Search results for: real stress-strain
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5312

Search results for: real stress-strain

4982 A Real Time Development Study for Automated Centralized Remote Monitoring System at Royal Belum Forest

Authors: Amri Yusoff, Shahrizuan Shafiril, Ashardi Abas, Norma Che Yusoff

Abstract:

Nowadays, illegal logging has been causing much effect to our forest. Some of it causes a flash flood, avalanche, global warming, and etc. This comprehensibly makes us wonder why, what, and who has made it happened. Often, it already has been too late after we have known the cause of it. Even the Malaysian Royal Belum forest has not been spared from land clearing or illegal activity by the natives although this area has been gazetted as a protected area preserved for future generations. Furthermore, because of its sizeable and wide area, these illegal activities are difficult to monitor and to maintain. A critical action must be called upon to prevent all of these unhealthy activities from recurrence. Therefore, a remote monitoring device must be developed in order to capture critical real-time data such as temperature, humidity, gaseous, fire, and rain detection which indicates the current and preserved natural state and habitat in the forest. Besides, this device location can be detected via GPS by showing the latitudes and longitudes of its current location and then to be transmitted by SMS via GSM system. All of its readings will be sent in real-time for data management and analysis. This result will be benefited to the monitoring bodies or relevant authority in keeping the forest in the natural habitat. Furthermore, this research is to gather a unified data and then will be analysed for its comparison with an existing method.

Keywords: remote monitoring system, forest data, GSM, GPS, wireless sensor

Procedia PDF Downloads 422
4981 Self-Calibration of Fish-Eye Camera for Advanced Driver Assistance Systems

Authors: Atef Alaaeddine Sarraj, Brendan Jackman, Frank Walsh

Abstract:

Tomorrow’s car will be more automated and increasingly connected. Innovative and intuitive interfaces are essential to accompany this functional enrichment. For that, today the automotive companies are competing to offer an advanced driver assistance system (ADAS) which will be able to provide enhanced navigation, collision avoidance, intersection support and lane keeping. These vision-based functions require an accurately calibrated camera. To achieve such differentiation in ADAS requires sophisticated sensors and efficient algorithms. This paper explores the different calibration methods applicable to vehicle-mounted fish-eye cameras with arbitrary fields of view and defines the first steps towards a self-calibration method that adequately addresses ADAS requirements. In particular, we present a self-calibration method after comparing different camera calibration algorithms in the context of ADAS requirements. Our method gathers data from unknown scenes while the car is moving, estimates the camera intrinsic and extrinsic parameters and corrects the wide-angle distortion. Our solution enables continuous and real-time detection of objects, pedestrians, road markings and other cars. In contrast, other camera calibration algorithms for ADAS need pre-calibration, while the presented method calibrates the camera without prior knowledge of the scene and in real-time.

Keywords: advanced driver assistance system (ADAS), fish-eye, real-time, self-calibration

Procedia PDF Downloads 255
4980 Addressing the Gap in Health and Wellbeing Evidence for Urban Real Estate Brownfield Asset Management Social Needs and Impact Analysis Using Systems Mapping Approach

Authors: Kathy Pain, Nalumino Akakandelwa

Abstract:

The study explores the potential to fill a gap in health and wellbeing evidence for purposeful urban real estate asset management to make investment a powerful force for societal good. Part of a five-year programme investigating the root causes of unhealthy urban development funded by the United Kingdom Prevention Research Partnership (UKPRP), the study pilots the use of a systems mapping approach to identify drivers and barriers to the incorporation of health and wellbeing evidence in urban brownfield asset management decision-making. Urban real estate not only provides space for economic production but also contributes to the quality of life in the local community. Yet market approaches to urban land use have, until recently, insisted that neo-classical technology-driven efficient allocation of economic resources should inform acquisition, operational, and disposal decisions. Buildings in locations with declining economic performance have thus been abandoned, leading to urban decay. Property investors are recognising the inextricable connection between sustainable urban production and quality of life in local communities. The redevelopment and operation of brownfield assets recycle existing buildings, minimising embodied carbon emissions. It also retains established urban spaces with which local communities identify and regenerate places to create a sense of security, economic opportunity, social interaction, and quality of life. Social implications of urban real estate on health and wellbeing and increased adoption of benign sustainability guidance in urban production are driving the need to consider how they affect brownfield real estate asset management decisions. Interviews with real estate upstream decision-makers in the study, find that local social needs and impact analysis is becoming a commercial priority for large-scale urban real estate development projects. Evidence of the social value-added of proposed developments is increasingly considered essential to secure local community support and planning permissions, and to attract sustained inward long-term investment capital flows for urban projects. However, little is known about the contribution of population health and wellbeing to socially sustainable urban projects and the monetary value of the opportunity this presents to improve the urban environment for local communities. We report early findings from collaborations with two leading property companies managing major investments in brownfield urban assets in the UK to consider how the inclusion of health and wellbeing evidence in social valuation can inform perceptions of brownfield development social benefit for asset managers, local communities, public authorities and investors for the benefit of all parties. Using holistic case studies and systems mapping approaches, we explore complex relationships between public health considerations and asset management decisions in urban production. Findings indicate a strong real estate investment industry appetite and potential to include health as a vital component of sustainable real estate social value creation in asset management strategies.

