated plants was also observed which could be due to changes in Fe:Zn ratio. At low concentrations (upto 25 mM) of NaCl and heavy metals, we did not observe any significant difference in the gene expressions of treated plants compared to control plants. Interestingly, at high salt concentration and high metal toxicity, a significant increase in the expression profile of stress induced genes was observed in treated plants compared to control (p < 0.005). Conclusion: Stevia rebaudiana is tolerant to lower salt and heavy metal concentration. This study also suggests that with the increase in concentrations of salt and heavy metals, harvest yield of S. rebaudiana was hampered.

Keywords: Stevia rebaudiana, natural sweetener, salinity, heavy metal toxicity

Procedia PDF Downloads 194
25212 Anti-Language in Jordanian Spoken Arabic: A Sociolinguistic Perspective

Authors: Ahmad Mohammad Al-Harahsheh

Abstract:

Anti-language reflects anti-society; it is a restricted spoken code used among a group of interlocutors because of anti-society. This study aims to shed light on the sociolinguistic characteristics of anti-language used by prisoners in Jordan. The participants included were 15 male-Jordanian prisoners who have recently been released. The data were written, transliterated, and analyzed on the basis of sociolinguistics and discourse analysis. This study draws on sociolinguistic theory of language codes as the theoretical framework. The study concludes that anti-language is a male language and is used for secrecy, as the prisoners' tendency to protect themselves from the police; it is a verbal competition, contest and display. In addition, it is employed to express obnoxious ideas and acts by using more pleasant or blurred words and expressions. Also, the anti-language used by prisoners has six linguistic characteristics in JSA (Jordanian Spoken Arabic), such as relexicalization, neologism, rhyme formation, semantic change, derivation, and metaphorical expressions.

Keywords: anti-language, Jordanian Spoken Arabic, sociolinguistics, prisoners

Procedia PDF Downloads 365
25211 The Analyzer: Clustering Based System for Improving Business Productivity by Analyzing User Profiles to Enhance Human Computer Interaction

Authors: Dona Shaini Abhilasha Nanayakkara, Kurugamage Jude Pravinda Gregory Perera

Abstract:

E-commerce platforms have revolutionized the shopping experience, offering convenient ways for consumers to make purchases. To improve interactions with customers and optimize marketing strategies, it is essential for businesses to understand user behavior, preferences, and needs on these platforms. This paper focuses on recommending businesses to customize interactions with users based on their behavioral patterns, leveraging data-driven analysis and machine learning techniques. Businesses can improve engagement and boost the adoption of e-commerce platforms by aligning behavioral patterns with user goals of usability and satisfaction. We propose TheAnalyzer, a clustering-based system designed to enhance business productivity by analyzing user-profiles and improving human-computer interaction. The Analyzer seamlessly integrates with business applications, collecting relevant data points based on users' natural interactions without additional burdens such as questionnaires or surveys. It defines five key user analytics as features for its dataset, which are easily captured through users' interactions with e-commerce platforms. This research presents a study demonstrating the successful distinction of users into specific groups based on the five key analytics considered by TheAnalyzer. With the assistance of domain experts, customized business rules can be attached to each group, enabling The Analyzer to influence business applications and provide an enhanced personalized user experience. The outcomes are evaluated quantitatively and qualitatively, demonstrating that utilizing TheAnalyzer’s capabilities can optimize business outcomes, enhance customer satisfaction, and drive sustainable growth. The findings of this research contribute to the advancement of personalized interactions in e-commerce platforms. By leveraging user behavioral patterns and analyzing both new and existing users, businesses can effectively tailor their interactions to improve customer satisfaction, loyalty and ultimately drive sales.

Keywords: data clustering, data standardization, dimensionality reduction, human computer interaction, user profiling

Procedia PDF Downloads 72
25210 Ground Track Assessment Using Electrical Resistivity Tomography Application

Authors: Noryani Natasha Yahaya, Anas Ibrahim, Juraidah Ahmad, Azura Ahmad, Mohd Ikmal Fazlan Rosli, Zailan Ramli, Muhd Sidek Muhd Norhasri

Abstract:

The subgrade formation is an important element of the railway structure which holds overall track stability. Conventional track maintenance involves many substructure component replacements, as well as track re-ballasting on a regular basis is partially contributed to the embankment's long-term settlement problem. For subgrade long-term stability analysis, the geophysical method is commonly being used to diagnose those hidden sources/mechanisms of track deterioration problems that the normal visual method is unable to detect. Electrical resistivity tomography (ERT) is one of the applicable geophysical tools that are helpful in railway subgrade inspection/track monitoring due to its flexibility and reliability of the analysis. The ERT was conducted at KM 23.0 of Pinang Tunggal track to investigate the subgrade of railway track through the characterization/mapping on track formation profiling which was directly generated using 2D analysis of Res2dinv software. The profiles will allow examination of the presence and spatial extent of a significant subgrade layer and screening of any poor contact of soil boundary. Based on the finding, there is a mix/interpretation/intermixing of an interlayer between the sub-ballast and the sand. Although the embankment track considered here is at no immediate risk of settlement effect or any failure, the regular monitoring of track’s location will allow early correction maintenance if necessary. The developed data of track formation clearly shows the similarity of the side view with the assessed track. The data visualization in the 2D section of the track embankment agreed well with the initial assumption based on the main element structure general side view.

Keywords: ground track, assessment, resistivity, geophysical railway, method

Procedia PDF Downloads 154
25209 Job in Modern Arabic Poetry: A Semantic and Comparative Approach to Two Poems Referring to the Poet Al-Sayyab

Authors: Jeries Khoury

Abstract:

The use of legendary, folkloric and religious symbols is one of the most important phenomena in modern Arabic poetry. Interestingly enough, most of the modern Arabic poetry’s pioneers were so fascinated by the biblical symbols and they managed to use many modern techniques to make these symbols adequate for their personal life from one side and fit to their Islamic beliefs from the other. One of the most famous poets to do so was al-Sayya:b. The way he employed one of these symbols ‘job’, the new features he adds to this character and the link between this character and his personal life will be discussed in this study. Besides, the study will examine the influence of al-Sayya:b on another modern poet Saadi Yusuf, who, following al-Sayya:b, used the character of Job in a special way, by mixing its features with al-Sayya:b’s personal features and in this way creating a new mixed character. A semantic, cultural and comparative analysis of the poems written by al-Sayya:b himself and the other poets who evoked the mixed image of al-Sayya:b-Job, can reveal the changes Arab poets made to the original biblical figure of Job to bring it closer to Islamic culture. The paper will make an intensive use of intertextuality idioms in order to shed light on the network of relations between three kinds of texts (indeed three palimpsests’: 1- biblical- the primary text; 2- poetic- al-Syya:b’s secondary version; 3- re-poetic- Sa’di Yusuf’s tertiary version). The bottom line in this paper is that that al-Sayya:b was directly influenced by the dramatic biblical story of Job more than the brief Quranic version of the story. In fact, the ‘new’ character of Job designed by al-Sayya:b himself differs from the original one in many aspects that we can safely say it is the Sayyabian-Job that cannot be found in the poems of any other poets, unless they are evoking the own tragedy of al-Sayya:b himself, like what Saadi Yusuf did.

Keywords: Arabic poetry, intertextuality, job, meter, modernism, symbolism

Procedia PDF Downloads 196
25208 A Context-Sensitive Algorithm for Media Similarity Search

Authors: Guang-Ho Cha

Abstract:

This paper presents a context-sensitive media similarity search algorithm. One of the central problems regarding media search is the semantic gap between the low-level features computed automatically from media data and the human interpretation of them. This is because the notion of similarity is usually based on high-level abstraction but the low-level features do not sometimes reflect the human perception. Many media search algorithms have used the Minkowski metric to measure similarity between image pairs. However those functions cannot adequately capture the aspects of the characteristics of the human visual system as well as the nonlinear relationships in contextual information given by images in a collection. Our search algorithm tackles this problem by employing a similarity measure and a ranking strategy that reflect the nonlinearity of human perception and contextual information in a dataset. Similarity search in an image database based on this contextual information shows encouraging experimental results.

Keywords: context-sensitive search, image search, similarity ranking, similarity search

Procedia PDF Downloads 363
25207 Fruiting Body Specific Sc4 Hydrophobin Gene Plays a Role in Schizophyllum Commune Hyphal Attachment to Structured Glass Surfaces

Authors: Evans Iyamu

Abstract:

Genes encoding hydrophobins play distinct roles at different stages of the life cycle of fungi, and they foster hyphal attachment to surfaces. The hydrophobin Sc4 is known to provide a hydrophobic membrane lining of the gas channels within Schizophyllum commune fruiting bodies. Here, we cultivated non-fruiting, monokaryotic S. commune 12-43 on glass surfaces that could be verified by micrography. Differential gene expression profiling of nine hydrophobin genes and the hydrophobin-like sc15 gene by quantitative PCR showed significant up-regulation of sc4 when S. commune was attached to glass surfaces, also confirmed with RNA-Seq data analysis. Another silicate, namely quartz sand, was investigated, and induction of sc4 was seen as well. The up-regulation of the hydrophobin gene sc4 may indicate involvement in S. commune hyphal attachment to glass as well as quartz surfaces. We propose that the covering of hyphae by Sc4 allows for direct interaction with the hydrophobic surfaces of silicates and that differential functions of specific hydrophobin genes depend on the surface interface involved. This study could help with the clarification of the biological functions of hydrophobins in natural surroundings, including hydrophobic surface attachment. Therefore, the analysis of growth on glass serves as a basis for understanding S. commune interaction with glass surfaces while providing the possibility to visualize the interaction microscopically.

Keywords: hydrophobin, structured glass surfaces, differential gene expression, quartz sand

Procedia PDF Downloads 118
25206 Analyzing Environmental Emotive Triggers in Terrorist Propaganda

Authors: Travis Morris

Abstract:

The purpose of this study is to measure the intersection of environmental security entities in terrorist propaganda. To the best of author’s knowledge, this is the first study of its kind to examine this intersection within terrorist propaganda. Rosoka, natural language processing software and frame analysis are used to advance our understanding of how environmental frames function as emotive triggers. Violent jihadi demagogues use frames to suggest violent and non-violent solutions to their grievances. Emotive triggers are framed in a way to leverage individual and collective attitudes in psychological warfare. A comparative research design is used because of the differences and similarities that exist between two variants of violent jihadi propaganda that target western audiences. Analysis is based on salience and network text analysis, which generates violent jihadi semantic networks. Findings indicate that environmental frames are used as emotive triggers across both data sets, but also as tactical and information data points. A significant finding is that certain core environmental emotive triggers like “water,” “soil,” and “trees” are significantly salient at the aggregate level across both data sets. All environmental entities can be classified into two categories, symbolic and literal. Importantly, this research illustrates how demagogues use environmental emotive triggers in cyber space from a subcultural perspective to mobilize target audiences to their ideology and praxis. Understanding the anatomy of propaganda construction is necessary in order to generate effective counter narratives in information operations. This research advances an additional method to inform practitioners and policy makers of how environmental security and propaganda intersect.

Keywords: propaganda analysis, emotive triggers environmental security, frames

Procedia PDF Downloads 138
25205 Transcriptional Profiling of Developing Ovules in Litchi chinensis

Authors: Ashish Kumar Pathak, Ritika Sharma, Vishal Nath, Sudhir Pratap Singh, Rakesh Tuli

Abstract:

Litchi is a sub-tropical fruit crop with genotypes bearing delicious juicy fruits with variable seed size (bold to rudimentary size). Small seed size is a desirable trait in litchi, as it increases consumer acceptance and fruit processing. The biochemical activities in mid- stage ovules (e.g. 16, 20, 24 and 28 days after anthesis) determine the fate of seed and fruit development in litchi. Comprehensive ovule-specific transcriptome analysis was performed in two litchi genotypes with contrasting seed size to gain molecular insight on determinants of seed fates in litchi fruits. The transcriptomic data was de-novo assembled in 1,39,608 trinity transcripts, out of which 6,325 trinity transcripts were differentially expressed between the two contrasting genotypes. Differential transcriptional pattern was found among ovule development stages in contrasting litchi genotypes. The putative genes for salicylic acid, jasmonic acid and brassinosteroid pathway were down-regulated in ovules of small-seeded litchi. Embryogenesis, cell expansion, seed size and stress related trinity transcripts exhibited altered expression in small-seeded genotype. The putative regulators of seed maturation and seed storage were down-regulated in small-seed genotype.

Keywords: Litchi, seed, transcriptome, defence

Procedia PDF Downloads 242
25204 Applications of Big Data in Education

Authors: Faisal Kalota

Abstract:

Big Data and analytics have gained a huge momentum in recent years. Big Data feeds into the field of Learning Analytics (LA) that may allow academic institutions to better understand the learners’ needs and proactively address them. Hence, it is important to have an understanding of Big Data and its applications. The purpose of this descriptive paper is to provide an overview of Big Data, the technologies used in Big Data, and some of the applications of Big Data in education. Additionally, it discusses some of the concerns related to Big Data and current research trends. While Big Data can provide big benefits, it is important that institutions understand their own needs, infrastructure, resources, and limitation before jumping on the Big Data bandwagon.

Keywords: big data, learning analytics, analytics, big data in education, Hadoop

Procedia PDF Downloads 423