Keywords: brownfield urban assets, health and wellbeing, social needs and impact, social valuation, sustainable real estate, systems mapping

Procedia PDF Downloads 76
4979 The Social Enterprise Model And Its Beneficiaries

Authors: Lorryn Williams

Abstract:

This study will explore how the introduction of the for-profit social enterprise model affects the real lives of the individuals and communities that this model aims to help in South Africa. The congruence between organisational need construction and the real needs of beneficiaries, and whether the adoption of a profit driven model, such as social entrepreneurship, supports or discards these needs is key to answering the former question. By making use of qualitative methods, the study aims to collect empirical evidence that either supports the social entrepreneurship approach when compared to other programs such as vocational training programs or rejects it as less beneficial. It is the objective of this research to provide an answer to the question of whether the social enterprise model of conducting charity leaves the beneficiaries of non-profit organisations in a generally better or worse off position. The study will specifically explore the underlying assumptions the social entrepreneurship model makes, since the assumptions made concerning the uplifting effects it has on its beneficiaries may produce either real or assumed change for beneficiaries. The meaning of social cohesion and social capital for these organisations, the construction of beneficiary dependence and independence, the consideration of formal and informal economies beneficiaries engage in, and the extent to which sustainability is used as a brand, will be investigated. Through engaging the relevant literature, experts in the field of non-profit donorship and need implementation, organisations who have both adopted social enterprise programs and not, and most importantly, the beneficiaries themselves, it will be possible to provide answers to questions this study aims to answer.

Keywords: social enterprise, beneficiaries, profit driven model, non-profit organizations

Procedia PDF Downloads 144
4978 Exponential Value and Learning Effects in VR-Cutting-Vegetable Training

Authors: Jon-Chao Hong, Tsai-Ru Fan, Shih-Min Hsu

Abstract:

Virtual reality (VR) can generate mirror neurons that facilitate learners to transfer virtual skills to a real environment in skill training, and most studies approved the positive effect of applying in many domains. However, rare studies have focused on the experiential values of participants from a gender perspective. To address this issue, the present study used a VR program named kitchen assistant training, focusing on cutting vegetables and invited 400 students to practice for 20 minutes. Useful data from 367 were subjected to statistical analysis. The results indicated that male participants. From the comparison of average, it seems that females perceived higher than males in learning effectiveness. Expectedly, the VR-Cutting vegetables can be used for pre-training of real vegetable cutting.

Keywords: exponential value, facilitate learning, gender difference, virtual reality

Procedia PDF Downloads 97
4977 Developing A Third Degree Of Freedom For Opinion Dynamics Models Using Scales

Authors: Dino Carpentras, Alejandro Dinkelberg, Michael Quayle

Abstract:

Opinion dynamics models use an agent-based modeling approach to model people’s opinions. Model's properties are usually explored by testing the two 'degrees of freedom': the interaction rule and the network topology. The latter defines the connection, and thus the possible interaction, among agents. The interaction rule, instead, determines how agents select each other and update their own opinion. Here we show the existence of the third degree of freedom. This can be used for turning one model into each other or to change the model’s output up to 100% of its initial value. Opinion dynamics models represent the evolution of real-world opinions parsimoniously. Thus, it is fundamental to know how real-world opinion (e.g., supporting a candidate) could be turned into a number. Specifically, we want to know if, by choosing a different opinion-to-number transformation, the model’s dynamics would be preserved. This transformation is typically not addressed in opinion dynamics literature. However, it has already been studied in psychometrics, a branch of psychology. In this field, real-world opinions are converted into numbers using abstract objects called 'scales.' These scales can be converted one into the other, in the same way as we convert meters to feet. Thus, in our work, we analyze how this scale transformation may affect opinion dynamics models. We perform our analysis both using mathematical modeling and validating it via agent-based simulations. To distinguish between scale transformation and measurement error, we first analyze the case of perfect scales (i.e., no error or noise). Here we show that a scale transformation may change the model’s dynamics up to a qualitative level. Meaning that a researcher may reach a totally different conclusion, even using the same dataset just by slightly changing the way data are pre-processed. Indeed, we quantify that this effect may alter the model’s output by 100%. By using two models from the standard literature, we show that a scale transformation can transform one model into the other. This transformation is exact, and it holds for every result. Lastly, we also test the case of using real-world data (i.e., finite precision). We perform this test using a 7-points Likert scale, showing how even a small scale change may result in different predictions or a number of opinion clusters. Because of this, we think that scale transformation should be considered as a third-degree of freedom for opinion dynamics. Indeed, its properties have a strong impact both on theoretical models and for their application to real-world data.

Keywords: degrees of freedom, empirical validation, opinion scale, opinion dynamics

Procedia PDF Downloads 159
4976 Smart Sensor Data to Predict Machine Performance with IoT-Based Machine Learning and Artificial Intelligence

Authors: C. J. Rossouw, T. I. van Niekerk

Abstract:

The global manufacturing industry is utilizing the internet and cloud-based services to further explore the anatomy and optimize manufacturing processes in support of the movement into the Fourth Industrial Revolution (4IR). The 4IR from a third world and African perspective is hindered by the fact that many manufacturing systems that were developed in the third industrial revolution are not inherently equipped to utilize the internet and services of the 4IR, hindering the progression of third world manufacturing industries into the 4IR. This research focuses on the development of a non-invasive and cost-effective cyber-physical IoT system that will exploit a machine’s vibration to expose semantic characteristics in the manufacturing process and utilize these results through a real-time cloud-based machine condition monitoring system with the intention to optimize the system. A microcontroller-based IoT sensor was designed to acquire a machine’s mechanical vibration data, process it in real-time, and transmit it to a cloud-based platform via Wi-Fi and the internet. Time-frequency Fourier analysis was applied to the vibration data to form an image representation of the machine’s behaviour. This data was used to train a Convolutional Neural Network (CNN) to learn semantic characteristics in the machine’s behaviour and relate them to a state of operation. The same data was also used to train a Convolutional Autoencoder (CAE) to detect anomalies in the data. Real-time edge-based artificial intelligence was achieved by deploying the CNN and CAE on the sensor to analyse the vibration. A cloud platform was deployed to visualize the vibration data and the results of the CNN and CAE in real-time. The cyber-physical IoT system was deployed on a semi-automated metal granulation machine with a set of trained machine learning models. Using a single sensor, the system was able to accurately visualize three states of the machine’s operation in real-time. The system was also able to detect a variance in the material being granulated. The research demonstrates how non-IoT manufacturing systems can be equipped with edge-based artificial intelligence to establish a remote machine condition monitoring system.

Keywords: IoT, cyber-physical systems, artificial intelligence, manufacturing, vibration analytics, continuous machine condition monitoring

Procedia PDF Downloads 92
4975 Optimization Based Obstacle Avoidance

Authors: R. Dariani, S. Schmidt, R. Kasper

Abstract:

Based on a non-linear single track model which describes the dynamics of vehicle, an optimal path planning strategy is developed. Real time optimization is used to generate reference control values to allow leading the vehicle alongside a calculated lane which is optimal for different objectives such as energy consumption, run time, safety or comfort characteristics. Strict mathematic formulation of the autonomous driving allows taking decision on undefined situation such as lane change or obstacle avoidance. Based on position of the vehicle, lane situation and obstacle position, the optimization problem is reformulated in real-time to avoid the obstacle and any car crash.

Keywords: autonomous driving, obstacle avoidance, optimal control, path planning

Procedia PDF Downloads 374
4974 Comparison of On-Site Stormwater Detention Real Performance and Theoretical Simulations

Authors: Pedro P. Drumond, Priscilla M. Moura, Marcia M. L. P. Coelho

Abstract:

The purpose of On-site Stormwater Detention (OSD) system is to promote the detention of addition stormwater runoff caused by impervious areas, in order to maintain the peak flow the same as the pre-urbanization condition. In recent decades, these systems have been built in many cities around the world. However, its real efficiency continues to be unknown due to the lack of research, especially with regard to monitoring its real performance. Thus, this study aims to compare the water level monitoring data of an OSD built in Belo Horizonte/Brazil with the results of theoretical methods simulations, usually adopted in OSD design. There were made two theoretical simulations, one using the Rational Method and Modified Puls method and another using the Soil Conservation Service (SCS) method and Modified Puls method. The monitoring data were obtained with a water level sensor, installed inside the reservoir and connected to a data logger. The comparison of OSD performance was made for 48 rainfall events recorded from April/2015 to March/2017. The comparison of maximum water levels in the OSD showed that the results of the simulations with Rational/Puls and SCS/Puls methods were, on average 33% and 73%, respectively, lower than those monitored. The Rational/Puls results were significantly higher than the SCS/Puls results, only in the events with greater frequency. In the events with average recurrence interval of 5, 10 and 200 years, the maximum water heights were similar in both simulations. Also, the results showed that the duration of rainfall events was close to the duration of monitored hydrograph. The rising time and recession time of the hydrographs calculated with the Rational Method represented better the monitored hydrograph than SCS Method. The comparison indicates that the real discharge coefficient value could be higher than 0.61, adopted in Puls simulations. New researches evaluating OSD real performance should be developed. In order to verify the peak flow damping efficiency and the value of the discharge coefficient is necessary to monitor the inflow and outflow of an OSD, in addition to monitor the water level inside it.

Keywords: best management practices, on-site stormwater detention, source control, urban drainage

Procedia PDF Downloads 192
4973 Failure Probability Assessment of Concrete Spherical Domes Subjected to Ventilation Controlled Fires Using BIM Tools

Authors: A. T. Kassem

Abstract:

Fires areconsidered a common hazardous action that any building may face. Most buildings’ structural elements are designed, taking into consideration precautions for fire safety, using deterministic design approaches. Public and highly important buildings are commonly designed considering standard fire rating and, in many cases, contain large compartments with central domes. Real fire scenarios are not commonly brought into action in structural design of buildings because of complexities in both scenarios and analysis tools. This paper presents a modern approach towards analysis of spherical domes in real fire condition via implementation of building information modelling, and adopting a probabilistic approach. BIMhas been implemented to bridge the gap between various software packages enabling them to function interactively to model both real fire and corresponding structural response. Ventilation controlled fires scenarios have been modeled using both “Revit” and “Pyrosim”. Monte Carlo simulation has been adopted to engage the probabilistic analysis approach in dealing with various parameters. Conclusions regarding failure probability and fire endurance, in addition to the effects of various parameters, have been extracted.

Keywords: concrete, spherical domes, ventilation controlled fires, BIM, monte carlo simulation, pyrosim, revit

Procedia PDF Downloads 100
4972 Requirements Definitions of Real-Time System Using the Behavioral Patterns Analysis (BPA) Approach: The Healthcare Multi-Agent System

Authors: Assem El-Ansary

Abstract:

This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach using the Healthcare Multi-Agent System. The Event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are: The Behavioral Pattern Analysis (BPA) modeling methodology. The development of an interactive software tool (DECISION), which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.

Keywords: analysis, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases, Healthcare Multi-Agent System

Procedia PDF Downloads 555
4971 Analysis of an High Voltage Direct Current (HVDC) Connection Using a Real-Time Simulator Under Various Disturbances

Authors: Mankour Mohamed, Miloudi Mohamed

Abstract:

A thorough and accurate simulation is necessary for the study of a High Voltage Direct Current (HVDC) link system during various types of disturbances, including internal faults on both converters, either on the rectifier or on the inverter, as well as external faults, such as AC or DC faults on both converter sides inside the DC link party. In this study, we examine how an HVDC inverter responds to three different types of failures, including faults at the inverter valve, system control faults, and single-phase-to-ground AC faults at the sending end of the inverter side. As this phenomenon represents the most frequent problem that may affect inverter valves, particularly those based on thyristor valves (LCC (line-Commutated converter)), it is more precise to explore which circumstance generates and raises the commutation failure on inverter valves. Because of the techniques used to accelerate the simulation, digital real-time simulators are now the most potent tools that provide simulation results. The real-time-lab RT-LAB platform HYPERSIM OP-5600 is used to implement the Simulation in the Loop (SIL) technique, which is used to validate the results. It is demonstrated how to recover from both the internal faults and the AC problem. The simulation findings show how crucial a role the control system plays in fault recovery.

Keywords: hypersim simulator, HVDC systems, mono-polar link, AC faults, misfiring faults

Procedia PDF Downloads 98
4970 Real-World PM, PN and NOx Emission Differences among DOC+CDPF Retrofit Diesel-, Diesel- And Natural Gas-Fueled Bus

Authors: Zhiwen Yang, Jingyuan Li, Zhenkai Xie, Jian Ling, Jiguang Wang, Mengliang Li

Abstract:

To reflect the effects of different emission control strategies, such as retrofitting after-treatment system and replacing with natural gas-fueled vehicles, on particle number (PN), particle mass (PM) and nitrogen oxides (NOx) emissions emitted by urban bus, a portable emission measurement system (PEMS) was employed herein to conduct real-world driving emission measurements on a diesel oxidation catalytic converter (DOC) and catalyzed diesel particulate filter (CDPF) retrofitting China IV diesel bus, a China IV diesel bus, and a China V natural gas bus. The results show that both tested diesel buses possess markedly advantages in NOx emission control when compared to the lean-burn natural gas bus equipped without any NOx after-treatment system. As to PN and PM, only the DOC+CDPF retrofitting diesel bus exhibits enormous benefits on emission control relate to the natural gas bus, especially the normal diesel bus. Meanwhile, the differences in PM and PN emissions between retrofitted and normal diesel buses generally increase with the increase in vehicle-specific power (VSP). Furthermore, the differences in PM emissions, especially those in the higher VSP ranges, are more significant than those in PN. In addition, the maximum peak PN particle size (32 nm) of the retrofitted diesel bus was significantly lower than that of the normal diesel bus (100 nm). These phenomena indicate that the CDPF retrofitting can effectively reduce diesel bus exhaust particle emissions, especially those with large particle sizes.

Keywords: CDPF, diesel, natural gas, real-world emissions

Procedia PDF Downloads 303
4969 Assessing the Correlation Between miR-141 Expression, Common K-Ras Gene Mutations, and Their Impact on Prognosis in Colorectal Cancer Tissue of Iranian Patients

Authors: Shima Behzadi

Abstract:

Context:MicroRNA expression and K-Ras gene mutations play crucial roles in the prognosis of colorectal cancer. Understanding their correlation can provide valuable insights for better diagnosis and treatment strategies. Methodology:A case-control study involving 100 Iranian patients diagnosed with colorectal cancer was conducted. The expression of miR-141 and the presence of K-Ras mutations were analyzed using real-time PCR. Findings:The study demonstrated a significant correlation between miR-141 expression and K-Ras gene mutations in colorectal cancer patients. Patients with K-Ras mutations exhibited higher levels of miR-141 expression, indicating its potential as a prognostic biomarker. Theoretical importance:This research highlights the potential utility of miR-141 as a prognostic marker in colorectal cancer, particularly in patients with K-Ras mutations. It contributes to the understanding of molecular mechanisms associated with colorectal cancer prognosis. Data collection:Tissue samples from colorectal cancer patients with and without K-Ras mutations were collected and analyzed for miR-141 expression levels. Analysis procedures:Real-time PCR was used to quantify miR-141 expression levels in tumor samples with K-Ras mutations compared to those without these mutations. Conclusion:The study confirms a significant association between miR-141 expression and K-Ras mutations in Iranian colorectal cancer patients, suggesting the potential of miR-141 as a valuable prognostic biomarker in this context.

Keywords: colorectal cancer, K-Ras gene, miR-141 marker, real time PCR, electrophoresis

Procedia PDF Downloads 15
4968 Study on an Integrated Real-Time Sensor in Droplet-Based Microfluidics

Authors: Tien-Li Chang, Huang-Chi Huang, Zhao-Chi Chen, Wun-Yi Chen

Abstract:

The droplet-based microfluidic are used as micro-reactors for chemical and biological assays. Hence, the precise addition of reagents into the droplets is essential for this function in the scope of lab-on-a-chip applications. To obtain the characteristics (size, velocity, pressure, and frequency of production) of droplets, this study describes an integrated on-chip method of real-time signal detection. By controlling and manipulating the fluids, the flow behavior can be obtained in the droplet-based microfluidics. The detection method is used a type of infrared sensor. Through the varieties of droplets in the microfluidic devices, the real-time conditions of velocity and pressure are gained from the sensors. Here the microfluidic devices are fabricated by polydimethylsiloxane (PDMS). To measure the droplets, the signal acquisition of sensor and LabVIEW program control must be established in the microchannel devices. The devices can generate the different size droplets where the flow rate of oil phase is fixed 30 μl/hr and the flow rates of water phase range are from 20 μl/hr to 80 μl/hr. The experimental results demonstrate that the sensors are able to measure the time difference of droplets under the different velocity at the voltage from 0 V to 2 V. Consequently, the droplets are measured the fastest speed of 1.6 mm/s and related flow behaviors that can be helpful to develop and integrate the practical microfluidic applications.

Keywords: microfluidic, droplets, sensors, single detection

Procedia PDF Downloads 497
4967 DMBR-Net: Deep Multiple-Resolution Bilateral Networks for Real-Time and Accurate Semantic Segmentation

Authors: Pengfei Meng, Shuangcheng Jia, Qian Li

Abstract:

We proposed a real-time high-precision semantic segmentation network based on a multi-resolution feature fusion module, the auxiliary feature extracting module, upsampling module, and atrous spatial pyramid pooling (ASPP) module. We designed a feature fusion structure, which is integrated with sufficient features of different resolutions. We also studied the effect of side-branch structure on the network and made discoveries. Based on the discoveries about the side-branch of the network structure, we used a side-branch auxiliary feature extraction layer in the network to improve the effectiveness of the network. We also designed upsampling module, which has better results than the original upsampling module. In addition, we also re-considered the locations and number of atrous spatial pyramid pooling (ASPP) modules and modified the network structure according to the experimental results to further improve the effectiveness of the network. The network presented in this paper takes the backbone network of Bisenetv2 as a basic network, based on which we constructed a network structure on which we made improvements. We named this network deep multiple-resolution bilateral networks for real-time, referred to as DMBR-Net. After experimental testing, our proposed DMBR-Net network achieved 81.2% mIoU at 119FPS on the Cityscapes validation dataset, 80.7% mIoU at 109FPS on the CamVid test dataset, 29.9% mIoU at 78FPS on the COCOStuff test dataset. Compared with all lightweight real-time semantic segmentation networks, our network achieves the highest accuracy at an appropriate speed.

Keywords: multi-resolution feature fusion, atrous convolutional, bilateral networks, pyramid pooling

Procedia PDF Downloads 159
4966 Prediction on Housing Price Based on Deep Learning

Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang

Abstract:

In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.

Keywords: deep learning, convolutional neural network, LSTM, housing prediction

Procedia PDF Downloads 310
4965 An Analysis of Oil Price Changes and Other Factors Affecting Iranian Food Basket: A Panel Data Method

Authors: Niloofar Ashktorab, Negar Ashktorab

Abstract:

Oil exports fund nearly half of Iran’s government expenditures, since many years other countries have been imposed different sanctions against Iran. Sanctions that primarily target Iran’s key energy sector have harmed Iran’s economy. The strategic effects of sanctions might be reduction as Iran adjusts to them economically. In this study, we evaluate the impact of oil price and sanctions against Iran on food commodity prices by using panel data method. Here, we find that the food commodity prices, the oil price and real exchange rate are stationary. The results show positive effect of oil price changes, real exchange rate and sanctions on food commodity prices.

Keywords: oil price, food basket, sanctions, panel data, Iran

Procedia PDF Downloads 364
4964 Challenges with Synchrophasor Technology Deployments in Electric Power Grids

Authors: Emmanuel U. Oleka, Anil Khanal, Gary L. Lebby, Ali R. Osareh

Abstract:

Synchrophasor technology is fast being deployed in electric power grids all over the world and is fast changing the way the grids are managed. This trend is to continue until the entire power grids are fully connected so they can be monitored and controlled in real-time. Much achievement has been made in the synchrophasor technology development and deployment, and much more are yet to be achieved. Real-time power grid control and protection potentials of synchrophasor are yet to be explored. It is of necessity that researchers keep in view the various challenges that still need to be overcome in expanding the frontiers of synchrophasor technology. This paper outlines the major challenges that should be dealt with in order to achieve the goal of total power grid visualization, monitoring and control using synchrophasor technology.

Keywords: electric power grid, grid visualization, phasor measurement unit, synchrophasor

Procedia PDF Downloads 560
4963 Optimised Path Recommendation for a Real Time Process

Authors: Likewin Thomas, M. V. Manoj Kumar, B. Annappa

Abstract:

Traditional execution process follows the path of execution drawn by the process analyst without observing the behaviour of resource and other real-time constraints. Identifying process model, predicting the behaviour of resource and recommending the optimal path of execution for a real time process is challenging. The proposed AlfyMiner: αyM iner gives a new dimension in process execution with the novel techniques Process Model Analyser: PMAMiner and Resource behaviour Analyser: RBAMiner for recommending the probable path of execution. PMAMiner discovers next probable activity for currently executing activity in an online process using variant matching technique to identify the set of next probable activity, among which the next probable activity is discovered using decision tree model. RBAMiner identifies the resource suitable for performing the discovered next probable activity and observe the behaviour based on; load and performance using polynomial regression model, and waiting time using queueing theory. Based on the observed behaviour αyM iner recommend the probable path of execution with; next probable activity and the best suitable resource for performing it. Experiments were conducted on process logs of CoSeLoG Project1 and 72% of accuracy is obtained in identifying and recommending next probable activity and the efficiency of resource performance was optimised by 59% by decreasing their load.

Keywords: cross-organization process mining, process behaviour, path of execution, polynomial regression model

Procedia PDF Downloads 339
4962 Good Faith and Accession in the New Civil Code

Authors: Adelina Vrancianu

Abstract:

The problem of artificial real accession will be analyzed in this study both in terms of old and current Civil Code provisions and in terms of comparative law, European legal and Canadian systems. The current Civil Code from 2009 has brought new changes about the application and solutions regarding artificial real accession. The hypothesis in which a person is making works with his own materials on the real estate belonging to another person is developed and analyzed in detail from national and international point of view in relation with the good faith. The scope of this analysis is to point out what are the changes issued from case-law and which ones are new, inspired from other law systems in regard to the good/bad faith. The new civil code has promoted a definition for this notion. Is this definition a new one inspired from the comparative law or is it inspired from the case-law? Is it explained for every case scenario of accession or is a general notion? The study tries to respond to these questions and to present the new aspects in the area. has reserved a special place for the situation of execution of works with own materials exceeding the border with violation of another’s right of property, where the variety of solutions brings into discussion the case of expropriation for private interest. The new Civil Code is greatly influenced by the Civil Code from Quebec in comparison with the old code of French influence. The civil reform was needed and has brought into attention new solutions inspired from the Canadian system which has mitigated the permanent conflict between the constructor and the immovable owner.

Keywords: accession, good faith, new civil code, comparative law

Procedia PDF Downloads 467
4961 The Methodology of Out-Migration in Georgia

Authors: Shorena Tsiklauri

Abstract:

Out-migration is an important issue for Georgia as well as since independence has loosed due to emigration one fifth of its population. During Soviet time out-migration from USSR was almost impossible and one of the most important instruments in regulating population movement within the Soviet Union was the system of compulsory residential registrations, so-called “propiska”. Since independent here was not any regulation for migration from Georgia. The majorities of Georgian migrants go abroad by tourist visa and then overstay, becoming the irregular labor migrants. The official statistics on migration published for this period was based on the administrative system of population registration, were insignificant in terms of numbers and did not represent the real scope of these migration movements. This paper discusses the data quality and methodology of migration statistics in Georgia and we are going to answer the questions: what is the real reason of increasing immigration flows according to the official numbers since 2000s?

Keywords: data quality, Georgia, methodology, migration

Procedia PDF Downloads 419
4960 The Visualizer for Real-Time Analysis of Internet Trends

Authors: Radek Malinský, Ivan Jelínek

Abstract:

The current web has become a modern encyclopedia, where people share their thoughts and ideas on various topics around them. Such kind of encyclopedia is very useful for other people who are looking for answers to their questions. However, with the growing popularity of social networking and blogging and ever expanding network services, there has also been a growing diversity of technologies along with different structure of individual websites. It is, therefore, difficult to directly find a relevant answer for a common Internet user. This paper presents a web application for the real-time end-to-end analysis of selected Internet trends; where the trend can be whatever the people post online. The application integrates fully configurable tools for data collection and analysis using selected webometric algorithms, and for its chronological visualization to user. It can be assumed that the application facilitates the users to evaluate the quality of various products that are mentioned online.

Keywords: Trend, visualizer, web analysis, web 2.0.

Procedia PDF Downloads 271
4959 Internet-Of-Things and Ergonomics, Increasing Productivity and Reducing Waste: A Case Study

Authors: V. Jaime Contreras, S. Iliana Nunez, S. Mario Sanchez

Abstract:

Inside a manufacturing facility, we can find innumerable automatic and manual operations, all of which are relevant to the production process. Some of these processes add more value to the products more than others. Manual operations tend to add value to the product since they can be found in the final assembly area o final operations of the process. In this areas, where a mistake or accident can increase the cost of waste exponentially. To reduce or mitigate these costly mistakes, one approach is to rely on automation to eliminate the operator from the production line - requires a hefty investment and development of specialized machinery. In our approach, the center of the solution is the operator through sufficient and adequate instrumentation, real-time reporting and ergonomics. Efficiency and reduced cycle time can be achieved thorough the integration of Internet-of-Things (IoT) ready technologies into assembly operations to enhance the ergonomics of the workstations. Augmented reality visual aids, RFID triggered personalized workstation dimensions and real-time data transfer and reporting can help achieve these goals. In this case study, a standard work cell will be used for real-life data acquisition and a simulation software to extend the data points beyond the test cycle. Three comparison scenarios will run in the work cell. Each scenario will introduce a dimension of the ergonomics to measure its impact independently. Furthermore, the separate test will determine the limitations of the technology and provide a reference for operating costs and investment required. With the ability, to monitor costs, productivity, cycle time and scrap/waste in real-time the ROI (return on investment) can be determined at the different levels to integration. This case study will help to show that ergonomics in the assembly lines can make significant impact when IoT technologies are introduced. Ergonomics can effectively reduce waste and increase productivity with minimal investment if compared with setting up to custom machine.

Keywords: augmented reality visual aids, ergonomics, real-time data acquisition and reporting, RFID triggered workstation dimensions

Procedia PDF Downloads 221
4958 A Variable Neighborhood Search with Tabu Conditions for the Roaming Salesman Problem

Authors: Masoud Shahmanzari

Abstract:

The aim of this paper is to present a Variable Neighborhood Search (VNS) with Tabu Search (TS) conditions for the Roaming Salesman Problem (RSP). The RSP is a special case of the well-known traveling salesman problem (TSP) where a set of cities with time-dependent rewards and a set of campaign days are given. Each city can be visited on any day and a subset of cities can be visited multiple times. The goal is to determine an optimal campaign schedule consist of daily open/closed tours that visit some cities and maximizes the total net benefit while respecting daily maximum tour duration constraints and the necessity to return campaign base frequently. This problem arises in several real-life applications and particularly in election logistics where depots are not fixed. We formulate the problem as a mixed integer linear programming (MILP), in which we capture as many real-world aspects of the RSP as possible. We also present a hybrid metaheuristic algorithm based on a VNS with TS conditions. The initial feasible solution is constructed via a new matheuristc approach based on the decomposition of the original problem. Next, this solution is improved in terms of the collected rewards using the proposed local search procedure. We consider a set of 81 cities in Turkey and a campaign of 30 days as our largest instance. Computational results on real-world instances show that the developed algorithm could find near-optimal solutions effectively.

Keywords: optimization, routing, election logistics, heuristics

Procedia PDF Downloads 100
4957 Intelligent Fishers Harness Aquatic Organisms and Climate Change

Authors: Shih-Fang Lo, Tzu-Wei Guo, Chih-Hsuan Lee

Abstract:

Tropical fisheries are vulnerable to the physical and biogeochemical oceanic changes associated with climate change. Warmer temperatures and extreme weather have beendamaging the abundance and growth patterns of aquatic organisms. In recent year, the shrinking of fish stock and labor shortage have increased the threat to global aquacultural production. Thus, building a climate-resilient and sustainable mechanism becomes an urgent, important task for global citizens. To tackle the problem, Taiwanese fishermen applies the artificial intelligence (AI) technology. In brief, the AI system (1) measures real-time water quality and chemical parameters infish ponds; (2) monitors fish stock through segmentation, detection, and classification; and (3) implements fishermen’sprevious experiences, perceptions, and real-life practices. Applying this system can stabilize the aquacultural production and potentially increase the labor force. Furthermore, this AI technology can build up a more resilient and sustainable system for the fishermen so that they can mitigate the influence of extreme weather while maintaining or even increasing their aquacultural production. In the future, when the AI system collected and analyzed more and more data, it can be applied to different regions of the world or even adapt to the future technological or societal changes, continuously providing the most relevant and useful information for fishermen in the world.

Keywords: aquaculture, artificial intelligence (AI), real-time system, sustainable fishery

Procedia PDF Downloads 118
4956 Classifying Turbomachinery Blade Mode Shapes Using Artificial Neural Networks

Authors: Ismail Abubakar, Hamid Mehrabi, Reg Morton

Abstract:

Currently, extensive signal analysis is performed in order to evaluate structural health of turbomachinery blades. This approach is affected by constraints of time and the availability of qualified personnel. Thus, new approaches to blade dynamics identification that provide faster and more accurate results are sought after. Generally, modal analysis is employed in acquiring dynamic properties of a vibrating turbomachinery blade and is widely adopted in condition monitoring of blades. The analysis provides useful information on the different modes of vibration and natural frequencies by exploring different shapes that can be taken up during vibration since all mode shapes have their corresponding natural frequencies. Experimental modal testing and finite element analysis are the traditional methods used to evaluate mode shapes with limited application to real live scenario to facilitate a robust condition monitoring scheme. For a real time mode shape evaluation, rapid evaluation and low computational cost is required and traditional techniques are unsuitable. In this study, artificial neural network is developed to evaluate the mode shape of a lab scale rotating blade assembly by using result from finite element modal analysis as training data. The network performance evaluation shows that artificial neural network (ANN) is capable of mapping the correlation between natural frequencies and mode shapes. This is achieved without the need of extensive signal analysis. The approach offers advantage from the perspective that the network is able to classify mode shapes and can be employed in real time including simplicity in implementation and accuracy of the prediction. The work paves the way for further development of robust condition monitoring system that incorporates real time mode shape evaluation.

Keywords: modal analysis, artificial neural network, mode shape, natural frequencies, pattern recognition

Procedia PDF Downloads 165
4955 On-The-Fly Cross Sections Generation in Neutron Transport with Wide Energy Region

Authors: Rui Chen, Shu-min Zhou, Xiong-jie Zhang, Ren-bo Wang, Fan Huang, Bin Tang

Abstract:

During the temperature changes in reactor core, the nuclide cross section in reactor can vary with temperature, which eventually causes the changes of reactivity. To simulate the interaction between incident neutron and various materials at different temperatures on the nose, it is necessary to generate all the relevant reaction temperature-dependent cross section. Traditionally, the real time cross section generation method is used to avoid storing huge data but contains severe problems of low efficiency and adaptability for narrow energy region. Focused on the research on multi-temperature cross sections generation in real time during in neutron transport, this paper investigated the on-the-fly cross section generation method for resolved resonance region, thermal region and unresolved resonance region, and proposed the real time multi-temperature cross sections generation method based on double-exponential formula for resolved resonance region, as well as the Neville interpolation for thermal and unresolved resonance region. To prove the correctness and validity of multi-temperature cross sections generation based on wide energy region of incident neutron, the proposed method was applied in critical safety benchmark tests, which showed the capability for application in reactor multi-physical coupling simulation.

Keywords: cross section, neutron transport, numerical simulation, on-the-fly

Procedia PDF Downloads 199
4954 Enhancing Audience Engagement: Informal Music Learning During Classical Concerts

Authors: Linda Dusman, Linda Baker

Abstract:

The Bearman Study of Audience Engagement examined the potential for real-time music education during online symphony orchestra concerts. It follows on the promising results of a preliminary study of STEAM (Science, Technology, Engineering, Arts, and Mathematics) education during live concerts, funded by the National Science Foundation with the Baltimore Symphony Orchestra. For the Bearman Study, audience groups were recruited to attend two previously recorded concerts of the National Orchestral Institute (NOI) in 2020 or the Utah Symphony in 2021. They used a smartphone app called EnCue to present real-time program notes about the music being performed. Short notes along with visual information (photos and score fragments) were designed to provide historical, cultural, biographical, and theoretical information at specific moments in the music where that information would be most pertinent, generally spaced 2-3 minutes apart to avoid distraction. The music performed included Dvorak Symphony No. 8 and Mahler Symphony No. 5 at NOI, and Mendelssohn Scottish Symphony and Richard Strauss Metamorphosen with the Utah Symphony, all standard repertoire for symphony orchestras. During each phase of the study (2020 and 2021), participants were randomly assigned to use the app to view program notes during the first concert or to use the app during the second concert. A total of 139 participants (67 in 2020 and 72 in 2021) completed three online questionnaires, one before attending the first concert, one immediately after the concert, and the third immediately after the second concert. Questionnaires assessed demographic background, expertise in music, engagement during the concert, learning of content about the composers and the symphonies, and interest in the future use of the app. In both phases of the study, participants demonstrated that they learned content presented on the app, evidenced by the fact that their multiple-choice test scores were significantly higher when they used the app than when they did not. In addition, most participants indicated that using the app enriched their experience of the concert. Overall, they were very positive about their experience using the app for real-time learning and they expressed interest in using it in the future at both live and streaming concerts. Results confirmed that informal real-time learning during concerts is possible and can generate enhanced engagement and interest in classical music.

Keywords: audience engagement, informal education, music technology, real-time learning

Procedia PDF Downloads 205
4953 Robust Adaptation to Background Noise in Multichannel C-OTDR Monitoring Systems

Authors: Andrey V. Timofeev, Viktor M. Denisov

Abstract:

A robust sequential nonparametric method is proposed for adaptation to background noise parameters for real-time. The distribution of background noise was modelled like to Huber contamination mixture. The method is designed to operate as an adaptation-unit, which is included inside a detection subsystem of an integrated multichannel monitoring system. The proposed method guarantees the given size of a nonasymptotic confidence set for noise parameters. Properties of the suggested method are rigorously proved. The proposed algorithm has been successfully tested in real conditions of a functioning C-OTDR monitoring system, which was designed to monitor railways.

Keywords: guaranteed estimation, multichannel monitoring systems, non-asymptotic confidence set, contamination mixture

Procedia PDF Downloads 436